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Abstract

We consider finite rectangular algebras of finite type as tree recognizers.
The type is represented by a ranked alphabet Σ. We determine the varieties
of finite rectangular Σ-algebras and show that they form a Boolean lattice
in which the atoms are minimal varieties of finite Σ-algebras consisting of
projection algebras. We also describe the corresponding varieties of Σ-tree
languages and compare them with some other varieties studied in the litera-
ture. Moreover, we establish the solidity properties of these varieties of finite
algebras and tree languages. Rectangular algebras have been previously stud-
ied by R. Pöschel and M. Reichel (1993), and we make use of some of their
results.

1 Introduction

In a projection algebra every fundamental operation is a projection operation.
Pöschel and Reichel [11] defined rectangular τ -algebras as the members of the
variety generated by all projection algebras of type τ . Rectangular algebras are
also natural generalizations of rectangular bands; the rectangular algebras of type
〈2〉 are precisely the rectangular bands.

In this paper we study projection algebras and rectangular algebras as tree rec-
ognizers. Hence the algebras considered are finite and of a finite type, represented
here by a ranked alphabet Σ. Our general framework is the variety theory of tree
languages [12, 13], which establishes bijective correspondences between the vari-
eties Σ-tree languages (Σ-VTLs), the varieties of finite Σ-algebras (Σ-VFAs), and
the Σ-varieties of finite congruences (Σ-VFCs).

The class of all finite projection Σ-algebras is not a Σ-VFA, but it contains cer-
tain simple Σ-VFAs from which all the Σ-VFAs to be considered here are obtained.
Each such atomic Σ-VFA corresponds to some so-called projection alphabet. For
any projection alphabet Λ, the class FProjΛ of all finite Λ-projection algebras is a
minimal Σ-VFA, and these Σ-VFAs FProjΛ are the atoms of the Boolean lattice
of all sub-VFAs of the Σ-VFA FRAΣ of all finite rectangular Σ-algebras. Every
sub-VFA FRAL of FRAΣ corresponds to a set L of projection alphabets, and it
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is the finite join of the Σ-VFAs FProjΛ such that Λ ∈ L. We also describe the
Σ-VFCs that correspond to the Σ-VFAs FProjΛ and FRAL.

It is easy to describe a tree language recognized by a projection algebra; whether
a tree is in it depends just on the label of the leaf at the end of a certain path
determined by the projection alphabet of the algebra. This observation leads to
a simple characterization of the members of the Σ-VTLs FProjΛ that correspond
to the Σ-VFAs FProjΛ. Moreover, we show that any tree language in FProjΛ is
also recognized by a two-element Λ-projection algebra PΛ, which therefore is (up
to isomorphism) the only nontrivial syntactic algebra in FProjΛ. We also note
that the syntactic monoid of any member of FProjΛ is either trivial or isomorphic
to a certain 3-element monoid. The Σ-VTLs FRAL that correspond to the more
general Σ-VFAs FRAL are shown to be the ring closures of the unions of the atomic
Σ-VTLs FProjΛ they contain. It is also noted that the membership problem is
decidable for these Σ-VTLs.

Although the tree languages recognized by rectangular algebras have rather sim-
ple descriptions, their trees are not characterized by any local properties. Therefore
the Σ-VTLs FRAL have little in common with many of the Σ-VTLs previously con-
sidered in the literature. Thus we show that the intersection of any FRAL with
any one of the Σ-VTLs of nilpotent, definite, reverse definite, generalized definite
or locally testable Σ-tree languages is just the trivial Σ-VTL. Of course, the cor-
responding facts hold for Σ-VFAs. On the other hand, we show that FRAΣ is
contained in the Σ-VFA of all aperiodic Σ-tree languages. As another exception,
we show that for any projection alphabet Λ, the Σ-VTL FProjΛ is contained in
the family DRecΣ of Σ-tree languages recognized by deterministic top-down tree
recognizers. This implies that FRAΣ is contained in the Σ-VTL generated by
DRecΣ.

We also study the solidity properties of our Σ-VFAs and Σ-VTLs. Graczyńska
and Schweigert [7] noted that the solidity of a class of algebras can be defined in
terms of derived algebras. A derived algebra κ(A) of a Σ-algebra A is obtained by
replacing each fundamental operation of A with a term operation determined by
the given hypersubstitution κ, and a class K of Σ-algebras is solid if it contains all
derived algebras of its members. A family of Σ-tree languages is said to be solid, if it
is closed under inverse tree homomorphisms. In fact, we consider the more refined
notions of solidity with respect to a given class of hypersubstitutions. In [11] it
was shown that the rectangular Σ-algebras form the least nontrivial solid variety of
Σ-algebras, and hence it is to be expected that FRAΣ is the least nontrivial solid Σ-
VFA. Also the Σ-VFA of trivial Σ-algebras is naturally solid, but the remaining sub-
VFAs of FRAΣ are shown to have very weak solidity properties. The corresponding
facts hold for the Σ-VTLs FRAL.

2 Preliminaries

We may write A := B to emphasize that A is defined to be B. For any integer
n ≥ 0, let [n] := {1, . . . , n}. The set of all subsets of a set A is denoted by ℘(A).
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For any relation ρ ⊆ A×B, the fact that (a, b) ∈ ρ for some a ∈ A and b ∈ B, will
usually be expressed by writing a ρ b. For a mapping ϕ : A→ B, we may write the
image ϕ(a) of an element a ∈ A as aϕ. Especially homomorphisms are written this
way as right operators that are composed from left to right, i.e., the composition
of ϕ : A→ B and ψ : B → C is written as ϕψ.

Next we recall some basic matters concerning algebras, tree recognizers and tree
languages. For details and further references, cf. [1, 5, 6, 13], for example.

A ranked alphabet Σ is a finite set of symbols each of which has a unique positive
integer arity. For any m ≥ 1, the set of m-ary symbols in Σ is denoted by Σm.
Note that we assume that there are no nullary symbols. If Σ = Σ1, then Σ is said
to be unary. The rank type of Σ is the set r(Σ) := {m | Σm 6= ∅}. The ranked
alphabet Σ will have two roles. Firstly, the inner nodes of trees are labeled with
symbols from Σ. Secondly, Σ is a finite set of operation symbols that determines
the type of the algebras to be considered. To avoid exceptions for the unary case,
we make the following general assumption.

Convention. From now on, Σ is a ranked alphabet without nullary symbols that
contains at least one symbol of arity ≥ 2.

We also use ordinary finite nonempty alphabets X,Y, . . . that we call leaf al-
phabets. These are assumed to be disjoint from Σ. For any leaf alphabet X,
the set TΣ(X) of Σ-terms over X is the smallest set T such that X ⊆ T , and
f(t1, . . . , tm) ∈ T whenever m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ T . Such terms
are regarded in the usual way as labeled trees, and we call them ΣX-trees. Sub-
sets of TΣ(X) are called ΣX-tree languages. We may also speak about Σ-trees
and Σ-tree languages without specifying the leaf alphabet, or just about trees and
tree languages. A family of Σ-tree languages is a mapping V that assigns to ev-
ery leaf alphabet X a set V(X) of ΣX-tree languages. We write such a family as
V = {V(X)}X . For any two such families U and V, we set U ⊆ V iff U(X) ⊆ V(X)
for every X. Unions and intersections of families of Σ-tree languages are defined
by similar componentwise conditions.

Let ξ be a special symbol that does not appear in Σ or X. A Σ(X ∪{ξ})-tree in
which ξ appears exactly once, is called a ΣX-context. The set of all ΣX-contexts is
denoted by CΣ(X). If p, q ∈ CΣ(X) and t ∈ TΣ(X), then p ·q = q(p) and t ·q = q(t)
are the ΣX-context and the ΣX-tree obtained from q by replacing the ξ in it with
p or t, respectively. Clearly, CΣ(X) forms a monoid for the product p · q and the
identity element ξ.

A Σ-algebra A consists of a nonempty set A and a Σ-indexed family (fA | f ∈ Σ)
such that if f ∈ Σm, then fA : Am → A is an m-ary operation on A. We write
simply A = (A,Σ). Subalgebras, homomorphisms, (epimorphic) images and direct
products are defined as usual. An algebra B is said to cover an algebra A if A
is an image of a subalgebra of B. This we express by writing A � B. The ΣX-
trees form the ΣX-term algebra TΣ(X) = (TΣ(X),Σ), where fTΣ(X)(t1, . . . , tm) =
f(t1, . . . , tm) for all m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ TΣ(X).

A (deterministic bottom-up) ΣX-recognizer A = (A, α, F ) consists of a finite
Σ-algebra A = (A,Σ), the elements of which are called states, an initial assignment
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α : X → A that specifies the starting states at the leaves, and a set F ⊆ A of final
states. The root of a ΣX-tree t is reached in state tαA, where αA : TΣ(X)→ A is
the homomorphic extension of α, and hence the ΣX-tree language recognized by A
is defined as T (A) = {t ∈ TΣ(X) | tαA ∈ F}.

A ΣX-tree language is called recognizable, or regular, if it is recognized by a
ΣX-recognizer. Let RecΣ(X) be the set of all recognizable ΣX-tree languages, and
let RecΣ = {RecΣ(X)}X be the family of recognizable Σ-tree languages. We may
also say that a Σ-algebra A = (A,Σ) recognizes a ΣX-tree language T if T = Fϕ−1

for some homomorphism ϕ : TΣ(X) → A and some F ⊆ A. Obviously, a ΣX-tree
language is recognized by a finite algebra iff it is regular.

The following review of the variety theory of tree languages follows [12] and
[13], where also further references can be found. The syntactic algebra of a ΣX-tree
language T is the quotient algebra SA(T ) := TΣ(X)/θT , where θT is the syntactic
congruence of T defined by

s θT t ⇔ (∀p ∈ CΣ(X))(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TΣ(X)).

It is easy to see that SA(T ) is the minimal Σ-algebra recognizing T in the sense
that a Σ-algebra A recognizes T iff SA(T ) � A.

A variety of Σ-tree languages (Σ-VTL) is a family of Σ-tree languages V =
{V(X)}X such that for all leaf alphabets X and Y ,

(V1) V(X) is a Boolean subalgebra of RecΣ(X),

(V2) if T ∈ V(X) and p ∈ CΣ(X), then p−1(T ) := {t ∈ TΣ(X) | p(t) ∈ T} ∈ V(X),
and

(V3) if T ∈ V(Y ), then Tϕ−1 := {t ∈ TΣ(X) | tϕ ∈ T} is in V(X) for every
homomorphism ϕ : TΣ(X)→ TΣ(Y ).

The least Σ-VTL is TrivΣ = {TrivΣ(X)}X , where TrivΣ(X) = {∅, TΣ(X)}, and
the greatest Σ-VTL is RecΣ = {RecΣ(X)}X .

A class of finite Σ-algebras K is called a variety of finite Σ-algebras (Σ-VFA)
(or a pseudovariety) if it is closed under subalgebras, epimorphic images and finite
direct products, i.e., if S(K), H(K), Pf (K) ⊆ K. The Σ-VFA generated by a class
K of finite Σ-algebras is denoted by Vf (K). Since Vf (K) = HSPf (K), a Σ-algebra
A is in Vf (K) iff A � A1 × . . .×An for some n ≥ 0 and algebras A1, . . . ,An ∈ K.
Let TrivΣ be the Σ-VFA of all trivial Σ-algebras.

For any Σ and X, let FCΣ(X) := {θ ∈ Con(TΣ(X)) | TΣ(X)/θ finite} be the set
of finite congruences of TΣ(X). If Γ assigns to each leaf alphabet a subset Γ(X) of
FCΣ(X), we write Γ = {Γ(X)}X , and we call Γ a Σ-variety of finite congruences
(Σ-VFC) if for all X and Y ,

(C1) Γ(X) is a filter of the lattice (FCΣ(X),⊆), and

(C2) ϕ ◦ θ ◦ ϕ−1 := {(s, t) | s, t ∈ TΣ(X), sϕ θ tϕ} belongs to Γ(X) for every
θ ∈ Γ(Y ) and every homomorphism ϕ : TΣ(X)→ TΣ(Y ).
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The three classes of varieties defined above form complete lattices with respect
to the natural inclusion relations. They are connected by three pairs of mutually
inverse isomorphisms.

For any Σ-VFA K, let Kt be the family of Σ-tree languages and let Kc be
the Σ-family of finite congruences such that for each X, Kt(X) = {T ⊆ TΣ(X) |
SA(T ) ∈ K} and Kc(X) = {θ ∈ FCΣ(X) | TΣ(X)/θ ∈ K}. For any Σ-VTL
V = {V(X)}X , let Va be the Σ-VFA generated by the syntactic algebras of the tree
languages belonging to V, and let Vc be the Σ-family of finite congruences such
that for any X, Vc(X) := [{θT | T ∈ V(Σ, X)}) is the filter of FCΣ(X) generated
by the syntactic congruences of the members of V(X). Finally, for any Σ-VFC
Γ = {Γ(X)}X , let Γa := Vf ({TΣ(X)/θ | θ ∈ Γ(X) for some X}) and let Γt be the
family of Σ-tree languages such that for anyX, Γt(X) = {T ⊆ TΣ(X) | θT ∈ Γ(X)}.
The Variety Theorem for Σ-tree languages can now be stated as follows.

Theorem 2.1. The mappings K 7→ Kt, V 7→ Va, K 7→ Kc, Γ 7→ Γa, V 7→ Vc, and
Γ 7→ Γt form three pairs of mutually inverse isomorphisms between the lattices of
all Σ-VFAs, Σ-VTLs and Σ-VFCs.

A Σ-VFC Γ = {Γ(X)}X is principal if for every X, Γ(X) is a principal filter
in FCΣ(X). It is easy to see that a family Γ = {[γX)}X , where γX ∈ FCΣ(X) for
each X, is a principal Σ-VFC iff for all X and Y , γX ⊆ ϕ ◦ γY ◦ ϕ−1 for every
homomorphism ϕ : TΣ(X)→ TΣ(Y ).

Remark 2.1. If Γ = {[γX)}X is a principal Σ-VFC, then Γt(X) is the finite set of
ΣX-tree languages saturated by γX . Conversely, if V = {V(X)}X is a Σ-VTL such
that V(X) is a finite set for every X, then Vc is a principal Σ-VFC because the
filter Vc(X) is generated by the syntactic congruences of the members of V(X).

The join of any finite set of Σ-VFAs can be described as follows.

Lemma 2.1. For any Σ-VFAs K1, . . . ,Kn (n ≥ 1), the join K1 ∨ . . . ∨ Kn =
Vf (K1 ∪ . . . ∪Kn) consists of all Σ-algebras A such that A � A1 × . . . × An for
some A1 ∈ K1, . . . ,An ∈ Kn.

The Σ-VTL generated by a family of recognizable Σ-tree languages V is the
least Σ-VTL containing V. The Boolean closure BV and the ring closure RV of
V are the families of Σ-tree languages such that for any X, BV(X) is the Boolean
closure of V(X) in RecΣ(X) and RV(X) is the least subset of RecΣ(X) containing
V(X) and closed under finite intersections and unions.

Lemma 2.2. If a family of recognizable Σ-tree languages V = {V(X)}X satisfies
conditions (V2) and (V3), then BV is the Σ-VTL generated by V. If, moreover,
T ∈ V(X) implies T { ∈ V(X) for every X, then RV is the Σ-VTL generated by V.

Proof. The lemma follows from the identities p−1(T ∪ T ′) = p−1(T ) ∪ p−1(T ′),
p−1(T {) = p−1(T ){, (T ∪ T ′)ϕ−1 = Tϕ−1 ∪ T ′ϕ−1 and T {ϕ−1 = (Tϕ−1){, where p
and ϕ are as in (V2) and (V3) and T and T ′ are tree languages of the appropriate
kind. �
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The join V1 ∨ . . . ∨ Vn of any Σ-VTLs V1 = {V1(X)}X , . . . ,Vn = {Vn(X)}X
(n ≥ 1) is naturally the Σ-VTL generated by the union V1 ∪ . . . ∪ Vn = {V1(X) ∪
. . . ∪ Vn(X)}X . Since the Vis are Σ-VTLs, this union satisfies the conditions of
Lemma 2.2, and we get

Corollary 2.1. If V1, . . . ,Vn (n ≥ 1) are Σ-VTLs, then V1 ∨ . . . ∨ Vn = R(V1 ∪
. . . ∪ Vn).

3 Projection algebras and rectangular algebras

For any m > 0 and i ∈ [m], the ith m-ary projection operation on a set A is the
mapping emi : Am → A, (a1, . . . , am) 7→ ai. (We omit A from the notation as it is
always known from the context.) An algebra A = (A,Σ) is called [11] a projection
algebra if for all m ∈ r(Σ) and f ∈ Σm, there is an i ∈ [m] for which fA = emi . Let
FProjΣ denote the class of all finite projection Σ-algebras. The direct product of
projection algebras is in general not a projection algebra, but we shall show that
FProjΣ contains subclasses that are Σ-VFAs.

The path alphabet of Σ is the set Σ̂ :=
⋃
{Σm × [m] | m ∈ r(Σ)} regarded as

an ordinary alphabet. We shall write fi for (f, i). Words over Σ̂ describe paths in
trees; if fi appears in such a word, then f labels a node on the path and i indicates
the direction taken at that node. We call a subalphabet Λ of Σ̂ a projection alphabet
if for all m ∈ r(Σ) and f ∈ Σm, there is exactly one i ∈ [m] such that fi ∈ Λ. Let
pa(Σ) denote the set of all projection alphabets over Σ. If Λ ∈ pa(Σ), the Λ-path
Λ(t) in a ΣX-tree t is defined as follows:

(1) Λ(x) = x for every x ∈ X;

(2) Λ(t) = fiΛ(ti) if t = f(t1, . . . , tm) and fi ∈ Λ.

Obviously, Λ(t) is always of the form wx, where w ∈ Λ∗ and x ∈ X. The word w
describes a path from the root to a leaf and x is the label of that leaf. Let Λ•(t)
denote this label x. Each projection algebra A defines a projection alphabet

ΛA := {fi | f ∈ Σm,m ∈ r(Σ), i ∈ [m], fA = emi },

and conversely, given the set A, this projection alphabet determines the projection
algebra A.

Definition 3.1. For any Λ ∈ pa(Σ), we call a projection algebra A = (A,Σ) a
Λ-projection algebra if ΛA = Λ. The class of all finite Λ-projection algebras is
denoted by FProjΛ. �

Let A and B be projection algebras. It is clear that if A is a subalgebra or
an image of B, then ΛA = ΛB. Moreover, it is easy to see that for any projection
alphabet Λ ∈ pa(Σ) the direct product of any family of Λ-projection algebras is a
Λ-projection algebra. Hence, any FProjΛ is a Σ-VFA. However, we can say a bit
more about these classes.
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For each Λ ∈ pa(Σ), let PΛ = ({0, 1},Σ) be the two-element Λ-projection
algebra. In [11] it was shown that the two-element projection algebras are the
only nontrivial subdirectly irreducible projection algebras. Hence the following
proposition is obvious.

Proposition 3.1. For any projection alphabet Λ ∈ pa(Σ), PΛ is the only nontrivial
subdirectly irreducible algebra in FProjΛ, and hence every algebra in FProjΛ is a
finite subdirect power of PΛ. Moreover, FProjΛ is a minimal Σ-VFA.

For any Λ ∈ pa(Σ) and any leaf alphabet X, let

ρΛ(X) := {(s, t) | s, t ∈ TΣ(X),Λ•(s) = Λ•(t)}.

It is easy to see that ρΛ(X) is a congruence on TΣ(X) and that the ρΛ(X)-classes
are precisely the sets [x] := {t ∈ TΣ(X) | Λ•(t) = x}, where x ∈ X. Hence the
quotient algebra FΛ(X) := TΣ(X)/ρΛ(X) has |X| elements. Moreover, for any
m ∈ r(Σ), f ∈ Σm and x1, . . . , xm ∈ X,

fFΛ(X)([x1], . . . , [xm]) = [xi],

for the i ∈ [m] such that fi ∈ Λ. Furthermore, it is clear that if A = (A,Σ)
is a Λ-projection algebra, then any mapping ϕ : {[x] | x ∈ X} → A is a homo-
morphism from FΛ(X) to A. Hence, FΛ(X) is freely generated over the class of
all Λ-projection algebras by the set {[x] | x ∈ X}. Since FΛ(X) is finite, it be-
longs to FProjΛ, and therefore ρΛ(X) is the least congruence θ on TΣ(X) such that
TΣ(X)/θ ∈ FProjΛ. This means that FProjcΛ is the principal Σ-VFC {[ρΛ(X))}X .
These observations are summarized by the following proposition.

Proposition 3.2. For any Λ ∈ pa(Σ) and any X, the set {[x] | x ∈ X} generates
FΛ(X) freely over FProjΛ. Moreover, FProjcΛ = {[ρΛ(X))}X .

The variety generated by all projection algebras of a given, not necessarily finite,
type was studied by Pöschel and Reichel [11] who called its members rectangular
algebras. Let us note that the rectangular algebras appear also in Ésik [3] in the
form of “diagonal theories”. We denote by RAΣ the variety of rectangular Σ-
algebras and by FRAΣ the Σ-VFA formed by the finite rectangular Σ-algebras.
Let us now exhibit all the sub-VFAs of FRAΣ.

For any set L ⊆ ℘(Σ̂) of projection alphabets, let FRAL denote the join
Vf (

⋃
Λ∈LFProjΛ) of the Σ-VFAs FProjΛ with Λ ∈ L. Of course, FRApa(Σ) =

FRAΣ and FRA{Λ} = FProjΛ for each Λ ∈ pa(Σ). The nontrivial subdirectly
irreducible members of FRAL are the algebras PΛ = ({0, 1},Σ) with Λ ∈ L, and
hence {PΛ | Λ ∈ L} is a minimal generating set of FRAL. It is also clear that for
any L,M⊆ pa(Σ),

(1) FRAL ⊂ FRAM iff L ⊂M, and

(2) FRAL ∩ FRAM = TrivΣ if L ∩M = ∅.
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Let n(Σ) denote the product of the arities of the symbols in Σ. It is clear
that n(Σ) is the number of projection alphabets Λ ∈ pa(Σ), and therefore also the
number the algebras PΛ. As noted in [11], this means that RAΣ has precisely 2n(Σ)

subvarieties. Using the above observations, we can formulate the corresponding
statement for FRAΣ in the following more detailed form.

Proposition 3.3. The Σ-VFAs FRAL (L ⊆ pa(Σ)) form a 2n(Σ)-element Boolean
sublattice of the lattice of all Σ-VFAs. In this sublattice

(1) the least element is TrivΣ, the greatest element is FRAΣ,

(2) FRAL∨FRAM = FRAL∪M, FRAL∧FRAM = FRAL∩M, and FRA{
L =

FRApa(Σ)\L, for all L,M⊆ pa(Σ), and

(3) the atoms are the minimal Σ-VFAs FProjΛ with Λ ∈ pa(Σ).

The join FRAc
L of the Σ-VFCs FProjcΛ with Λ ∈ L, is the principal Σ-VFC

{[ρL(X))}X , where ρL(X) :=
⋂

Λ∈L ρΛ(X) for each X. Hence, the counterpart of
Proposition 3.3 for Σ-VFCs can be written as follows.

Corollary 3.1. The Σ-VFCs FRAc
L form a 2n(Σ)-element Boolean sublattice in

the lattice of all Σ-VFCs. In this sublattice the least element is {{∇TΣ(X)}}X , the
greatest element is {[ρpa(Σ)(X))}X , and for all L,M⊆ pa(Σ), FRAc

L ∨FRAc
M =

{[ρL∪M(X))}X , FRAc
L ∧ FRAc

M = {[ρL∩M(X))}X , and (FRAc
L){ =

{[ρpa(Σ)\L(X))}X . The atoms of the sublattice are the Σ-VFCs FProjcΛ =
{[ρΛ(X))}X with Λ ∈ pa(Σ).

In [11] it was shown that any rectangular algebra of finite type is isomorphic
to the direct product of a finite family of projection algebras. In particular, any
member of FRAΣ is isomorphic to the direct product of a finite family of finite
projection algebras. By collecting together factors belonging to the same Σ-VFA
FProjΛ, this decomposition result can be expressed more precisely as follows.

Proposition 3.4. For any set of projection alphabets L = {Λ1, . . . ,Λk} ⊆ pa(Σ),
every algebra in FRAL is isomorphic to a direct product A1 × · · · × Ak where
Ai ∈ FProjΛi

for i = 1, . . . , k.

4 Projection and rectangular algebras as tree rec-
ognizers

We shall now consider the tree languages recognizable by projection algebras and
rectangular algebras. For any Λ ∈ pa(Σ) and any L ⊆ pa(Σ), let FProjΛ =
{FProjΛ(X)}X and FRAL = {FRAL(X)}X be the Σ-VTLs that correspond to
FProjΛ and FRAL, respectively. The Σ-VTL FRApa(Σ) may be denoted also by
FRAΣ.

It is easy to see that any ΣX-tree t can be evaluated in a Λ-projection algebra
A = (A,Σ) for an assignment α : X → A simply by transporting the value α(Λ•(t))
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along the path described by Λ(t) from the leaf to the root. This is expressed formally
by the following lemma.

Lemma 4.1. Let A = (A,Σ) be a Λ-projection algebra and let α : X → A be any
assignment. Then tαA = α(Λ•(t)) for every ΣX-tree t.

Corollary 4.1. T (A) = {t ∈ TΣ(X) | α(Λ•(t)) ∈ F} for any ΣX-recognizer
A = (A, α, F ) such that A ∈ FProjΛ.

For any Y ⊆ X, let TΛ(X,Y ) := {t ∈ TΣ(X) | Λ•(t) ∈ Y }. By Proposition 3.2,
the principal Σ-VFC {[ρΛ(X))}X corresponds to the Σ-VFA FProjΛ, and hence
also to the Σ-VTL FProjΛ. Clearly, the ΣX-tree languages saturated by ρΛ(X)
are exactly the sets TΛ(X,Y ). By Remark 2.1 this fact yields the first part of the
following proposition but we shall give a direct proof.

Proposition 4.1. For any projection alphabet Λ ∈ pa(Σ) and any leaf alphabet X,

FProjΛ(X) = {TΛ(X,Y ) | Y ⊆ X}.

Moreover, a ΣX-tree language T is in FProjΛ(X) if and only if SA(T ) is either
trivial or isomorphic to PΛ.

Proof. Firstly, T (A) in Corollary 4.1 equals TΛ(X,Y ) for Y = {x ∈ X | α(x) ∈ F}.
Conversely, for any given TΛ(X,Y ), let A = (PΛ, α, F ) be the ΣX-recognizer where
α(x) = 1 for x ∈ Y , α(x) = 0 for x ∈ X \ Y , and F = {1}. Then T (A) = {t ∈
TΣ(X) | α(Λ•(t)) = 1} = {t ∈ TΣ(X) | Λ•(t) ∈ Y } = TΛ(X,Y ) by Corollary 4.1
and Lemma 4.1.

Let us now consider any tree language T ⊆ TΣ(X). If SA(T ) is trivial or
isomorphic to PΛ, then T ∈ FProjΛ(X) as both the trivial Σ-algebras and PΛ are
in FProjΛ. On the other hand, if T ∈ FProjΛ(X), then T is recognized by a
Λ-projection algebra. By what we have shown above, this means that T is of the
form TΛ(X,Y ) and therefore recognized by PΛ. If PΛ is the minimal Σ-algebra
recognizing T , then SA(T ) ∼= PΛ, but otherwise SA(T ) is trivial. �

Every subdirectly irreducible algebra is syntactic, but the converse does not
hold in general. However, Proposition 4.1 shows that here the two classes coincide.

Corollary 4.2. A projection algebra is syntactic if and only if it is subdirectly
irreducible, i.e., iff it is trivial or isomorphic to one of the algebras PΛ (Λ ∈ pa(Σ)).

Although we know by the Variety Theorem 2.1 that FProjΛ is a Σ-VTL, it
may be instructive to show also directly that, for any given projection alphabet
Λ ∈ pa(Σ), the sets TΛ(X,Y ) form a Σ-VTL. Firstly, for any X and Y, Y ′ ⊆ X, we
have TΛ(X,Y ){ = TΛ(X,X \ Y ) and TΛ(X,Y ) ∪ TΛ(X,Y ′) = TΛ(X,Y ∪ Y ′). Let
us extend the function Λ• to ΣX-contexts in the obvious way. Then we have for
any p ∈ CΣ(X),

p−1(TΛ(X,Y )) =

 TΣ(X) = TΛ(X,X) if Λ•(p) ∈ Y ;
∅ = TΛ(X, ∅) if Λ•(p) ∈ X \ Y ;
TΛ(X,Y ) if Λ•(p) = ξ.
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Finally, if ϕ : TΣ(X)→ TΣ(Y ) is a homomorphism and Y ′ ⊆ Y , then TΛ(Y, Y ′)ϕ−1 =
TΛ(X,X ′), where X ′ = {x ∈ X | Λ•(xϕ) ∈ Y ′}.

Following [15], we define the syntactic monoid congruence of a ΣX-tree language
T as the relation µT on CΣ(X) such that

p µT q ⇔ (∀t ∈ TΣ(X))(∀r ∈ CΣ(X))(t · p · r ∈ T ↔ t · q · r ∈ T ) (p, q ∈ CΣ(X)),

and the syntactic monoid SM(T ) of T as the quotient monoid CΣ(X)/µT .
It is easy to see that if T = TΛ(X,Y ) with Y 6= X, ∅, then µT has the congruence

classes

(1) [ξ] = {p ∈ CΣ(X) | Λ•(p) = ξ},

(2) [p+] = {p ∈ CΣ(X) | Λ•(p) ∈ Y }, and

(3) [p−] = {p ∈ CΣ(X) | Λ•(p) ∈ X \ Y }.

Furthermore, [ξ] is the identity element in SM(T ) while [p+] and [p−] both are right
zeros as (p · p+, p+), (p · p−, p−) ∈ µT for any p+ ∈ [p+], p− ∈ [p−] and p ∈ CΣ(X).
Hence the following corollary of Proposition 4.1.

Corollary 4.3. For any Λ ∈ pa(Σ), any leaf alphabet X, and any T ∈ FProjΛ(X),
the syntactic monoid SM(T ) is either trivial or isomorphic to the 3-element monoid
M = {1, a, b} in which 1 is the identity element and the elements a and b are right
zeros.

However, Corollary 4.3 does not mean that the Σ-VTL FProjΛ can be char-
acterized by syntactic monoids. Indeed, the same syntactic monoids are obtained
for every Λ ∈ pa(Σ) and there are also completely different tree languages with
syntactic monoids isomorphic to M .

For each X, FProjΛ(X) contains just one tree language for each Y ⊆ X,
and hence FProjΛ(X) has 2|X| elements. Let us consider the more general Σ-
VTLs FRAL (L ⊆ pa(Σ)), i.e., the joins of the Σ-VTLs FProjΛ. By the Variety
Theorem, Propositions 3.3 and 3.1 translate into the following proposition about
Σ-VTLs.

Proposition 4.2. The Σ-VTLs FRAL (L ⊆ pa(Σ)) form a 2n(Σ)-element Boolean
sublattice of the lattice of all Σ-VTLs. In this sublattice the least element is TrivΣ =
{{∅, TΣ(X)}}X , the greatest element is FRAΣ, and for all L,M⊆ pa(Σ), FRAL∨
FRAM = FRAL∪M, FRAL ∧ FRAM = FRAL∩M, and FRA{

L = FRApa(Σ)\L.
The atoms of the sublattice, the Σ-VTLs FProjΛ (Λ ∈ pa(Σ)), are minimal Σ-
VTLs.

From Propositions 3.3 it also follows that for any L ⊆ pa(Σ) and any X, the
members of FRAL(X) are precisely the ΣX-tree languages saturated by ρL(X).
Now, it is easy to see that, quite generally, if θ1, . . . , θn(n ≥ 1) are equivalences on
a set U , then the subsets of U saturated by θ1 ∩ . . .∩ θn are precisely the sets that
can be represented as finite unions of intersections C1 ∩ . . . ∩ Cn, where for each



Rectangular Algebras as Tree Recognizers 509

i ∈ [n], Ci is a subset of U saturated by θi. Hence the following description of the
Σ-VTLs FRAL is obtained by using Proposition 4.1. It could also be expressed by
saying that FRAL is the ring closure of

⋃
Λ∈L FProjΛ.

Proposition 4.3. For any set L = {Λ1, . . . ,Λn} ⊆ pa(Σ) of projection alphabets
and any X, the members of FRAL(X) are precisely the unions of finitely many
intersections

TΛ1
(X,Y1) ∩ . . . ∩ TΛn

(X,Yn),

where Y1, . . . , Yn ⊆ X.

The following decidability result is obvious by the finiteness of FRAL(X), but
it also follows from the fact that a finite Σ-algebra belongs to FRAL iff it is
isomorphic to a subdirect product of algebras PΛ with Λ ∈ pa(Σ).

Proposition 4.4. For any L ⊆ pa(Σ), it can be decided whether a given regular
ΣX-tree language belongs to FRAL.

5 Comparisons with other varieties

It is to be expected that our varieties have little in common with most of the
varieties of finite algebras or varieties of tree languages considered in the literature.
Firstly, they are too small to contain other nontrivial varieties. In particular, the
Σ-VTLs FRAL contain no nonempty finite sets. On the other hand, the sets
TΛ(X,Y ) (∅ ⊂ Y ⊂ X) are not defined by any local properties of their trees – as
usually is the case. Let us make this incomparability explicit for a few Σ-VTLs.
The precise definitions of these can be found in [12] or [13], for example, but the
following informal descriptions should suffice here.

In the Σ-VTL NilΣ = {NilΣ(X)}X , each set NilΣ(X) consists of the finite and
the co-finite ΣX-tree languages, and Nila is the Σ-VFA NilΣ of nilpotent (finite)
Σ-algebras (defined in [4]).

A ΣX-tree language T is definite if there is a k ≥ 0 such that the membership
of a ΣX-tree in T depends only on the ‘root segment’ of t of height k−1. Similarly,
T is reverse definite if there is a k ≥ 0 such that whether or not t ∈ T depends
just on the subtrees of t of height < k. (In both cases, k = 0 means that no testing
is needed and, accordingly, T = ∅ or T = TΣ(X).) By allowing combinations of
these two types of tests, we get the generalized definite tree languages. The three
Σ-VTLs obtained this way are denoted by DefΣ, RDefΣ and GDefΣ, and the
corresponding Σ-VFAs by DefΣ, RDefΣ and GDefΣ, respectively.

A fork of ΣX-tree is a configuration of the form f(d1, . . . , dm), where f ∈ Σm,
m > 0 and d1, . . . , dm ∈ Σ∪X. A ΣX-tree language T is local if whether a ΣX-tree
t belongs to T is determined by the set of forks appearing in t and its root label.
The Σ-VTL LocΣ of locally testable Σ-tree languages is obtained as the Boolean
closure of the Σ-family of local tree languages. Let LocΣ be the corresponding
Σ-VFA.

Proposition 5.1. For any set of path alphabets L ⊆ pa(Σ),
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(a) FRAL ∩ V = TrivΣ if V is NilΣ, DefΣ, RDefΣ, GDefΣ or LocΣ, and

(b) FRAL ∩K = TrivΣ if K is NilΣ,DefΣ,RDefΣ,GDefΣ or LocΣ.

Proof. By the Variety Theorem, assertions (a) and (b) are equivalent. The case
L = ∅ being trivial, we assume that L 6= ∅.

Let us first assume that L consists of a single path alphabet Λ. Since FProjΛ
is a minimal Σ-VTL and the intersection of any Σ-VTLs is a Σ-VTL, statement
(a) holds for L = {Λ} if FProjΛ is not contained in any of the Σ-VTLs V. To
show this, we consider any TΛ(X,Y ) ∈ FProjΛ(X) such that ∅ ⊂ Y ⊂ X. Since
TΛ(X,Y ) is neither finite nor co-finite, it is not in NilΣ(X). To show that TΛ(X,Y )
is not definite, we select any f ∈ Σ, y ∈ Y and x ∈ X \Y , and define two sequences
of ΣX-trees by setting (1) s0 = y, t0 = x, and (2) sn+1 = f(sn, . . . , sn) and
tn+1 = f(tn, . . . , tn) for all n ≥ 0. Then, for every k ≥ 0, the trees sk and tk have
the same root segment of height k−1, but sk ∈ TΛ(X,Y ) while tk /∈ TΛ(X,Y ), and
therefore TΛ(X,Y ) is not definite. Similar arguments can be used in the remaining
cases. Since all the sets TΛ(X,Y ) are recognized by PΛ, it follows that PΛ cannot
belong to any of the Σ-VFAs NilΣ,DefΣ,RDefΣ,GDefΣ or LocΣ.

Consider now the general case ∅ 6= L ⊆ pa(Σ). Let K be any one of the Σ-
VFAs NilΣ, DefΣ, RDefΣ, GDefΣ or LocΣ. Assume that FRAL ∩K contains
a nontrivial Σ-algebra A. Then A would have a decomposition into a subdirect
product of some subdirectly irreducible algebras A1, . . . ,An (n ≥ 1) all of which
belong to both FRAL and K. However, the only nontrivial subdirectly irreducible
algebras in FRAL are the algebras PΛ with Λ ∈ L, and by the first part of the
proof, these do not belong to K. Therefore we must have FRAL ∩K = TrivΣ. �

We conclude this section with two examples of Σ-VTLs that contain the Σ-VTLs
FRAL. Thomas [15] calls a ΣX-tree language T aperiodic if there is an n ≥ 0 such
that

(∀t ∈ TΣ(X))(∀p, q ∈ CΣ(X))(t · pn · q ∈ T ↔ t · pn+1 · q ∈ T ).

The aperiodic Σ-tree languages form a Σ-VTL ApΣ that can be characterized by
syntactic monoids [15].

Proposition 5.2. FRAΣ ⊂ ApΣ.

Proof. We begin by showing that FProjΛ ⊂ ApΣ for every Λ ∈ pa(Σ). Let
T = TΛ(X,Y ) be any set in FProjΛ(X). The remaining two cases being trivial,
we may assume that ∅ ⊂ Y ⊂ X. To show that for any t ∈ TΣ(X) and p, q ∈ CΣ(X),
t · p · q ∈ T iff t · p2 · q ∈ T (our “n” is 1), we distinguish two cases:

1. If Λ•(q) ∈ X, then Λ•(t · p · q) = Λ•(q) = Λ•(t · p2 · q), and hence t · p · q ∈ T
iff t · p2 · q ∈ T .

2. If Λ•(q) = ξ, there are two subcases to consider. If Λ•(p) ∈ X, then Λ•(t · p ·
q) = Λ•(p) = Λ•(t · p2 · q), and hence t · p · q ∈ T iff t · p2 · q ∈ T . If Λ•(p) = ξ,
then Λ•(t · p · q) = Λ•(t) = Λ•(t · p2 · q), and again t · p · q ∈ T iff t · p2 · q ∈ T .
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The inclusion FRAΣ ⊆ ApΣ follows now because FRAΣ is the join of Σ-VTLs
contained in the Σ-VTL ApΣ. The inclusion is proper as all finite tree languages
are aperiodic. �

Finally, let us consider the tree languages recognized by deterministic tree rec-
ognizers that read their input trees starting at the root and accepting at the leaves.
General treatments of this topic and further references can be found in [5], [6], and
[9].

A deterministic top-down (DT) Σ-algebra B = (B,Σ) consists of a non-empty
set B and a Σ-indexed family of top-down operations fB : B −→ Bm (m ∈
r(Σ), f ∈ Σm). Such a DT Σ-algebra B is finite if B is a finite set. A DT ΣX-
recognizer is a system B = (B, b0, β), where B = (B,Σ) is a finite DT Σ-algebra, the
elements of which are called states, b0 ∈ B is the initial state, and β : X → ℘(B)
is the final state assignment. If we extend β to a mapping βB : TΣ(X)→ ℘(B) by
setting

(1) βB(x) = β(x) for each x ∈ X, and

(2) βB(t) = {b ∈ B | fB(b) ∈ βB(t1)× . . .× βB(tm)} for t = f(t1, . . . , tm),

then for any t ∈ TΣ(X), βB(t) is the set of the states b ∈ B such that B reaches every
leaf of t in an appropriate final state if started at the root of t in state b. Accordingly,
the tree language recognized by B is defined as T (B) := {t ∈ TΣ(X) | b0 ∈ βB(t)}.
A ΣX-tree language T is said to be DT-recognizable, if T = T (B) for a DT ΣX-
recognizer B. Let DRecΣ = {DRecΣ(X)}X , where for each X, DRecΣ(X) is the
set of all DT-recognizable ΣX-tree languages.1 It is well known that DRecΣ is a
proper subfamily of RecΣ.

Lemma 5.1. FProjΛ ⊂ DRecΣ for every Λ ∈ pa(Σ).

Proof. If T ∈ FProjΛ(X), then T = T (A) for a ΣX-recognizer A = (PΛ, α, F ),
where F = {1}. We define a DT ΣX-recognizer B = (B, 1, β) as follows. Let
B = ({0, 1},Σ) be the DT Σ-algebra such that for any m ∈ r(Σ), f ∈ Σm, fB(0) =
(0, . . . , 0, . . . , 0) and fB(1) = (0, . . . , 1, . . . , 0), where the “1” is in position i ∈ [m]
if fi ∈ Λ. For each x ∈ X, we set β(x) = {0, α(x)}. By induction on t ∈ TΣ(X), it
is easy to see that B reaches the leaf at the end of the path Λ(t) in state 1 and all
other leaves in state 0. Hence, B accepts t iff α(Λ•(t)) = 1, i.e., iff t ∈ T (A).

The inclusion is proper since every singleton tree language is DR-recognizable.
�

Since DRecΣ is not a Σ-VTL, Lemma 5.1 does not imply that FRAΣ ⊆ DRecΣ.
In fact, FRAL * DRecΣ if L contains two distinct projection alphabets Λ1 and
Λ2. Indeed, if x and y are two different symbols in X, then

T := {t ∈ TΣ(X) | Λ•1(t) = x,Λ•2(t) = y or Λ•1(t) = y,Λ•2(t) = x}
1Note that in the literature DT-recognizable tree languages are often called DR-recognizable

tree languages (derived from “root-to-frontier” instead of the currently dominating “top-down”).
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is recognized by PΛ1 × PΛ2 although it is not DT-recognizable. On the other
hand, as shown by Jurvanen [8, 9], the Boolean closure BDRecΣ is the Σ-VTL
generated by DRecΣ, and hence Lemma 5.1 yields the following conclusion. That
the inclusion is proper, is easily seen by considering, for example, any set of the
form {f(x, . . . , x)}.

Proposition 5.3. FRAΣ ⊂ BDRecΣ.

6 Solidity properties

Pöschel and Reichel [11] have shown that the rectangular Σ-algebras form the least
nontrivial solid variety of Σ-algebras. For the general theory of solid varieties the
reader may consult [10], for example. We shall consider the solidity properties of
our Σ-VFAs and Σ-VTLs.

Let Ξ := {ξ1, ξ2, ξ3, . . .} be a set of variables which do not appear in any of the
other alphabets. For any n ≥ 1, let Ξn := {ξ1, . . . , ξn} and TΣ(Ξn) be the set of
n-ary Σ-terms, and TΣ(Ξ) :=

⋃
n≥1 TΣ(Ξn) be the set of all Σ-terms with variables.

If t ∈ TΣ(Ξn) and t1, . . . , tn are terms of any kind, then t[t1, . . . , tn] denotes the
term obtained from t by substituting for every occurrence of a variable ξ1, . . . , ξn
the respective term t1, . . . , tn. The term function An → A defined by an n-ary term
t ∈ TΣ(Ξn) in a Σ-algebra A = (A,Σ) is denoted by tA.

A hypersubstitution of type Σ is a mapping κ : Σ→ TΣ(Ξ) such that if f ∈ Σm,
then κ(f) ∈ TΣ(Ξm). Let S denote the set of all hypersubstitutions of type Σ. Any
κ ∈ S is extended to a mapping κ̂ : TΣ(Ξ)→ TΣ(Ξ) by setting κ̂(ξi) = ξi for every
i ≥ 1, and κ̂(t) = κ(f)[κ̂(t1), . . . , κ̂(tm)] for t = f(t1, . . . , tm). We let κ denote κ̂,
too.

For any κ ∈ S and any Σ-algebra A = (A,Σ), the Σ-algebra κ(A) = (A,Σ) such
that fκ(A) = κ(f)A for each f ∈ Σ, is a derived algebra of A. In [7] it was noted
that the solidity of varieties can be defined in terms of derived algebras, and the
idea of solidity with respect to submonoids of the monoid of all hypersubstitutions
of a given type was introduced in [2]. For a class H ⊆ S of hypersubstitutions,
a class K of Σ-algebras is said to be H-solid if κ(A) ∈ K whenever A ∈ K and
κ ∈ H, and it is solid if it is S-solid.

The first part of the following lemma can easily be verified by term induction.
The second statement follows from the well-known fact that homomorphisms pre-
serve also term functions.

Lemma 6.1. Let κ be a hypersubstitution of type Σ, and let A and B be any
Σ-algebras.

(a) tκ(A) = κ(t)A for any n ≥ 1 and any n-ary term t ∈ TΣ(Ξn).

(b) Any homomorphism ϕ : A → B is also a homomorphism from κ(A) to κ(B).

Let us call κ ∈ S permutative if for all m ∈ r(Σ) and f ∈ Σm, κ(f) =
g(ξi1 , . . . , ξim) for some g ∈ Σm and some permutation (i1, . . . , im) of (1, . . . ,m).
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Let pS denote the set of all these hypersubstitutions. In the terminology of [14],
they are precisely the linear, nondeleting, symbol-to-symbol ΣΣ-substitutions.

Proposition 6.1. The Σ-VFAs TrivΣ and FRAΣ are solid, and FRAΣ is the
least nontrivial solid Σ-VFA. On the other hand, if ∅ ⊂ L ⊂ pa(Σ), then FRAL is
not even pS-solid.

Proof. Since the variety of rectangular Σ-algebras is solid by Theorem 5.1 of [11],
also the Σ-VFA FRAΣ is solid. Moreover, FRAΣ ⊆ K for every nontrivial solid
Σ-VFA K. Indeed, if A = (A,Σ) is any nontrivial member of K, we obtain for any
given Λ ∈ pa(Σ) the Λ-projection algebra B = (A,Σ) as the derived algebra κ(A),
if for any m ∈ r(Σ) and f ∈ Σm, we set κ(f) = ξi for the i ∈ [m] such that fi ∈ Λ.
From this it follows that K contains all the algebras PΛ with Λ ∈ pa(Σ), and hence
all of FRAΣ.

Assume now that ∅ ⊂ L ⊂ pa(Σ). To prove that FRAL is not pS-solid, it
obviously suffices to show that for any two projection alphabets Λ,Λ′ ∈ pa(Σ), there
exists a permutative hypersubstitution κ for which PΛ′ = κ(PΛ). To define such a
κ, consider any m ∈ r(Σ) and f ∈ Σm. If fi ∈ Λ and fj ∈ Λ′ (i, j ∈ [m]), then we
set κ(f) = f(ξi1 , . . . , ξim), where (i1, . . . , im) is the permutation of (1, . . . ,m) that
just transposes i and j. It is then clear that fκ(PΛ) = fPΛ′ . �

To define the solidity of Σ-VTLs, we adapt some notions from [14] to the present
setting of a fixed ranked alphabet. Firstly, if H ⊆ S is a class of hypersubstitu-
tions of type Σ, an H-morphism ϕ : TΣ(X) → TΣ(Y ) is defined by its underlying
hypersubstitution ϕ∗ ∈ H and a mapping ϕX : X → TΣ(Y ) as follows:

(1) xϕ = ϕX(x) for x ∈ X;

(2) tϕ = ϕ∗(f)[t1ϕ, . . . , tmϕ] for t = f(t1, . . . , tm).

The following fact is easily verified.

Lemma 6.2. If ϕ : TΣ(X) → TΣ(Y ) is an S-morphism, then ϕ : TΣ(X) →
ϕ∗(TΣ(Y )) is a homomorphism of Σ-algebras.

For any H ⊆ S, a Σ-VTL V = {V(X)}X is H-solid if T ∈ V(Y ) implies that
Tϕ−1 ∈ V(X) for every H-morphism ϕ : TΣ(X)→ TΣ(Y ). In particular, V is solid
if it is S-solid.

In [14] it was shown that any general variety of finite algebras and the corre-
sponding general variety of tree languages (the “general” signifies that the ranked
alphabet is not fixed) have matching solidity properties. Although restricting such
general varieties to one given ranked alphabet does not yield exactly our Σ-VFAs
and Σ-VTLs, this holds also here.

Lemma 6.3. Let H be any class of hypersubstitutions of type Σ. If a Σ-VFA K is
H-solid, then so is the Σ-VTL Kt.

Proof. Consider any H-morphism ϕ : TΣ(X) → TΣ(Y ). If T ∈ Kt(Y ), then there
exist an algebra A = (A,Σ) in K and a homomorphism ψ : TΣ(Y )→ A such that
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T = Fψ−1 for some F ⊆ A. By Lemmas 6.2 and 6.1, ϕ : TΣ(X) → ϕ∗(TΣ(Y ))
and ψ : ϕ∗(TΣ(Y )) → ϕ∗(A) are homomorphisms. Hence ϕψ : TΣ(X) → ϕ∗(A)
is a homomorphism and Tϕ−1 = F (ϕψ)−1. Since ϕ∗(A) ∈ K, this means that
Tϕ−1 ∈ Kt(X). �

Proving the converse of Lemma 6.3 would require some further preparations, so
we avoid its use and just refer the reader to [14] for the corresponding fact about
general varieties.

Proposition 6.2. The Σ-VTLs TrivΣ and FRAΣ are solid, and FRAΣ is the least
nontrivial Σ-VTL. However, if ∅ ⊂ L ⊂ pa(Σ), then FRAL is not even pS-solid.

Proof. That TrivΣ and FRAΣ are solid follows from Proposition 6.1 by Lemma
6.3.

To show that FRAL is not pS-solid for ∅ ⊂ L ⊂ pa(Σ), consider any Λ,Λ′ ∈
pa(Σ) such that Λ ∈ L, but Λ′ /∈ L. Let X = {x, y} and ϕ : TΣ(X)→ TΣ(X) be the
pS-morphism such that ϕ∗ is the hypersubstitution κ defined in the second part of
the proof of Proposition 6.1, and ϕX(x) = x and ϕX(y) = y. Then TΛ(X, {y}) ∈
FRAL(X), but TΛ(X, {y})ϕ−1 = TΛ′(X, {y}) /∈ FRAL(X). �
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Tempsky, Wien-Stuttgart 1995, 117–126.
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