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Abstract

In this article a question left open in [2] is answered. In particular, we
show that it is essential that in the definition of parenthesizing automata an
arbitrary number of parentheses can be used. Moreover, we prove that the
classes Regm of languages accepted by a parenthesizing automaton with at
most m pairs of parentheses form a strict hierarchy. In fact, this hierarchy is
proper for all alphabets.

1 Introduction

A bisemigroup is set equipped with two associative operations. In [2], the no-
tion of parenthesizing automaton operating on elements of free bisemigroups was
introduced. The elements of free bisemigroups can be represented by labelled series-
parallel biposets, or sp-biposets, for short. Biposets are sets with two partial order
relations and a labelling function defined on them. A biposet is series-parallel if
it can be obtained from the singleton biposets by the two associative operations
corresponding to the order relations, called the series product (•) and the parallel
product (◦). Hence, subsets of free bisemigroups accepted by parenthesizing au-
tomata will be called regular sp-biposet languages here. This concept of regularity
proved to be appropriate for the characterization of algebraic recognizability, which
is a very general notion well established in a universal algebraic setting: recogniz-
ability means to be recognized by a homomorphism into a finite bisemigroup.

An important feature of parenthesizing automata is that it is allowed to use
any finite number of pairs of parentheses. The question emerges naturally if this
feature is really necessary, or the number of parentheses can be bounded. In other
words, we want to know whether there is a number K such that each regular sp-
biposet language can be accepted by a parenthesizing automaton with at most K
pairs of parentheses. This article gives the answer to this question. We show that
no such K exists. Moreover, if Regm denotes the class of all regular sp-biposet
languages that can be accepted by an automaton with m ≥ 0 pairs of parentheses,
then the classes Reg0 � Reg1 � Reg2 � . . . form a strict hierarchy. Furthermore,
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we prove that this hierarchy is proper even when we consider languages over any
fixed alphabet Σ.

This work can be seen principally as an addition to the paper of Ésik and the
author on higher dimensional automata [2, 3]. (The latter is the journal version of
the former.) Here we only briefly enumerate some related papers and refer to [3],
where a whole section is devoted to a detailed comparison.

The theory of automata on biposets is closely related to the work of Lodaya and
Weil [10, 11, 12] and Kuske [8, 9] on poset (partially ordered set) languages and on
automata on (labelled posets). They studied the class of N-free (or in their termi-
nology series-parallel) posets from the motivation of modelling concurrency. It is
known that the N-free posets represent the elements of the free “semi-commutative
bisemigroups”, i.e., of the algebras equipped with an associative and an associative
and commutative operation [4].

Automata and languages over free bisemigroups (more precisely, free bisemi-
groups with identity, called binoids or bimonoids) have also been studied in
Hashiguchi et al., see [5, 6, 7]. But there the elements of the free binoid over
Σ are represented by ordinary words in “standard form”, which are the shortest
expressions representing them over the extended alphabet Σ∪ {•, ◦, (, )}. Ordinary
finite automata are used to accept binoid languages. In [6] and [7], the notion of
regular binoid expression is introduced defining the least class of binoid languages
that contains the finite languages, and closed under the operations of union, the two
product operations on languages, and the two iterations operations corresponding
to the products. This class corresponds to the class of birational sp-biposet lan-
guages in [3]. The main result of [6] and [7] is that the binoid languages over Σ
denoted by regular binoid expressions are those binoid languages, whose elements
(in standard form) constitute regular word languages over the extended alphabet
Σ∪{•, ◦, (, )}. This notion of regularity is less general than ours, e.g., the language
of all biposets over an alphabet Σ cannot be represented by a regular binoid ex-
pression, but it can be accepted by a parenthesizing automaton with a single pair
of parentheses. In fact, any language denoted by a regular binoid expression can
be accepted with a single pair of parentheses.

2 Bisemigroups and biposets

In the sequel, n always denotes a positive integer and Σ a finite alphabet. We write
[n] for the set {1, 2, . . . , n}. We use the notation Σn for the set of words over Σ
of length n, and write Σ∗ for the set of all words over Σ, as usual. Σm stands
for any alphabet that has m letters. Let Ω denote a finite set of parentheses, its
elements are usually written as 〈1, 〉1, 〈2, 〉2, . . . . We assume that Ω is partitioned
into the sets Ωop of opening and Ωcl of closing parentheses, which are in bijective
correspondence.

We call a set equipped with n associative operations an n-semigroup. Automata
operate on elements of some free algebra in general, on words in the classical case,
i.e., on elements of free semigroups. Thus, if we want to generalize the notion of
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automata to higher dimensions, it is natural to investigate how they operate on
elements of free n-semigroups. In the following sections we only consider the case
when n = 2, but all of our results can be extended to any nonnegative integer n
in a straightforward way. When n = 2, we call an n-semigroup a bisemigroup. So
a bisemigroup is a finite set S with two associative binary operations on it, called
the horizontal product and the vertical product. We denote the two products by •
and ◦, respectively.

We have several possible ways to describe the elements of a bisemigroup, freely
generated by some finite alphabet Σ. First, they can be represented as terms
over the extended alphabet Σ ∪ {•, ◦, (, )} modulo associativity, or we can consider
the (finite ordered) tree representations of these terms. But an element of a free
bisemigroup can also be represented by a finite sp-biposet defined below.

Definition 2.1. A Σ-labelled biposet or biposet, for short, is a structure (P, <P
h ,

<P
v , λP ), where P is a finite nonempty set of vertices, <P

h and <P
v are (irreflexive)

partial orders on P and λP : P → Σ is a labelling function.

We say that two biposets are isomorphic if there is a bijective function on the
vertices that preserves the partial orders and the labelling. Below we will identify
isomorphic biposets.

Suppose that P = (P, <P
h , <P

v , λP ) and Q = (Q, <Q
h , <Q

v , λQ) are Σ-labelled
biposets. Without loss of generality, assume that P and Q are disjoint. We define
their horizontal product as P • Q = (P ∪ Q, <P•Q

h , <P•Q
v , λP•Q), and their vertical

product as P ◦ Q = (P ∪ Q, <P◦Q
h , <P◦Q

v , λP◦Q), where

<P•Q
h = <P

h ∪ <Q
h ∪(P × Q), <P◦Q

h = <P
h ∪ <Q

h ,
<P•Q

v = <P
v ∪ <Q

v , <P◦Q
v = <P

v ∪ <Q
v ∪(P × Q),

and the labellings are λP•Q = λP◦Q = λP ∪ λQ.
It is obvious that both product operations are associative. Each letter σ ∈ Σ

may be identified with the singleton biposet labelled σ. Let SPB(Σ) denote the
collection of biposets that can be generated from the singletons corresponding to
the letters in Σ by the two product operations. The biposets in SPB(Σ) are called
series-parallel biposets, or sp-biposets, for short.

As we mentioned above, the sp-biposets SPB(Σ) may serve as a possible de-
scription of the free bisemigroup generated by Σ. This fact is formulated in the
following theorem.

Proposition 2.2. [1] SPB(Σ) is freely generated by Σ in the variety of bisemi-
groups.

3 Parenthesizing Automata

In this section we define parenthesizing automata that process sp-biposets in a
sequential manner. The class of sp-biposet languages accepted by parenthesizing
automata will be called regular sp-biposet languages.
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Definition 3.1. A (nondeterministic) parenthesizing automaton is a 9-tuple A =
(S, H, V, Σ, Ω, δ, γ, I, F ), where S is the nonempty, finite set of states, H and V are
the sets of horizontal and vertical states, which give a disjoint decomposition of S,
Σ is the input alphabet, Ω is a finite set of parentheses, moreover,

– δ ⊆ (H × Σ × H) ∪ (V × Σ × V ) is the labelled transition relation,

– γ ⊆ (H × Ω × V ) ∪ (V × Ω × H) is the parenthesizing transition relation,

– I, F ⊆ S are the sets of initial and final states, respectively.

We say that a biposet P has a horizontal decomposition into the horizontal
product of biposets P1, P2, . . . , Pn, n ≥ 2, if P = P1 • P2 • . . . • Pn. A horizontal
decomposition is said to be maximal if no component Pi, (1 ≤ i ≤ n) has a horizon-
tal decomposition. Vertical decompositions and maximal vertical decompositions
are defined similarly.

The operation of the parenthesizing automata is based on the notion of the run,
defined as follows.

Definition 3.2. Suppose that P ∈ SPB(Σ) and p, q ∈ S. We say that A =
(S, H, V, Σ, Ω, δ, γ, I, F ) has a run on P from p to q, denoted [p, P, q]A if one of the
following conditions holds.

(Base) P = σ ∈ Σ and (p, σ, q) ∈ δ.

(HH) p, q ∈ H and P has maximal horizontal decomposition P = P1 • . . . • Pn,
where n ≥ 2, and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that
[ri−1, Pi, ri]A, for all i ∈ [n].

(VV) p, q ∈ V and P has maximal vertical decomposition P = P1 ◦ . . . ◦ Pn,
where n ≥ 2, and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that
[ri−1, Pi, ri]A for all i ∈ [n].

(HV) p, q ∈ H and P has maximal vertical decomposition P = P1 ◦ . . . ◦ Pn,
where n ≥ 2, and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ V and (p, 〈k, p′), (q′, 〉k, q) ∈
γ such that [p′, P, q′]A holds.

(VH) p, q ∈ V and P has maximal horizontal decomposition P = P1 • . . . • Pn,
where n ≥ 2, and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ H and (p, 〈k, p′), (q′, 〉k, q) ∈
γ such that [p′, P, q′]A holds.

An accepting run is a run from an initial state to a final state. The sp-biposet
language L(A) accepted by the automaton A is defined as the set of all labels of the
accepting runs. Formally,

L(A) = {P ∈ SPB(Σ) | ∃i ∈ I, f ∈ F : [i, P, f ]A}.
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Figure 1: A parenthesizing automaton accepting {a • (b ◦ (c • d)) • e}.

Example 3.3. The automaton given on Figure 1 has a single initial state H1 and
a single final state H7. The horizontal states are those labelled Hi and the vertical
states those labelled Vj , for some i and j. This automaton accepts the singleton
sp-biposet language consisting of the biposet a • (b ◦ (c • d)) • e. Indeed, there
are runs [H1, a, H2]A, [H2, b ◦ (c • d), H6]A and [H6, e, H7]A corresponding to the
horizontal decomposition of the biposet. Moreover, according to the case (HV) of
Definition 3.2, the second run, [H2, b ◦ (c • d), H6]A starts with a parenthesizing
transition (H2, 〈1, V1) followed by a subrun [V1, b ◦ (c • d), V3]A and ends with the
transition (V3, 〉1, H6). The existence of the subrun [V1, b ◦ (c • d), V3]A comes from
the existence of the runs [V1, b, V2]A and [V2, c • d, V3]A that can be seen similarly.
Several other examples of parenthesizing automata can be found in [3].

Recall from [3] that an sp-biposet language L ⊆ SPB(Σ) is called recognizable
if there is a finite bisemigroup B, a homomorphism h : SPB(Σ) → B, and a set
F ⊆ B with L = h−1(F ). Let Rec(Σ) and Reg(Σ) denote the set of recognizable
and regular sp-biposet languages of SPB(Σ), respectively. Moreover, write Rec and
Reg for the classes of all regular and recognizable sp-biposet languages, respectively.
One of the main results of [3] shows that these two classes coincide.

Theorem 3.4. [3] Rec = Reg, i.e., an sp-biposet language L ⊆ SPB(Σ) is recog-
nizable iff L is regular.

4 Hierarchy Theorems

In this session we present the main hierarchy results of the paper, formulated in
Theorem 4.9 and 4.10. Let Regm denote the regular sp-biposet languages that can
be accepted by a parenthesizing automaton with at most m ≥ 0 pairs of parentheses.
We will show that Regm � Regm+1 for all m ≥ 0. Moreover, if Regm(Σ) is the set of
all regular sp-biposet languages over any fixed alphabet Σ that can be accepted by
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Figure 2: An automaton A2 accepting L̂

an automaton with at most m pairs of parentheses, then Regm(Σ) � Regm+1(Σ),
for all m ≥ 0. Our first aim is to define a language L̂ in Reg2\Reg1.

Definition 4.1. For any words u = σ1σ2 . . . σn and v = ρ1ρ2 . . . ρn of even length
over any alphabet Σ, let Puv−1 denote the biposet

Puv−1 = σ1 • (σ2 ◦ (σ3 • (σ4 ◦ . . . (σn−1 • (σn ◦ ρn) • ρn−1) . . . ◦ ρ4) • ρ3) ◦ ρ2) • ρ1.

Definition 4.2. Let Σ2 denote the two-letter alphabet Σ2 = {a, b}, and let

L̂ =
∞⋃

i=1

L̂2i,where

L̂2 = { σ • (σ′ ◦ σ′) • σ | σ, σ′ ∈ Σ2 },
L̂2i+2 = { σ • (σ′ ◦ P ◦ σ′) • σ | σ, σ′ ∈ Σ2 and P ∈ L̂2i }, for all i ≥ 1.

Remark 4.3. Note that L̂ = {Pww−1 | w ∈ Σ∗
2, w has even length }.

Proposition 4.4. L̂ can be accepted by a parenthesizing automaton that has two
pairs of parentheses, i.e., L̂ ∈ Reg2(Σ2).

Proof. It is not hard to see that the automaton A2 in Figure 2 accepts L̂.
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Our next aim is to show that L̂ is not in Reg1(Σ2). In order to see this we
must describe the runs of an automaton step by step. So we introduce the notion
of generalized state of an automaton as follows.

Definition 4.5. A generalized state of a parenthesizing automaton A =
(S, H, V, Σ, Ω, δ, γ, I, F ) is a pair (q, ω), where q ∈ S and ω ∈ Ω∗

op.

Definition 4.6. We say that an automaton A has a transition from a generalized
state (q1, ω1) to a generalized state (q2, ω2) with respect to the symbol α ∈ Σ ∪ Ω if
one of the following conditions holds:

(i) α ∈ Σ, ω1 = ω2 and (q1, α, q2) ∈ δ, or

(ii) α ∈ Ωop, ω2 = ω1α and (q1, α, q2) ∈ γ, or

(iii) α ∈ Ωcl, ω1 = ω2ᾱ, where ᾱ is the opening pair of the closing parenthesis α
and (q1, α, q2) ∈ γ.

Remark 4.7. Thus, every run [p, P, q]A corresponds to a sequence of transitions
between generalized states

(q0, ε)
α1� (q1, ω1)

α2� (q2, ω2)
α3� . . .

αn� (qn, ε),

where q0 = p, qn = q and (qi, αi, qi+1) ∈ δ ∪ γ for i ∈ [n], and ωi is the sequence of
opened but not yet closed parentheses after the first i steps of the run.

Proposition 4.8. There is no parenthesizing automaton with a single pair of paren-
theses accepting L̂, i.e., L̂ /∈ Reg1(Σ2).

Proof. On the contrary, suppose that there is a parenthesizing automaton A =
(S, H, V, Σ2, Ω1, γ, δ, I, F ) accepting L̂ with Ω1 = { 〈, 〉 }. Let n be an even integer
greater than |V |. The number of all biposets Pww−1 ∈ L̂, where w is of length n,
is 2n. Thus, since 2n − 2 ≤ 2n holds for all n, either there are n biposets accepted
between horizontal states, or there are n biposets accepted between vertical states.
For simplicity, we assume the former case. This is not a real restriction, since in the
other case our proof would be essentially the same, only an opening and a closing
parenthesizing transition needs to be added before and after the runs.

Thus, let us take n distinct words wj ∈ Σn
2 , j ∈ [n], and consider the biposets

Pwjw−1
j

= σj
1

• (σj
2

◦ (σj
3

• (σj
4

◦ . . . (σj
n−1

• (σj
n ◦ σj

n) • σj
n−1) . . . ◦ σj

4) • σj
3) ◦ σj

2) • σj
1,

where σj
1σ

j
2 . . . σj

n = wj . Now, each Pwjw−1
j

is in L̂, by definition, but, as we shall

see, A must accept biposets that do not belong to L̂.
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Indeed, each accepting run of A on any Pwjw−1
j

must have the form

(q0, ε)
σj
1� (q1, ε)

〈
� (q2, 〈)

σj
2� (q3, 〈)

〈
� (q4, 〈〈)

σj
3� . . .

σj
n−1

� (q2n−3, 〈n−2)
〈
�

(q2n−2, 〈n−1)
σj

n� (q2n−1, 〈n−1)
σj

n� (q2n, 〈n−1)
〉
� (q2n+1, 〈n−2)

σj
n−1

�
(q2n+2, 〈n−2)

〉
� . . .

σj
2� (q4n−4, 〈)

〉
� (q4n−3, ε)

σj
1� (q4n−2, ε),

where q0 ∈ I ∩ H and q4n−2 ∈ F ∩ H .
For our investigation the main point is that after processing the “first half” of

Pwjw−1
j

, (i.e., after 2n − 1 transitions) the automaton enters a generalized state

(q2n−1, 〈n−1), where q2n−1 is vertical and after an additional 2n−1 transitions, the
run ends in (q4n−2, ε).

Given Pwjw−1
j

, let ij , vj and fj denote the states q0, q2n−1, and q4n−2, respec-
tively, which appear in the above accepting run of A on the biposet Pwjw−1

j
. More-

over, let us abbreviate the transition sequences determined by the first 2n− 1 and
the second 2n− 1 transitions by

(ij , ε)
Pwj∗
� (vj , 〈n−1) and (vj , 〈n−1)

P∗w
−1
j

� (fj , ε),

respectively.
Now we have n vertical states v1, v2, . . . , vn, but we have chosen n > |V |, so

there must be two indices k = l such that vk = vl. Hence, the transition sequence

(ik, ε)
Pwk∗
� (vk, 〈n−1) = (vl, 〈n−1)

P∗w
−1
l� (fl, ε)

corresponds to a valid run of A, showing that Pwkw−1
l

is accepted by A. But

Pwkw−1
l

/∈ L̂, a contradiction. Thus, no A with a single pair of parentheses can

accept L̂, so L̂ /∈ Reg1(Σ2).

The previous theorem can be extended to any m ≥ 1 as follows.

Theorem 4.9. For all m ≥ 1 there exists a language L̂(Σm) that can be accepted
by an automaton with m but not with m− 1 pairs of parentheses. Thus, the classes
Reg0 � Reg1 � Reg2 � . . . form a strict hierarchy of regular (i.e., recognizable)
sp-biposet languages.

Proof. Our claim is trivial for m = 1, and Reg1 � Reg2 was shown in Proposition 4.4
and Proposition 4.8. As for m ≥ 3, we show how the proofs of these two propositions
can be generalized. Let

L̂(Σm) = {Pww−1 | w ∈ Σ∗
m, w has even length}.
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Note that L̂ = L̂(Σ2). In Proposition 4.4, the automaton A2 accepting L̂ can
easily be generalized to an automaton Am accepting L̂(Σm), by using m different
parentheses corresponding to the m letters.

In order to see that L̂(Σm) /∈ Regm−1, suppose on the contrary that L̂(Σm) =
L(A) for some automaton A = (S, H, V, Σm, Ωm−1, γ, δ, I, F ), where Ωm−1 =
{ 〈1, 〉1, 〈2, 〉2, . . . , 〈m−1, 〉m−1 }. We choose pairwise different words w1, w2, . . . , wn

in Σn
m as before, but this time we give the value of n later.

We notice that after reading the first half of Pwjw−1
j

, where Pwjw−1
j

is defined
as in the proof of Theorem 4.8, automaton A is necessarily in a generalized state

(vj , 〈i1〈i2 . . . 〈in−1), (*)

where vj ∈ V and 〈ik
∈ Ωm−1 for all k = 1, 2, . . . , n − 1.

But the number of this type of generalized states, |V | · (m− 1)n−1 is asymptot-
ically less than mn, the number of words wj of length n, which is the number of
all biposets of the form Pwjw−1

j
. Thus, in the same way as above, n can always be

chosen such that A accepts at least one biposet Pwjw−1
k

for some wj = wk.

In the proof of Theorem 4.9 we used the m-letter alphabet Σm to show that
Regm−1(Σm) � Regm(Σm). However this proper inclusion holds for every Σ.

Theorem 4.10. For all alphabets Σ the classes Reg0(Σ) � Reg1(Σ) � Reg2(Σ) . . .
form a strict hierarchy in Reg(Σ).

Proof. It is sufficient to prove this claim for a one-letter alphabet. So assume
that Σ = Σ1 = {a} and suppose that m ≥ 1. Let h denote the bisemigroup
homomorphism SPB(Σm) → SPB(Σ1) determined by the assignment

ai �→ a • a • . . . • a︸ ︷︷ ︸
i times

, for all ai ∈ Σm.

We claim that the language h(L̂(Σm)) is in Regm(Σ1)\Regm−1(Σ1).
Indeed, it is not hard to modify the automaton Am in the proof of Theorem 4.9

to accept h(L̂(Σm)) instead of L̂(Σm). On the other hand, after reading the “first
half” of a biposet h(Pwjw−1

j
), any parenthesizing automaton with m − 1 pairs of

parentheses must be in a generalized state (*) as before. Thus, the same cardinality
argument can be applied to show that h(L̂(Σm)) is not in Regm−1(Σ1).

5 Conclusions and further work

In this paper we dealt with the descriptional complexity of regular sp-biposet lan-
guages measured in terms of the least number of parentheses that an automaton
needs to accept them. We have shown that with more pairs of parentheses strictly
larger classes of regular sp-biposet languages can be accepted.

Recall from [3] that BRat denotes the class of birational languages which is the
least class of sp-biposet languages containing the finite languages and closed under
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union, horizontal and vertical product and horizontal and vertical iteration. We can
prove that BRat ⊆ Reg1. The proof relies on the fact that every birational language
has bounded alternation depth, i.e., for each birational sp-biposet language L there
is a bound K ≥ 0 such that every element in L has at most K pairs of nested
parentheses. BD is the class of bounded alternation depth languages. Thus, if
a parenthesizing automaton A accepts a birational language, then the successful
runs of A must have a bounded number of opened but not yet closed parentheses
at any time. So one can construct an equivalent automaton A′ with a single pair
of parentheses by storing the information about all such opened parentheses in the
(inner) states. This fact together with the equation BRat = Reg∩BD (see [3]) leads
to the characterization of BRat as BRat = Reg1 ∩ BD.

An open problem that seems to be difficult to solve is the decidability status
of the question whether a given regular language appears in a certain level of the
hierarchy. It would also be interesting to find algebraic or logical characterizations
of the levels of our hierarchy.
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