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Probabilistic Diagnostics with P-Graphs* 

Balázs Polgár* and Endre Setényi* 

Abstract 

This paper presents a novel approach for solving the probabilistic diag-
nosis problem in multiprocessor systems. The main idea of the algorithm is 
based on the reformulation of the diagnostic procedure as a P-graph model. 
The same, well-elaborated mathematical paradigm—originally used to model 
material flow—can be applied in our approach to model information flow. 
This idea is illustrated by deriving a maximum likelihood diagnostic decision 
procedure. The diagnostic accuracy of the solution is considered on the basis 
of simulation measurements, and a method of constructing a general frame-
work for different aspects of a complex problem is demonstrated with the use 
of P-graph models. 

Introduction 
Diagnostics is one of the major tools for assuring the reliability of complex systems 
in information technology. 

In such systems the test process is often implemented on system-level: the 
"intelligent" components of the system test their local environment and each other. 
The test results are collected, and based on this information the good or faulty state 
of each system-component is determined. This classification procedure is known as 
diagnostic process. 

The early approaches that solve the diagnostic problem employed oversimplified 
binary fault models, could only describe homogeneous systems, and assumed the 
faults to be permanent. Since these conditions proved to be impractical, lately 
much effort has been put into extending the limitations of traditional models [1]. 
However, the presented solutions mostly concentrated on only one aspect of the 
problem. In this paper we introduce a novel modeling approach based on P-graphs 
that can integrate these extensions in one framework, while maintaining a good 
diagnostic performance. With this model, we formulate diagnosis as an optimiza-
tion problem and apply the idea to the well-known multiprocessor testing problem, 
whose structure is one of the simplest. 
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Furthermore, we have not only integrated existing solution methods, but pro-
ceeding from a more general base we have extended the set of solvable problems 
with new ones. 

The paper is structured as follows. First an overview is given about the tradi-
tional aspects of system-level diagnosis and the way we have generalized the test 
invalidation model. Then the elements and the solution method of a P-graph model 
are introduced. In the main part the diagnostic problem of a multiprocessor sys-
tem is formulated with the use of P-graphs. Afterwards, an important aspect, the 
extensibility of the model is demonstrated via examples. Moreover, the generation 
and the solution method of a P-graph model is clarified on a small example. The 
diagnostic accuracy of the decoding algorithm is presented on the basis of simu-
lation results and it is compared to other approaches taken from the literature. 
Finally, we conclude and sketch the direction of future work. 

1 System-level Diagnosis 

System-level diagnosis considers the replaceable units of a system, and does not deal 
with the exact location of faults within these units. A system consists of an in-
terconnected network of independent but cooperating units (typically processors). 
The state of each unit is either good when it behaves as specified, or faulty, other-
wise. The fault pattern is the collection of the states of all units in the system. A 
unit may test the neighboring units connected with it via direct links. The network 
of the units testing each other determines the test topology. The outcome of a test 
can be either passed or failed (denoted by 0/1 or G/F) ; this result is considered 
valid if it corresponds to the actual physical state of the tested unit. 

The collection of the results of every completed test is called the syndrome. The 
test topology and the syndrome are represented graphically by the testing graph. 
The vertices of a testing graph denote the units of the system, while the directed 
arcs represent the tests originated at the tester and directed towards the tested 
unit (UUT). The result of a test is shown as the label of the corresponding arc. 
Label 0 represents the passed test result, while label 1 represents the failed one. 
See Figure 1 for an example testing graph with three units. 

Figure 1: Example testing graph (test topology with syndrome) 



Probabilistic Diagnostics with P-Graphs 281 

1.1 Traditional approach 
Traditional diagnostic algorithms [2, 3] assume that 

• faults are permanent, 
• states of units are binary (good, faulty), 

• the test results of good units are always valid, 
• the test results of faulty units can also be invalid. The behavior of faulty 

tester units is expressed in the form of test invalidation models. 

Table 1 covers the possible test invalidation models where the selection of c and 
d values determines a specific model. The most widely used example is the so-
called PMC (Preparata, Metze, Chien) test invalidation model, (c = any, d = any) 
which considers the test result of a faulty tester to be independent of the state of 
the tested unit. Another well-known test invalidation model is the BGM (Barsi, 
Grandoni, Maestrini) model (c = any, d = faulty) where a faulty tester will always 
detect the failure of the tested unit, as it is assumed that the probability of two 
units failing the same way is negligible. 

Table 1: Traditional test invalidation models 
State of State of Test result 

tester U U T 
good good passed 
good faulty failed 

faulty good c 6 {passed, failed, any} 
faulty faulty d € {passed, failed, any} 

The purpose of system-level diagnostic algorithms is to determine the state of 
each unit from the syndrome. The difficulty comes from the possibility that a 
fault in the tester processor invalidates the test result. As a consequence, multiple 
"candidate" diagnoses can be compatible with the syndrome. To provide a complete 
diagnosis and to select from the candidate diagnoses, the so-called deterministic 
algorithms use extra information in addition to the syndrome, such as assumptions 
on the size or on the topology of. the fault pattern. 

Alternatively, probabilistic algorithms try to determine the most probable di-
agnosis assuming that a unit is more likely good than faulty [4]. Frequently, this 
maximum likelihood strategy can be expressed simply as "many faults occur less 
frequently than a few faults." Thus, the aim of diagnostics is to determine the 
minimal set of faulty elements of the system that is consistent with the syndrome.. 

1.2 Generalized approach 
In our previous work [5] we used a generalized test invalidation model, introduced 
by Blount [6]. In this model probabilities are assigned to both possible test outcome 
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for each combination of the states of tester and tested unit (shown in Table 2). Since 
the passed and failed results are complementary events, the sum of the probabilities 
in each row is 1. The assumption of the complete fault coverage can be relaxed in 
the generalized model by setting probability pbi to the fault coverage of the test. . 
Probabilities pco, Pel, Pdo and Pd\ express the distortion of the test results by a 
faulty tester. Moreover, the generalized model is able to encompass false alarms (a • 
good tester finds a good unit to be faulty) by setting probability pai to nonzero. 

Table 2: Generalized testing model 

State of 
tester 

State of 
U U T 

Probability of test result State of 
tester 

State of 
U U T 0 1 

good good Pa 0 Pal 
good faulty PbO Pbi 

faulty good PcO Pel 
faulty faulty PdO Pdi 

Naturally, the generalized test invalidation model also covers the traditional 
models. Setting the probabilities as pao = Pbi = 1, Pco — PcI = Pdo — Pdi = 0.5, 
and Pai = Pbo — 0, the generalized model will have the characteristics of the 
PMC model, while the configuration pao = Pbi = Pdi = 1, Pco — Pel = 0.5 and 
Pai = Pbo = Pdo — 0 will make it behave like the BGM model. Analogously, every 
traditional test invalidation model can be mapped as a special case to our model 
by assigning suitable probabilities to each element of the related test invalidation 
relation. In this sense the generalized test invalidation model covers the traditional 
models. 

2 Diagnosis Based on P-Graphs 

2.1 Definition of P-Graph Model of the Diagnostic System 
The name 'P-graph' originates from the name 'Process-graph' from the field of Pro-
cess Network Synthesis problems (PNS problem for short) in chemical engineering. 
In connection with this field the mathematical background of the solution methods 
of PNS problems have been elaborated well, see [7], [8] and [9]. 

A P-graph is a directed bipartite graph. Its vertices are partitioned into two 
sets, with no two vertices of the same set being adjacent. In our interpretation one 
of the sets contains knowledge (the knowledge about the states of units union the 
knowledge about the possible test results), the other one contains logical relations 
between the pieces of knowledge. The edges of the graph point from the premisses1 

'through' the logical relation to the consequences. The set of premisses contains 
both good and faulty states of each unit (e.g., 'unit A is good', 'unit A is faulty', 
'unit B is good', denoted by Ag, Af, Bg), and the set of consequences contains the 

1 premiss = preliminary condition 
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measured test results (e.g. 'unit A finds unit B to be good', 'unit B finds unit C 
to be faulty', denoted by ABG, BCF)- Logical relations determine the possible 
premisses of each possible test result. Namely, there are 8 logical relations for each 
test according to the states of tester and tested unit and the possible test results. 
Probabilities in Table 2 are assigned to relations expressing the uncertainty of the 
consequences, see Figure 2. 

Figure 2: P-graph model of a single test (vertices with same label represent a single 
vertex; multiple instances are only for better arrangement) 

A solution structure is defined as a subgraph of the original P-graph, which 
deduces the consequences back to a subset of premisses. 

Function X ( ) is a membership function, X(A) is 1 if unit A is in the solution 
structure, and 0 otherwise. With the use of this function constraints can be defined 
assuring that in a solution structure a unit should have one and only one state. 
Formally, for each unit U X(UG) + X(UF) = 1. A P-graph is contradictionless if 
all constraints are satisfied. 

The probability of the syndrome (Ps) is the product of probabilities of relations 
in a solution structure. This is the occurring probability of the known consequences 
under the conditions of the given subset of system premisses. 

Because of probabilities are assigned to relations, more contradictionless solu-
tion structures can exist having different subsets of system premisses and having 
different Ps values. The object is to find a solution structure containing that sub-
set of system premisses which implies the known consequences with the maximum 
likelihood. This is an optimization task. 

In principle, this task can be solved by general mathematical programming 
methods like mixed integer non-linear programming (MINLP), however, they are 
unnecessary complex. Friedler et al. ([7, 8, 9]) developed a new framework for 
solving PNS problems effectively by exploiting the special structure of the problem 
and the corresponding mathematical model. 

2.2 Steps of the Solution Algorithm 
1. The maximal P-graph structure is generated. It contains only the relevant 

pieces of knowledge and the relevant logical relations, but constraints are not 
yet satisfied. It contains all possible fault patterns being consistent with the 
given syndrome. 
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2. Every combinatorially feasible solution structure is obtained. These are the 
structures that satisfy the constraints and draw the known consequences—the 
syndrome—back to a subset of the system premisses. Each of these subsets 
determines a possible fault pattern. 

3. For each combinatorially feasible solution structure the probability of syn-
drome is calculated. This is the conditional probability of the syndrome 
under the condition of a particular fault pattern. 

4. The structure having the highest probability is selected; this solution struc-
ture contains the diagnosis with maximum likelihood. 

Steps 2-4 can be completed either by a general solver for linear programming 
(since the generated maximal structure is a special flat P-graph), or with an adapted 
SSG algorithm [7] using the branch and bound technique. 

3 Extensions of the Model 
The main contribution of this novel modeling approach is its generality. With its 
use several aspects of system-level diagnosis can be handled in the same framework. 
Furthermore, it also became possible to formulate new aspects of diagnosis. So, it 
is possible to model and diagnose for instance 

• systems with heterogeneous elements 

To achieve this, different generalized test invalidation models with appropriate 
probabilities should be assigned to units with different behavior. 

• multiple fault states 

It is able to construct „and handle a finer model of the state of a unit, than 
the binary one (containing the good and faulty states). This also means that 
the result of a test can be more than binary. 

• intermittent faults 

These are permanent faults that become activated only in special circum-
stances. Because these circumstances are usually independent from the test-
ing process, these type of faults are diagnosed on the basis of multiple syn-
dromes. 

• failures occurring during the test process 

It is a new aspect of the diagnostics. Traditional models all have the restrictive 
assumption that the state of units must be unchanged from the beginning of 
the test process to the end. But it is not acceptable if the time of test is 
comparable to the mean time between failures. 
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The model of the last two items are presented in details in the next subsections. 
The model constructed for the test process of intermittent faults is equivalent to 
the model of a system having more than two possible test results. Accordingly, for 
details of the handle of multiple fault states see the handle of intermittent faults. 

3.1 Modeling Intermittent Faults 
Although handle of intermittent faults is one of the difficult to manage diagnostic 
problems, a possible solution is the use of multiple syndromes, as mentioned above. 
In this approach two or more testing rounds are performed in a row, and the possible 
differences between the subsequent syndromes are used to detect intermittent faults. 

The adaptation of diagnostic P-graph model to this approach is quite simple. 
Considering the case of double syndromes (for simplicity), there are four possible 
result combinations for each test: 

• 'both results are passed' (denoted by GG), 
• 'first result is passed, the other is failed' (denoted by GF), 
• 'first result is failed, the other is passed' (denoted by FG) and 
• 'both results are failed' (denoted by FF). 

This means that the P-graph model of a single test should contain 4 x 4 logical rela-
tions according to the 4 possible test results and the 4 possible state-combinations 
of tester and tested unit (Figure 3). The probabilities of relations are calculated 
from the original probabilities (Table 2) and can be seen in Table 3. 

Table 3: Probabilities of test results for pairs of syndrome 

State of State of Probability of test results 
tester U U T G G GF FG FF 

good good PAO = P2a0 PAl = PaOPal PA2 = PalPaO PA3 = pli 
good faulty PBO = PbO PB1 = PbOPbl PB2 = PblPbO PB3 = Pbl 

faulty good PCO = PcO PCI = PcOPcX PC2 = Pel PcO PC3 = Pel 
faulty faulty PDO = Pdo PDI ~ PdOPdl PD2 = PdlPdO PD3 = Pdl 

A B„ B, A, A Bn B. A, A Bn B. A, A„ B„ B, A, 

GAO P̂BO V̂QI-̂ - PDO - P D I ~ P Q 2 PD3 

Figure 3: P-graph model of a single test in case of two syndromes 

The case of diagnostics on the basis of more than two syndromes can be handled 
a similar way having more and more test result combinations. 



286 Balázs Polgár and Endre Selényi 

A good property of this model is the following: after the 1s t solution step— 
namely cutting the irrelevant parts of the graph to be solved— the P-graph model 
based on multiple syndromes is exactly of the same size as the P-graph model based 
on a single syndrome. This is because only the number of possible test results (or 
result combinations) grows, but the measured result (or result combination) of a 
test will be always a particular one. 

3.2 Modeling Failures Occurring During the Test Process 
Properties of the system to be modelled: 

• faults are still permanent, 

• units can fail during test process, i.e. a unit which was assumed to be good 
in a test can be faulty later. (Repairing is not included in the model, that is 
a faulty unit cannot become good in a later test.) 

The second property implies that an order between tests should be defined and 
the states of a unit in different tests should be distinguished. 

Let's define the test order graph TO(VTO,ETO), where 

• each ijeVrO vertex represents a test in the system, i.e. it corresponds to an 
edge in the testing graph 

• a (t{, tj)eErO directed edge defines a preceding relation between tests mean-
ing that test U is performed earlier than test tj. 

For instance, consider a system with toroidal mesh topology, where each unit 
tests its four neighbors (Figure 4.a). The TO-graph of this system can be seen on 
Figure 4.b if only the order of those tests are known, which are performed by the 
same tester. 

Figure 4: Example a) testing graph with toroidal mesh topology b) a possible test 
order graph of it 

The definition of the P-graph model corresponds to the former one (Section 2.1) 
with the following changes. 

,» 

o 
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• The set of system premisses contains each possible state of each unit in each 
such test, where the given unit is affected (for each U unit and U test UiG 
and UiF are included, where unit U is either a tester or a tested unit in test 
ti). 

• Constraints formulate that 

— each unit U in each test U where it is either a tester or a tested unit has 
one and only one state, i.e. X(UiG) + X(UiF) = 1. 

— for each unit U and tests ti, tj, where unit U is either a tester or a 
tested unit in tests ti and tj, and there exists a directed path from ti to 
tj in the TO-graph: X(UiF) + X(UjG) < 1. 

Expectedly, the more information known about the dependencies of tests results 
the more accurate diagnosis. And reversely, the less edges in the test order graph 
can imply the more and more misdiagnosed processor in the diagnosis. 

4 Example 
Consider the testing graph and syndrome given on Figure 1. Eight logical relations 
belong to each of the three tests, but the maximal structure contains only four for 
each test depending on the test results as Figure 5 shows. 

ACG CBF BAP 

Figure 5: P-graph-model of testing graph and syndrome given on Figure 1 

Eight combinatorially feasible solution structures exist because of the con-
straints and each of it contains three logical relations. The eight structures cor-
respond to the 23 possible fault patterns of the three units. A part of these can 
be seen on Figure 6 with the corresponding diagnoses and probabilities. Finally, 
such a fault pattern is selected, which produces the syndrome with the highest 
probability. 

Table 4 contains three test invalidation models, the first one corresponds to 
the PMC model, the second is a PMC model with incomplete fault coverage and 
the third is a more general model converging to the BGM model. The conditional 
probabilities of the syndrome under the conditions of different fault patterns, that 
is the redundant probabilities of the structures can be found in Table 5. 

In case of PMC model the probability of syndrome is the highest when only unit 
B is faulty. This is still the case when the assumption of 100 percent test coverage 
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Figure 6: Some of solution structures of the P-graph model 

Table 4: Test invalidation models with different probabilities 

Test result 
P M C incomplete incomplete 

State of State of P M C BGM-like 
tester tested unit 0 1 0 1 0 1 
good good 1 0 1 0 1 0 
good faulty 0 1 0.1 0.9 0.1 0.9 
faulty good 0.5 0.5 0.5 0.5 0.7 0.3 
faulty faulty 0.5 0.5 0.5 0.5 0.1 0.9 

is given up but with smaller probability and with the possibility that unit C can 
be faulty although a good unit tested it to be good. If we assume that faults in the 
testers eventuate in valid test results more frequently than in invalid ones—as in 
the third model—then logically it seems to be probable that unit A is also faulty 
beside unit B and the algorithm provides this diagnosis. 

Table 5: Probabilities of the syndrome (Ps) assuming different fault patterns and 
test invalidation models 

Solution ŝt 2nd 3rd 4th 5 th 6th yth 8 th 

Faulty units A B C A B A C B c A B C 
PMC 0 0 0.5 0 0.25 0.25 0 0.125 
inc. PMC 0 0 0.45 0 0.225 0.225 0.025 0.125 
inc. BGM-like 0 0 0.27 0 0.567 0.027 0.027 0.081 
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5 Simulation Results 

In order to measure the efficiency of the P-graph based modeling technique a simu-
lation environment was developed, which generates the fault pattern and the corre-
sponding syndrome for the most common topologies with various parameters. The 
P-graph model of the syndrome-decoding problem was solved as a linear program-
ming task using a commercial program called CPLEX. Other diagnostic algorithms 
with different solution methods taken from the literature were also implemented 
for comparison. First, the accuracy of the developed algorithm is demonstrated for 
varying parameters, then its relation to other algorithms for fixed parameters. 

The simulations were performed in a two-dimensional toroidal mesh topology, 
where each unit is tested by its four neighbors and each unit behaved according to 
the PMC test invalidation model. Statistical values were calculated on the basis of 
100 diagnostic rounds. In every round the fault pattern was generated by setting 
each processor to be faulty with a given probability, independently from others. 

Accuracy of the solution algorithm: measurements were performed with system 
sizes of 4 x 4, 6 x 6, 8 x 8, 10 x 10 units, and the failure probability of units varied 
from 10% to 100% in 10% steps. From the diagrams in Figure 7 it can be observed 
that the algorithm has a very good diagnostic accuracy. Even if half of the units 
were faulty, the rate of rounds containing misdiagnosed units did not exceed 20 
percent, and the rate of misdiagnosed units relative to the system size was under 1 
percent. 

rate of rounds containing 
misdiagnosed processors [%] 

average number of misdiagnosed 
processors relative to system size [%] 

Figure 7: Simulation results depending on failing probability of units 

Comparison to other algorithms: measurements were performed with system 
size 8 x 8 and the unit failure probability varied from 10% to 100% in 10% steps. 
The well-known algorithms taken from the literature were the LDAl algorithm of 
Somani and Agarwal [10], the Dahbura, Sabnani and King (DSK) algorithm [11], 
and the limited multiplication of inference matrix (LMIM) algorithm developed by 
Bartha and Selenyi [12] from the area of local information diagnosis. It can be 
seen on the diagrams in Figure 8 that only the LMIM- algorithm approximates the 
accuracy of P-graph-algorithm. 
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average number of m isd iagnosed 

processors relat ive to sys tem size [%] 

• LMIM 

— « — DSK 
X LDA1 

— P-graph 

rate of rounds con ta in ing 
misd iagnosed p rocessors [%] 

10 20 30 40 50 70 80 90 100 10 20 30 40 SO 60 70 80 90 100 

Figure 8: Comparison of probabilistic diagnostic algorithms 

6 Conclusions 
Application of P-graph based modeling in system-level diagnosis provides a general 
framework that supports the solution for several different fields, which previously 
needed several different modeling approaches and solution algorithms. Because the 
P-graph model takes into consideration more properties of the real system than 
previous models, its diagnostic accuracy is also better; it provides almost good 
diagnosis still in the situation, when half of the processors are faulty. 

The results presented in this paper arose from solving the model with a gen-
eral LP-problem solver and not from solving with a method specialized for PNS 
problems. Therefore its complexity was incomparable with traditional ones. But 
combinatorial approach for solving PNS problems is based on rigorous mathemat-
ical foundation, which -on the basis of experiences- can result in effective solution 
algorithm. Creating such an adapted algorithm is one of the subjects of our future 
work. Furthermore, we plan to examine the P-graph model of a diagnostic system 
with transient faults. 

The favorable properties of the approach are achieved by considering the di-
agnostic system as a structured set of knowledge with well-defined relations. As 
mentioned previously, the syndrome-decoding problem in multiprocessor systems 
has a special structure, namely the direct manifestation of internal fault states in 
the syndromes. In more complex systems the states of the control logic have to 
be taken into account in the model to be analyzed [13]. These straightforward 
extensions to the modelling of integrated diagnostics can be well incorporated into 
the P-graph based models. Our current work aims at generalization of the results 
into this direction by extending previous results on the qualitative modeling of 
dependable systems with quantitative optimization [14]. 
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