
Acta Cybernetica 23 (2017) 349–369.

Regular Expressions for

Muller Context-Free Languages∗

Kitti Gellea and Szabolcs Ivána

Abstract

Muller context-free languages (MCFLs) are languages of countable words,
that is, labeled countable linear orders, generated by Muller context-free
grammars. Equivalently, they are the frontier languages of (nondeterministic
Muller-)regular languages of infinite trees.

In this article we survey the known results regarding MCFLs, and show
that a language is an MCFL if and only if it can be generated by a so-called
µη-regular expression.

Keywords: Muller context-free languages, well-ordered induction, regular
expressions

1 Introduction

A word, also called “arrangement” in [9], is the isomorphism type of a labeled linear
order. Thus, this notion is a generalization of finite and ω-words, permitting e.g.
labelings of the integers of the rationals.

Finite automata on ω-words have by now a vast literature, see [21] for a com-
prehensive treatment. Finite automata acting on well-ordered words longer than ω
have been investigated in [1, 6, 7, 24, 25], to mention a few references. Recently,
the theory of automata on well-ordered words has been extended to automata on
all countable words, including scattered and dense words. In [2, 5, 4], both oper-
ational and logical characterizations of the class of languages of countable words
recognized by finite automata were obtained.

Context-free grammars generating ω-words were introduced in [8] and subse-
quently studied in [3, 19]. Context-free grammars generating arbitrary countable
words were defined in [10, 11]. Actually, two types of grammars were defined,
context-free grammars with Büchi acceptance condition (BCFG), and context-free
grammars with Muller acceptance condition (MCFG). These grammars generate
the Büchi and the Muller context-free languages of countable words, abbreviated
as BCFLs and MCFLs. Every BCFL is clearly an MCFL, but there exists an

∗This work was supported by NKFI grant no. 108448.
aUniversity of Szeged, Hungary, E-mail: {kgelle,szabivan}@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.1.2017.19

350 Kitti Gelle and Szabolcs Iván

MCFL of well-ordered words that is not a BCFL, for example the set of all count-
able well-ordered words over some alphabet. In fact, it was shown in [10] that for
every BCFL L of well-ordered words there is an integer n such that the order type
of the underlying linear order of every word in L is bounded by ωn.

In this paper we survey the results on Muller context-free languages, and we
give an operational (“regular-expression-like”) characterization of this class.

2 Notation

2.1 Linear orderings

A (strict) linear ordering is a pair (I,<) where < is a strict total ordering on I, that
is, an irreflexive, transitive and trichotomous relation. Set-theoretical properties of
the domain set I, such as finiteness, membership and cardinality are lifted to the
ordering (I,<) thus we can say e.g. that a linear ordering is countable, finite etc.
In order to ease notation, we will omit the ordering < from the pair and identify
the ordering (I,<) with its domain I, if the ordering relation is not important or
is clear from the context. In this paper we will (unless stated otherwise) only deal
with countable orderings. A good reference for linear orderings is [23].

An embedding of a linear ordering (I,<) into a linear ordering (J,≺) is a (nec-
essarily) injective mapping h : I → J preserving the ordering, i.e. x < y implying
h(x) ≺ h(y). We write (I,<) ≤ (J,≺) if I can be embedded into J . Clearly, this
≤ relation is a preorder (a reflexive and transitive relation) between orderings. A
surjective embedding is called an isomorphism between the orderings I and J ; if
there exists an isomorphism between I and J , then they are called isomorphic.
Isomorphism of linear orderings is an equivalence relation, the classes of which are
called order types. Well-known isomorphism types are the order type ω of the natu-
ral numbers N, the type −ω of the negative integers, the type ζ of integers and the
type η of rationals. Since isomorphism is compatible with embeddability, we can
say that an order type α can be embedded into an order type β, written as α ≤ β.
Note that this relation is not antisymmetric in general as the orderings (0, 1) and
[0, 1] can be embedded into each other but they are not isomorphic as the latter
one has a least element while the former one does not.

The ordering (I,<) is a sub-ordering of (J,≺) if I ⊆ J and < is the restriction
of ≺ onto I. An ordering is a well-ordering if it has no sub-ordering of type −ω, is
scattered if it has no sub-ordering of type η, quasi-dense if it is not scattered and
dense if it has at least two elements and for any x < y there exists some z with
x < z < y. All dense countable orderings have the type η, possibly enriched with
either a least or a greatest element (or both). Order types of well-orderings are
called ordinals. Amongst the class of ordinals, the embeddability relation itself is a
well-ordering, moreover, each ordinal α is either a successor ordinal α = β + 1 for
some ordinal β, in which case there is no other ordinal between α and β, or is a limit
ordinal with α =

∨
β<α

β, i.e. is the least upper bound of the set of ordinals strictly

smaller than α with respect to the embeddability relation <. Note that although

Regular Expressions for Muller Context-Free Languages 351

the ordinals themselves form a proper class, whenever α is an ordinal, then the class
of ordinals smaller than β is a set and whenever X is a set of ordinals, then their
least upper bound

∨
X exists and is an ordinal. Moreover, the class of countable

ordinals is the least class which contains the order types 0 and 1 and is closed under
taking ω-sums, that is, taking suprema of ω-chains.

When (I,≺) is some linearly ordered index set and for each i ∈ I, (Ji, <i) is
a linear order, then their ordered sum (J,<) =

∑
i∈I

(Ji, <i) has the disjoint union

J = {(i, j) : i ∈ I, j ∈ Ji} as domain with (i, j) < (i′, j′) if either i ≺ i′ or i = i′ and
j <i j

′. In particular, (J1, <1) + (J2, <2) denotes the sum
∑

i∈{1,2}
(Ji, <i). It is clear

that a well-ordered sum of well-ordered orderings is well-ordered, and a scattered
sum of scattered orderings is scattered. The sum operation is also compatible with
the isomorphism, thus it can be extended to order types. For example, −ω+ω = ζ
and η + η = η + 1 + η = η where 1 is the order type of the singleton orderings; in
general, n is the order type of the n-element orderings for n ∈ N0 = {0, 1, . . .}. If α
is the order type of I and β is the order type of each Ji, i ∈ I, then β×α stands for
the order type of the sum

∑
i∈I

Ji. Hence, product of ordinals is an ordinal. Ordinals

are also equipped with an exponentation operator but we will only use finite powers
of the form αn, with n being an integer, that is, α0 = 1 and αn+1 = αn × α.

Hausdorff classified the scattered order types into an infinite hierarchy. We
make use of the following variant [17] of this hierarchy: let V D0 be the class of all
finite order types, and when α is some ordinal, then let V Dα consist of the class
of all order types that can be written as

∑
i∈ζ

Ii where each Ii is a member of V Dβi

for some ordinal βi < α. Hausdorff’s theorem states that a (countable) order type
is scattered if and only if it is contained in V Dα for some (countable) ordinal α.
The Hausdorff-rank rank(o) of a scattered order type o is the least ordinal α with
o ∈ V Dα.

2.2 Words, tree domains, trees

An alphabet is a finite nonempty set of symbols, or letters. Alphabets are usually
denoted Σ,Γ in this paper, and letters are denoted by a, b, c, A Σ-labeled linear
ordering is a tuple w = (dom(w), `w) where dom(w) = (I,<) is some linear ordering
and `w : I → Σ is the labeling function of w. We usually identify w with `w and
write w(i) for `w(i), i ∈ dom(w). Two words u and v are isomorphic if there is
an isomorphism h : dom(u) → dom(v) which preserves also the labels, that is,
u(i) = v(h(i)) for each i ∈ dom(u). A word over Σ is an isomorphism class of
countable Σ-labeled linear orderings. For convenience, when u is a word, we take a
representant of u and use the notation dom(u), `u referring the domain and labeling
of the representant. Order theoretic properties are lifted to words. The set of all
countable, ω- and finite words over Σ are respectively denoted Σ#, Σω and Σ∗. In
particular, ε denotes the empty word (having the empty set as domain). Note that
as for any Σ, there is a unique η-word u such that for any x < y ∈ dom(u) and

352 Kitti Gelle and Szabolcs Iván

letter a ∈ Σ there is some z ∈ dom(u) with x < z < y and u(z) = a, this u being
called the perfect shuffle of Σ, and every countable Σ-word v is a subword of thus
u (that is, dom(v) is a sub-ordering of dom(u) and `v is the restriction of `u to
dom(v)), thus Σ# is indeed a set. A language over Σ is an arbitrary subset of Σ#.
Languages will usually be denoted by K,L,

When (I,<) is a linear ordering and for each i ∈ I, wi is a Σ-word, then their
product or (con)catenation is the word w =

∏
i∈I

wi with domain
∑
i∈I

dom(wi) and

the labeling of `w being the source tupling of the labelings `wi , that is, for (i, j),
i ∈ I, j ∈ dom(wi) let w(i, j) be wi(j). Product is extended to languages in the
expected way: when (I,<) is the indexing ordering and to each i ∈ I, Li ⊆ Σ# is
a language, then

∏
i∈I

Li consists of those words
∏
i∈I

wi where wi ∈ Li for each i ∈ I.

Binary products are simply written as u · v or K · L, or simply uv and KL. When
α is some order type, then Lα is the language

∏
i∈α

L, and L∗ stands for the union

of the languages Ln, n being a natural number. Also, L+ stands for
⋃
n>0

Ln.

A tree domain is a prefix closed nonempty (but possibly infinite) subset T of
N∗. That is, whenever x · i is in T for x ∈ N∗ and i ∈ N, then so is x, in which case
x is the parent of x · i and x · i is a child of x. Members of T are also called nodes
of T . If x · y ∈ T for x, y ∈ N∗, then x is called an ancestor of x · y and x · y is a
descendant of x, denoted x � x · y. If y is nonempty, then we talk about proper
ancestor / descendant, denoted x ≺ x · y. Nodes of T having no child are called
leaves of T , the other nodes are called inner nodes of T . Clearly, ε is a member of
every tree domain.

Subsets of a tree domain T which are tree domains themselves are called prefixes
of T . A path π of T is a prefix in which every node has at most one child. Clearly,
to every path π there exists a unique word uπ in N≤ω = N∗ ∪ Nω such that π =
{x ∈ N∗ : x � uπ}. We will use π and uπ interchargably.

When T is a tree domain and x ∈ T , then the sub-tree domain of T is T |x =
{y ∈ N∗ : xy ∈ T}. It is clear that T |x is also a tree domain, and is a path if so is
T .

A (Σ-)tree over some alphabet Σ is a labeled tree domain t, that is, a pair
(dom(t), `t) where dom(t) is a tree domain and `t : dom(t) → Σ is a labeling
function. Similarly to the case of words, we often identify t with `t and write t(x)
in place of `t(x) for x ∈ dom(t). Notions of tree domains (nodes, paths, sub-tree
domains etc.) are lifted to trees; the subtree of t rooted at some node x ∈ dom(t)
has the domain dom(t)|x and labeling y 7→ t(xy). When X ⊆ dom(t) is a set of
nodes of t, then labels(t,X) = {t(x) : x ∈ X} is the set of labels occurring on the
nodes belonging to X, and infLabels(t,X) is the set of labels occurring infinitely
many times. In particular, if π is a path of t, then a letter a ∈ Σ belongs to
infLabels(t, π) if and only if for each x ∈ π there exists some descendant y ∈ π of
x with t(y) = a. When t is clear from the context, we just write labels(X) and
infLabels(X), respectively. For any infinite path π, there exists a �-minimal node
x of π with infLabels(π|x) = labels(π|x), this node x is denoted head(π). Clearly,

Regular Expressions for Muller Context-Free Languages 353

infLabels(π) = infLabels(π|x) ⊆ labels(π|x) ⊆ labels(π) for every path π and node
x ∈ π.

2.3 Muller context-free grammars and languages

A Muller context-free grammar or MCFG for short, is a tuple G = (N,Σ, P, S,F)
where N and Σ are the disjoint alphabets of nonterminals (or variables) and ter-
minals, respectively, S ∈ N is the start symbol, P is the finite set of productions
(or rules) of the form A→ α with A ∈ N and α ∈ (N ∪Σ)+, and F ⊆ P (N) is the
Muller acceptance condition. Here P (N) = {N ′ ⊆ N} is the power set of N .

Observe that we explicitly disallow rules of the form A → ε here; this makes
the treatment of leaf labels more uniform, and as it turns out, such rules can be
mimicked by introducing a fresh nonterminal I, rules A→ I and I → I and adding
{I} to the acceptance condition. Nevertheless, in our examples we will make use
of rules A→ ε in order to help readability.

An (N ∪ Σ)-tree t is locally consistent (with G) if it satisfies the following
condition: each inner node x of t is labeled by some nonterminal A and the set of
children of x is {x·1, . . . , x·n} for some integer n > 0 with A→ t(x·1)t(x·2) . . . t(x·n)
being a production in P . A locally consistent tree is complete if its leaves are labeled
in Σ. The leaves of any tree domain are linearly ordered by the lexicographic
ordering <`, that is, u <` v if and only if u = u1 · i · u2 and v = u1 · j · u3 for
some words u1, u2, u3 ∈ N∗ and integers i < j. The frontier word of a tree t is
the word fr(t) having the set of leaves as domain, ordered lexicographically, and
labeling inherited from t. That is, dom(fr(t)) = {x ∈ dom(t) : x is a leaf of t} and
fr(t)(x) = t(x) for each leaf x.

A locally consistent tree t is a derivation tree of G if for each infinite path π
of t the set infLabels(π) belongs to the acceptance condition F . Given a symbol
X ∈ N ∪ Σ, we let ∆(G,X) denote the set of all complete derivation trees t of G
whose root symbol t(ε) is X. We write A ⇒∞G α for a symbol A ∈ N ∪ Σ and a
word α ∈ (N ∪ Σ)# if α is the frontier word of some derivation tree of G having
root symbol A. The language generated by G is L(G) = {w ∈ Σ# : S ⇒∞G w}.

A language L ⊆ Σ# of Σ-words is a Muller context-free language, or MCFL for
short, if L = L(G) for some MCFG G. In fact, Muller context-free languages are
precisely the frontier languages of (nondeterministic Muller-)regular languages of
infinite trees.

Example 1. If G = ({S, I},Σ, P, S, {{I}}), with

P = {S → a : a ∈ Σ} ∪ {S → ε, S → I, I → SI},

then L(G) consists of all the well-ordered words over Σ.

Indeed, assume t1, t2, . . . are derivation trees. Then so is the tree t depicted in
Figure 1a with frontier word fr(t1)fr(t2) Thus, L(G) contains the empty word
(by S → ε), the words of length 1 (by S → a and S → b), and is closed under
taking ω-products. Since the least class of order types which contains 0, 1 and which

354 Kitti Gelle and Szabolcs Iván

S

I

I

I

. . .t3

t2

t1

(a) Tree for Example 1

S

S I

S I

S . . . S

S

S

(b) Tree for Example 2

Figure 1: Derivation trees corresponding to Examples 1 and 2

is closed under ω-sums is the class of all countable ordinals (see e.g. [23]), L(G)
contains all the well-ordered words over {a, b}. For the other direction, assume t
is a derivation tree having a frontier word containing an infinite descending chain
. . . <` u2 <` u1. Then let us define the path v0, v1, . . . in t: v0 = ε and vi+1 is
vi · 1 if this node is an ancestor of infinitely many uj and vi · 2 otherwise (which
happens if vi corresponds to the production I → SI and the node vi · 1 (which is
labeled S) has no descendant of the form uj at all). Note that for each uj there
exists a unique vij such that vij is an ancestor of uj and vij+1 is not, since the
length of the words vi grows without a bound. Now these nodes vij correspond
to the production I → SI and vij+1 = vij · 1, so that the successor of vij along
the path is labeled by S. Hence v0, v1, . . . , is a path π in t such that infLabels(π)
contains S, which is a contradiction since the only accepting set is {I}.

Example 2. If G = ({S, I},Σ, P, S, {{I}}), with

P = {S → a : a ∈ Σ} ∪ {S → ε, S → I, S → SIS},

then L(G) consists of all the scattered words over Σ.

Indeed, the derivation tree depicted on Figure 1b shows that L(G) is closed
under ω + (−ω)-products of words. Since ε ∈ L(G), the language is thus closed
under ω-products and −ω-products as well, thus closed under ζ-products. Since
the one-letter words belong to L(G), we get by Hausdorff’s Theorem that L(G)
consists of all the scattered Σ-words.

We note that if instead of the Muller condition we define a Büchi-type accep-
tance condition, then we get a weaker device: the resulting class of “Büchi context-
free languages” is strictly contained within the class of MCFLs, see [11, 10].

3 MSO-definable properties are decidable

The logic usually arising when dealing with “regular” structures is that of monadic
second-order logic, or MSO. In [13] the following general decidability theorem was

Regular Expressions for Muller Context-Free Languages 355

proved:

Theorem 1. The following problem is decidable: given an MCFG G generating
Σ-words and an MSO formula ϕ evaluated Σ-words, does it hold that w |= ϕ for
every w ∈ L(G)?

Thus in particular, it is decidable whether G generates scattered, or well-
ordered, or dense words only.

We sketch the outline of the proof. First, to each MCFG G = (N,Σ, P, S,F)
we associate the grammar G′ = (N ∪ P,Σ, P ′, S) where P ′ contains the following
set of productions:

• For each nonterminal A ∈ N , there is a production A → (A → α1)(A →
α2) . . . (A→ αn) in P ′ where A→ α1, . . . , A→ αn are the productions in P
having A on their left-hand side, in some fixed order.

• For each production A→ X1 . . . Xn, there is a production (A→ X1 . . . Xn)→
X1 . . . Xn in P ′.

That is, we can rewrite a nonterminal to the sequence of its alternatives, and
rewrite a production to its right-hand side. Thus, each nonterminal of G′ has
exactly one alternative (it is assumed that for each nonterminal A there is at least
one production having left-hand side A), thus there is exactly one locally consistent
tree of G′ having root symbol S. We call this unique tree tG the grammar tree of
G.

Example 3. For the MCFG of Example 1, this tree tG is depicted in Figure 2.

S

S → I

I

I → SI

I

I → SI

. . .

S

S → I

I

. . .

S → ε

ε

S → b

b

S → a

a

S → ε

ε

S → b

b

S → a

a

Figure 2: Grammar tree of the MCFG of Example 1

356 Kitti Gelle and Szabolcs Iván

The cruical fact is that the grammar tree is a regular tree, having finitely many
(more precisely, at most |Σ| + |N | + |P |) subtrees. By [22], the MSO theory of a
regular tree is decidable, that is, given a regular tree t (which is tG in our case) and
an MSO formula ψ, it is decidable whether t � ψ holds. As tG can be effectively
constructed from G, it remains to construct a formula ψ from G and ϕ such that
tG � ψ holds if and only if for each w ∈ L(G) we have w � ϕ.

Informally, the formula ψ constructed in [13] has the semantics “whenever T is a
derivation tree of G, its frontier word satisfies ϕ”. Now derivation trees are encoded
as subsets of dom(tG) as follows: a subset X ⊆ dom(tG) encodes a derivation tree
of G if the following conditions all hold:

• X contains the root node.

• If some x ∈ X is labeled by some nonterminal A ∈ N , then exactly one child
of x belongs to X.

• If some x ∈ X is labeled by some production A→ α, then all the children of
x belong to X.

• On each infinite path π ⊆ X, the set of symbols from N occurring infinitely
many times belongs to F .

These properties can be expressed in MSO and such a set encodes a derivation tree
in the obvious way.

Example 4. Figure 3 shows a (part of a) derivation tree t of the grammar of
Example 1 and the corresponding subset T of dom(tG) (as nodes in boldface).

Then, given a set X of nodes of tG, we can define the subset Y ⊆ X of the leaves
in X and the lexicographic ordering over this Y is also MSO-definable. Hence the
formula “whenever X is a subset of dom(tG) encoding a derivation tree, and Y is the
set of leaves withinX, then the word corresponding to Y satisfies ϕ” is expressible in
MSO (moreover, is effectively computable from G and ϕ), thus proving Theorem 1.

4 A normal form

The general decidability theorem of the previous section does not give us an ex-
act complexity result as model checking MSO is decidable, but nonelementary in
general. In this section we give complexity results for several decision problems
(and several undecidability results as well) regarding MCFLs, surveying the results
of [11]. The decidable properties surveyed here are MSO-definable, thus their de-
cidability is immediate from Theorem 1. For example, L(G) is empty if and only
if every member w of L(G) satisfies the false formula ↓. (On the other hand, uni-
versality is not definable this way – and indeed, universality of MFCGs is already
undecidable for singleton alphabets.)

(A slightly modified variant of) the normal form of MCFGs introduced in [11]
is the following:

Regular Expressions for Muller Context-Free Languages 357

S

I

I

. . .

S

a

S

S → I

I

I → SI

I

I → SI

. . .

S

S → I

I

. . .

S → ε

ε

S → b

b

S → a

a

S → ε

ε

S → b

b

S → a

a

Figure 3: A part of a derivation tree t of Example 1 and the corresponding subset
T of tG

Definition 1. An MCFG G = (N,Σ, P, S,F) is in normal form if either P is
empty, or P consists of the single production S → ε, or for each A ∈ N there exists
a nonempty word w with A⇒∞G w and words u, v with S ⇒∞G uAv.

Moreover, to each F ∈ F there exists a path π of some derivation tree t with
infLabels(π) = F .

In the terminology of [11], each nonterminal has to be +-productive and reach-
able, and each accepting set has to be viable.

Such a normal form of any MCFG is computable:

Theorem 2 ([11]). For any MFCG G, an equivalent MCFG G′ in normal form
can be computed in PSPACE. The resulting grammar G′ has a size polynomially
bounded by the size of G.

We sketch the algorithm here. The straightforward modification of the corre-
sponding algorithms for ordinary context-free grammars works: first we check for
each symbol X whether X is productive (is there a complete derivation tree with
root symbol X at all). However, the complexity of this problem is PSPACE-
complete due to the fact that the emptiness problem of Muller regular tree lan-
guages, given by a nondeterministic Muller tree automaton, is PSPACE-complete.
Since there is a polynomial-time transformation from an MCFG to a corresponding
Muller tree automaton and vice versa, we gain PSPACE-completeness for deciding
productiveness of individual nonterminals, and emptiness of MCFLs as well:

Proposition 1. [11] Deciding whether L(G) = ∅ is PSPACE-complete.

Then, we can throw away all the non-productive nonterminals and get rid of
all the productions that have a non-productive nonterminal on either of its sides.

358 Kitti Gelle and Szabolcs Iván

After that, this set is further reduced to the set of reachable nonterminals, which
can be done by the usual fixed-point construction for CFGs, as for each reachable
nonterminal A there is a finite (not necessarily complete) derivation tree with root
symbol S and A occurring as a leaf label. Then we can throw away all the non-
reachable nonterminals. This can be done in polynomial time.

In the next step, a nonterminal generates A a nonempty word if and only if
there is a finite (not necessarily complete) derivation tree rooted A that has some
letter a ∈ Σ occurring as a leaf label. This can also be decided in polynomial time
by solving a reachability problem. Then, we can simply erase all the symbols from
the right-hand sides from which only the empty word can be generated (and if the
right-hand side of a rule becomes empty, then erase the rule itself as well), arriving
to a grammar in the required normal form, apart from viability of each F ∈ F .
(This way we might lose the word ε from L(G) – if we need the nonempty word,
we can allow the production S → ε to be present, but in that case S should not
appear on the right-hand side of any rule, as in the classical case.)

The normal form can be generated in PSPACE. Then, L(G) contains a
nonempty word if and only if there are still productions in G.

Proposition 2 ([11]). It can be decided in PSPACE whether L(G) contains a
nonempty word.

Now for retaining only the “viable” accepting sets, the following associated
graph ΓG is handy:

Definition 2. Given an MCFG G = (N,Σ, P, S,F), we define the following edge-
labeled multigraph ΓG: the vertices of ΓG are the nonterminals, and there is an
edge from A to B labeled (α, β) for α, β ∈ (N ∪Σ)∗ if A→ αBβ is a production of
G.

Now if G already contains only productive and reachable nonterminals, then a
set F ∈ F is viable if and only if the subgraph of ΓG induced by F is strongly
connected, which is efficiently decidable, finishing the construction of the normal
form.

However, language universality (and thus language inclusion and equivalence)
is undecidable already for singleton alphabets (contrary to the case of context-free
grammars, where undecidability holds only for alphabets of size at least two):

Proposition 3 ([10]). It is undecidable whether L(G) = Σ# for an MCFG G, even
when Σ is a singleton alphabet.

In fact, the problem is undecidable already for Büchi context-free grammars.
The key for proving this is a reduction from the universality problem of context-free
languages of finite words over the binary alphabet {a, b}: first we encode a by aω and
b by a−ω. Then, the language L of those words in a# not belonging to {aω, a−ω}∗
is a MCFG and thus, as MCFLs are effectively closed under homomorphisms and
finite unions, we get that L(G) = {a, b}∗ for the CFG G if and only if L(G′) = a#

for some MCFG G′ effectively constructed from G.

Regular Expressions for Muller Context-Free Languages 359

4.1 Languages of finite words

Given an MCFG G = (N,Σ, P, S,F) in normal form, one can decide in (low-degree)
polynomial time whether L(G) consists of finite words only. (Note that decidability
is clear as the property of being scattered is MSO-definable.)

The key observation here is that L(G) contains an infinite word if and only if

there is some F ∈ F and an edge A
α,β−→B in ΓG with αβ 6= ε and A,B ∈ F which

can be verified efficiently.
Also, it is quite straightforward to see that a language L ⊆ Σ∗ is context-free

if and only if it is an MCFL: for one direction we only have to set F = ∅. For the
other direction somewhat more care is needed since the frontier word of an infinite
tree can be empty. However, it can be decided in PSPACE whether A⇒∞G ε holds
for a nonterminal A: we only have to remove the productions from G having some
terminal symbol occurring on the right-hand side (that is, we retain the productions
of the form X → α with α ∈ N∗), and apply an emptyness check for the generated
language. Then, for each A generating ε we can include the production A→ ε and
the resulting (classical) context-free grammar will generate L(G) ∩ Σ∗ if G is in
normal form.

Thus,

Proposition 4 ([11]). A language L ⊆ Σ∗ is context-free if and only if it is Muller
context-free.

Also, since emptiness of CFGs is efficiently decidable, we have:

Proposition 5 ([11]). It is decidable in PSPACE whether an MCFG generates
at least one finite word.

4.2 Languages of well-ordered words

Given an MCFG G = (N,Σ, P, S,F) in normal form, one can decide in (low-
degree) polynomial time whether L(G) consists of well-ordered words only. Again,
decidability itself is already clear, since the property is MSO-definable.

Proposition 6 ([11]). For an MFCG G in normal form, L(G) contains a word
which is not well-ordered if there is some set F ∈ F , nonterminals A,B ∈ F and

an edge A
α,β−→B in ΓG with β 6= ε.

To see this, suppose there is a derivation tree t of G with a frontier word
not having a well-ordered domain. Then there exists an infinite descending chain
. . . < x3 < x2 < x1 < x0 of leaves of t. Starting from the root, one can then build
up an infinite path π = y0, y1, . . . such that for each node u of π, an infinite number
of these leaves xi are descendants of u. (This property holds for the root, and at
each step we set yi+1 to be the first child of yi which is an ancestor of some xj .)
Then, as each such leaf xi has some finite depth, there exists an yj for each xi such
that yj is an ancestor of xi but yj+1 is not; it is easy to see that in this case xi is
“on the right side” of π.

360 Kitti Gelle and Szabolcs Iván

Hence, for this π it holds that F = infLabels(π) is contained within a nontrivial

strongly connected component of ΓG, moreover, there is an edge A
α,β−→B with

A,B ∈ F and β 6= ε, the other direction being also straightforward, simply by
following a closed path in F visiting each edge at least once, iterating ω times and
complete the resulting derivation tree (which already has an infinite descending
chain among its leaves due to β 6= ε).

Now if L(G) contains well-ordered words only, one can compute an interval of
ordinals containing all the order types of L(G):

Proposition 7 ([16]). If the MCFG G generates well-ordered words only, then both
the minimum and the supremum of the order types of the members of L(G) are
effectively computable ordinals.

For the minimum, first we note that to each nonterminal A, if there is a finite
word w with A⇒∞G w, then the length n of the shortest such word is computable.
Then we can replace each occurrence of these nonterminals by an: the minimum
order types for the nonterminals in the resulting grammar will coincide with those
of G.

Let us fix for each symbol X a complete derivation tree tX with root symbol
X, minimizing the order type of fr(tX). It turns out that the members of N can
be partially ordered by some properties of these trees tX and that these trees tX
can be chosen in a way that each subtree of tX is some tY for Y ∈ N ∪ Σ.

The key construction to see this is the following. When a t is a complete
derivation tree of such an MCFG G, then we call t simple if it is either finite or has
some infinite path π with infLabels(π) = labels(π) and moreover, each production
corresponding to the nodes of π occur infinitely many times on π. As A→ uBv ∈ P
for some A,B ∈ F ∈ F implies v = ε, this path π has to be the rightmost path
of t. Then, the order type of fr(t) is the ω-sum of the order types of the frontiers
of the subtrees of t being adjacent to π (that is, rooted at some node x not on π
whose parent is on π). As each left-hand side occurs infinitely many times, we get
that each nonterminal adjacent to π has a strictly smaller minimum. Thus, if tX
is simple, then we can define tX after being defined each tY where the minimum
order type of Y is strictly smaller than that of X, and the order type of its frontier
is computable.

Now if tX is not simple, then the order type of its frontier is the sum of the
order types corresponding to its direct children. Now all these order types but
the last have to be smaller then the order type of fr(tX) and the last child has to
have one level “closer” for being simple (and this level is finite), establishing the
inductive case. Thus, a standard iterative algorithm recomputing the minima from
the current estimations eventually terminates and produces the minimum ordinals
(in Cantor normal form, say).

For the supremum, the case analysis is slightly more involved. First, one seeks
for reproductive nonterminals: A is called reproductive if A ⇒∞G α for some α in
which A occurs infinite times. It turns out that A is reproductive if and only if
there is a production A→ X1 . . . XnB and an accepting set F ∈ F with A,B ∈ F
and Xi ⇒∞G uAv for some i ∈ [n] and u, v ∈ Σ∞, which is decidable.

Regular Expressions for Muller Context-Free Languages 361

Then, if A is reproductive, then it is easy to see that arbitrarily large countable
ordinals can be generated from A, thus in that case, the supremum in question is
ω1, the smallest uncountable ordinal. Also, if A ⇒∞G uBv for some reproductive
nonterminal B, then the same holds for A as well.

Otherwse, to each production of the above form, the nonterminals Xi belong to
a strongly connected component strictly below the component of A, again setting a
straightforward induction argument: the reader is referred to [16] for the technical
details.

As ω-languages are also well-ordered, we note that and a language of ω-words
is context-free in the sense of Cohen and Gold [8] if and only if it is an MCFL [11],
and moreover, it is decidable whether an MCFG generates only well-ordered words
having order type at most ω.

4.3 Languages of scattered words

Analogously for the case of well-ordered words, it is decidable whether an MCFG
G generates scattered words only, as this property is also MSO-definable.

Proposition 8 ([11]). It is decidable in polynomial time whether an MCFG G in
normal form generates scattered words only.

The key observation is the following: L(G) contains a quasi-dense word if and
only if there exists a finite derivation tree t, two leaves x and y of t and a viable
accepting set F ∈ F such that labels(πx) = labels(πy) = F and t(x) = t(y) = t(ε)
where πx and πy respectively denote the paths from the root to x and y. As this
property is further equivalent to the existence of some production A → αBβCγ
with A,B,C ∈ F for a viable F ∈ F , we have an efficient decision procedure.

For languages of scattered words, the main ingredient of many proofs is that
of the Hausdorff-rank. Basically, given a derivation tree t, we can tag each node
x of t by the rank of fr(t|x). Then, consider the subset D of the nodes tagged by
the same ordinal as the root. As an infinite sum of scattered orderings of the same
rank α has a rank strictly greater than α, this subset D cannot contain an infinite
antichain, yielding that D is a finite union of paths. Then, one can partially order
the set of derivation trees primarily by the rank of their frontier, secondary by the
number of paths covering their respective sets D, and third, by the depth of the first
node of D having at least two children in D. The defined ordering becomes then a
well-ordering of the derivation trees, allowing us to apply well-founded induction.

The first such application is the following “gap theorem” of MCFLs of scattered
words:

Proposition 9 ([11]). The supremum of the Hausdorff-rank of the members of
L(G) is computable when G generates scattered words only.

Moreover, this supremum is either ω1 or some natural number.

The key observation for this result is again that reproductive nonterminals, and
only those, can produce words of arbitrarily large (countable) rank, and for the
others, a simple induction works over the strongly connected components of ΓG.

362 Kitti Gelle and Szabolcs Iván

Interestingly, it is also known [14] that an MCFL consisting only of scatterred
words is a BCFL if and only if the second case applies, i.e. if it has a finite upper
bound n on the Hausdorff-rank of its members.

In order to define the regular expression-like expressions capturing these MCFLs,
we will also consider pairs of words over an alphabet Σ, equipped with a finite con-
catenation and an ω-product operation. For pairs (u, v), (u′, v′) in Σ# × Σ#, we
define the product (u, v) · (u′, v′) to be the pair (uu′, v′v), and when for each i ∈ ω,
(ui, vi) is in Σ# × Σ#, then we let

∏
i∈ω

(ui, vi) be the word
(∏
i∈ω

ui
)(∏
i∈−ω

vi
)
. Let

P (Σ# × Σ#) denote the set of all subsets of Σ# × Σ#. Then P (Σ# × Σ#) is
equipped with the operations of set union, concatenation L · L′ = {(u, v) · (u′, v′) :
(u, v) ∈ L, (u′, v′) ∈ L′} and Kleene star L∗ = {ε} ∪ L ∪ L2 ∪ · · · . We also define
an ω-power operation P (Σ# ×Σ#)→ P (Σ#) by Lω consisting of the words of the
form

∏
i∈ω

(ui, vi) with (ui, vi) ∈ L for each i ∈ ω.

The motivation behind this notion is the following. If t is a derivation tree with a
distinguished leaf x labeled by some nonterminal A, and frontier word fr(t) = uAv,
then this frontier word is represented by the pair (u, v). Now if we substitute
a tree s with root symbol A in place of the distinguished leaf, having frontier
word fr(s) = u′Bv′, yielding the tree t′, then we have fr(t′) = uu′Bv′v which is
(u, v) · (u′, v′) according to the product operation we defined on pairs. Similarly,
if the root of t is also labeled A, then we can iterate substituting t in place of
the distinguished leaf: if we iterate a finite number of times, then the Kleene star
contains the “pair representant” of the resulting tree; if we iterate ω times, then
the frontier is uωv−ω = (u, v)ω.

Then, let the set of µωTs-expressions over the alphabet Σ be defined by the
following grammar (with T being the initial nonterminal):

T ::= a | ε | x | T + T | T · T | µx.T | Pω

P ::= T × T | P + P | P · P | P ∗

Here, a ∈ Σ and x ∈ X for an infinite countable set of variables. An occurrence of
a variable is free if it is not in the scope of a µ-operation, and bound, if it is not
free. A closed expression does not have free variable occurrences. The semantics of
these expressions are defined as expected using the monotone functions over P (Σ#)
and P (Σ# × Σ#) introduced earlier.

The characterization theorem of [12] states that these notions correspond to
each other:

Theorem 3 ([12]). A language L is an MCFL of scattered words if and only if it
can be denoted by some closed µωTs-expression.

The direction that such expressions always denote MCFLs is done by a straight-
forward construction, while the converse direction is again done via the well-
ordering of the derivation trees we introduced earlier.

Regular Expressions for Muller Context-Free Languages 363

5 Operational characterization of general MCFLs

In this section we give an operational characterization of MCFLs in general, using
the operational characterization of Muller regular languages of infinite trees given
in [18, 20] which we reproved using slightly different methods in [15].

There, we introduced for each ranked alphabet Σ (that is, each symbol a ∈ Σ
has some arity n ≥ 0; the set of n-ary symbols of Σ is denoted Σn) the set of µη-
regular tree expressions (tree expressions for short) over Σ as the least set satisfying
all the following conditions:

• If a ∈ Σn, n ≥ 0 and E1, . . . , En are tree expressions over Σ, then a(E1, . . . , En)
is a tree expression over Σ. When n = 0, we write a in place of a().

• If E and F are tree expressions over Σ, then so is (E + F).

• If E is a tree expression over Σ ∪ {x} for the nullary symbol x, and F is a
tree expression over ∆, then (E ·x F) is a tree expression over Σ ∪∆.

• If E is a tree expression over Σ ∪ {x} for the nullary symbol x, then (µx.E)
and (ηx.E) are tree expressions over Σ.

In order to define the semantics of these expressions, we have to define the op-
erations of x-product, µx and ηx on tree languages, for which we use cuts and
decompositions of trees. So let Σ be an alphabet and let Σ̂ stand for the disjoint
copy {â : a ∈ Σ} of Σ. The hatted symbols are of arity zero. Given a tree t, and a

subset X ⊆ dom(t) of its nodes, the X-cut of t is the following Σ ∪ Σ̂-tree t/X: a
node x belongs to dom(t/X) if and only if x is a node of t which is not a proper
descendant of any non-root member of X, i.e. dom(t/X) = dom(t)−

⋃
u∈X−{ε}

{y ∈

dom(t) : u ≺ y}. The labeling of t/X is defined as follows: for a node x ∈ dom(t/X)

let (t/X)(x) be t(x) if x /∈ X − {ε} and t̂(x) if x ∈ X − {ε}. That is, we “cut” the
tree at the nodes of X and add a hat to the symbols occurring at the cut-points.

Example 5. Figure 4 shows a tree t with frontier aωb−ω. Choosing the set X to
contain all the inner nodes of t, all the trees of the form (t|x)/(X|x) are the same
(shown on the right hand side of the Figure). Figure 5 shows a (finite) tree t which
gets decomposed into a set of six trees.

Now when K is a language of Σ ∪ Σ̂-trees and L is a language of ∆-trees for
some alphabets Σ and ∆, then K[Σ̂/L] is the following language of Σ ∪ ∆-trees:

a tree t belongs to K[Σ̂/L] if there exists some subset X ⊆ dom(t) such that t/X
belongs to K and for each x ∈ X, t|x belongs to L. (Usually ∆ is either Σ or

Σ ∪ Σ̂). That is, if we can cut t such that the “retained part” of the tree belongs
to K and all the subtrees that are “cut down” belong to L. Observe that if there
exists such an X, then the subset X ′ of �-minimal elements of X is also fine (as
t/X = t/X ′ then, and the condition for the subtrees is also valid), thus in that case
we can assume that t is cut by some antichain of its nodes.

364 Kitti Gelle and Szabolcs Iván

A

a A

a A

a A

.

b

b

b

A

a Â b

Figure 4: A tree and t one of its possible decompositions.

Given a tree language L over Σ ∪ Σ̂, the function K 7→ L[Σ̂/K] is a monotone

function (with respect to language inclusion), which maps the poset of Σ ∪ Σ̂-tree
languages to itself, thus it has a least fixed point that can be reached by the Kleene
iteration L0 = ∅, Lα = L[Σ̂/Lβ] for successor ordinals α = β + 1 and Lα =

⋃
β<α

Lβ

for limit ordinals α, that is, there exists some (least) ordinal α such that Lα is
the least fixed point of this function. This least fixed point is denoted Lµ and is a
Σ-tree language. It is relatively easy to show that a Σ-tree t belongs to Lµ if and
only if there is some subset X ⊆ t of its nodes such that there is no infinite chain
x1 ≺ x2 ≺ . . . in X and for each x ∈ X, the tree (t|x)/(X|x) belongs to L.

The last operation on trees is the η-product. Given a Σ ∪ Σ̂-tree language L,
the language Lη is a language of Σ-trees: a tree t belongs to Lη if and only if there
is some X ⊆ dom(t) of its nodes such that for each x ∈ X, the tree (t|x)/(X|x)
belongs to L. That is, now an arbitrary set of cut-points in the domain.

Now if L is a language of Σ ∪ {x}-trees for a nullary symbol x, then µx.L and

ηx.L are the tree languages L̂µ and L̂η where L̂ is the following language of Σ∪ Σ̂-
trees: a tree t belongs to L̂ if and only if its projection defined by a 7→ a, â 7→ x
belongs to L. That is, the Σ ∪ {x}-tree t′ we get from t by relabeling each hatted
symbol to x. Similarly, if K is a language of Σ ∪ {x}-trees and L is some ∆-tree

language, then let K ·x L be the language K̂[Σ̂/L].

Example 6. When K consists of the tree single tree A(x, Â), then Kη contains

a single tree with root symbol A and frontier xω. Then, Kη ·x {Â} contains a

single tree with root symbol A and frontier Âω. Finally, the frontier language of
(Kη ·x {Â} ∪ {A(a), A(Â, Â)})µ contains all the nonempty well-ordered words over
the singleton alphabet {a}.

After these definitions we are ready to define the semantics of tree expressions
in the expected way. A tree expression E denotes a tree language |E|, a set of
Σ-trees defined as follows:

Regular Expressions for Muller Context-Free Languages 365

A

B

B

a B

A

a

B

b

A

B

a a

a

a A

B

a a

a A

B

a a

A

a

A

B

B̂ Â

a Â

B

a a

B

a B

A

a

B̂

B

b

A

B

a a

a

A

B

a a

a A

B̂ A

a

Figure 5: A decomposition of a finite tree.

• |a(E1, . . . , En)| consists of those Σ-trees t whose root symbol is labeled a, the
root have exactly the children 1, . . . , n and for each i ∈ [n], t|i ∈ |Ei|.

• |(E+F)| = |E|∪|F |, |E·xF | = |E|·x|F |, |µx.E| = µx.|E| and |ηx.E| = ηx.|E|.

Now using the terms of [15], a tree language is Muller-regular if and only if it can
be denoted by some µη-regular tree expression. Hence it is easy to derive µη-regular
word expressions for MCFLs as MCFLs are exactly the frontier languages of Muller-
regular tree languages. For this, we have to define operations corresponding to the
·x, µx and ηx-operations above. Informally, for ·x we can define the substitution
operation: K[x/L] contains those words we get from members of K in which we
replace each occurrence of x by some word in L; then, µx.L is the least fixed point
of the monotone function X 7→ L[x/X]; and, members of ηx.L are the Σ-words
which we get by starting from the word x, then replacing each occurrence of x by
some member of L, and repeat this process – the words occurring as “limits” of
this (possibly infinite) replacement sequence are members of ηx.L.

To treat the case of ηx.L formally, we introduce the class of generalized Σ-trees
as follows. A generalized tree domain is a modified tree domain where we do not
restrict the set of children of any node to be a finite linearly ordered set, but allow

366 Kitti Gelle and Szabolcs Iván

x

a x

. . . b b b b

a x

. . . b b b b

a . . .

Figure 6: An L-x-substitution tree.

arbitrary countable linear orders. Nevertheless, each node has to have a finite
depth.

More formally, given a partially ordered set P = (P,<), a P -tree domain is a
subset D of P ∗ satisfying the following conditions:

• D is nonempty and prefix-closed.

• For each node d ∈ D, the set {p ∈ P : d · p ∈ D} of the children of d is a
linearly ordered subset of P .

When an alphabet Σ is also given, then a P -Σ-tree is a mapping t : dom(t) → Σ
from a P -tree domain to Σ, that is, a Σ-labeled P -tree domain and the frontier
word of t is the Σ-word fr(t) whose domain is the set of the leaves of t (those nodes
having no children) equipped with the lexicographic ordering: p1 . . . pn <` p

′
1 . . . p

′
m

if and only if for some i ≤ m,n we have pi < p′i and for each j < i, pj = p′j . Observe
that this ordering is total on the leaves since for two different leaves u = p1 . . . pn
and v = p′1 . . . p

′
m neither of them can be a prefix of the other, hence there exists

a unique least index i ≤ m,n with pi 6= p′i; and as the set of the children of the
node p1 . . . pi−1 is linearly ordered, it has to be either the case pi < p′i or p′i < pi.
Observe also that if each node has a countable children set, the fr(t) is a countable
word.

Given a language L ⊆
(
Σ ∪ {x}

)#
, we define the languages µx.L and ηx.L

over Σ as follows. Let P =
⊎
u∈L

dom(u) be the disjoint union of the domains of

all the words belonging to L. Then, an L-x-substitition tree is a P -
(
Σ ∪ {x}

)
-tree

satisfying the following conditions: the root is not a leaf node, each inner node is
labeled by x, each leaf node is labeled in Σ and for each inner node u, the word
formed by the labels of the children of u belongs to L.

Example 7. Figure 6 depicts an L-x-substitution tree where L is the language
{b−ω, (ax)ω}.

Then, let ηx.L contain the frontier words of the L-x-substitution trees, and let
µx.L contain the frontier words of those L-x-substitution trees having no infinite
paths.

Example 8. Figure 7 depicts an L-x-substitution tree for L = {axb}. This tree
shows that aωb−ω is a member of ηx.L (but does not, in fact, belong to µx.L as

Regular Expressions for Muller Context-Free Languages 367

x

a x

a x

a x

.

b

b

b

Figure 7: The word aωb−ω belongs to ηx.{axb}.

it has an infinite path. For this language, µx.L = ∅. In contrast, µx.{axb, c} is
{ancbn : n ≥ 0} and ηx.{axb, c} is µx.{axb, c} ∪ {aωb−ω}.)

These operations µ and η on languages over words correspond to the operations
µ and η on tree languages in the sense fr(µx.L) = µx.fr(L) and fr(ηx.L) = ηx.fr(L)
for each tree language L. We also make use of the ·x product operation: when
K ⊆ (Σ ∪ {x})# and L ⊆ ∆# for the alphabets Σ and ∆, then K ·x L ⊆ (Σ ∪∆)#

contains those words one can get from a word u in K by replacing each occurrence
of x in u by some member of L. Or more technically, the frontier words of those
(K ∪L)-x-substitution trees of depth at most two in which the word formed by the
children of the root symbol belongs to K and each word formed by the children of
the depth-one inner nodes belongs to L. In particular, the tree depicted in Figure 6
shows its frontier (ab−ω)ω belongs to (ax)ω ·x b−ω.

Then also, fr(K ·x L) = fr(K) ·x fr(L) for arbitrary tree languages K and L.

By the characterization of Muller regular tree languages we get the following
characterization:

Theorem 4. A language L ⊆ Σ# is an MCFL if and only if it can be generated
from the singleton languages of one-letter words by a finite number of concatenation,
binary union, ·x-product, µx and ηx-operations.

References

[1] Bedon, Nicolas. Finite automata and ordinals. Theor. Comput. Sci., 156(1–
2):119–144, 1996.

[2] Bedon, Nicolas, Bès, Alexis, Carton, Olivier, and Rispal, Chloé. Logic and Ra-
tional Languages of Words Indexed by Linear Orderings, pages 76–85. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

368 Kitti Gelle and Szabolcs Iván

[3] Boasson, Luc. Context-free sets of infinite words. In Weihrauch, Klaus, edi-
tor, Theoretical Computer Science, volume 67 of Lecture Notes in Computer
Science, pages 1–9. Springer, 1979.

[4] Bruyère, Véronique and Carton, Olivier. Automata on linear orderings. J.
Comput. Syst. Sci., 73(1):1–24, 2007.

[5] Bès, Alexis and Carton, Olivier. A Kleene theorem for languages of words
indexed by linear orderings. In de Felice, Clelia and Restivo, Antonio, editors,
Developments in Language Theory, volume 3572 of Lecture Notes in Computer
Science, pages 158–167. Springer, 2005.

[6] Büchi, J. Richard. The monadic second order theory of ω1, pages 1–127.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.

[7] Choueka, Yaacov. Finite automata, definable sets, and regular expressions
over ωn-tapes. Journal of Computer and System Sciences, 17(1):81 – 97, 1978.

[8] Cohen, Rina S. and Gold, Arie Y. Theory of ω-languages. I. Characterizations
of ω-context-free languages. J. Comput. Syst. Sci., 15(2):169–184, 1977.

[9] Courcelle, Bruno. Frontiers of infinite trees. ITA, 12(4), 1978.

[10] Ésik, Zoltán and Iván, Szabolcs. Büchi context-free languages. Theor. Comput.
Sci., 412(8-10):805–821, 2011.

[11] Ésik, Zoltán and Iván, Szabolcs. On Müller context-free grammars. Theor.
Comput. Sci., 416:17–32, 2012.

[12] Ésik, Zoltán and Iván, Szabolcs. Operational characterization of scattered
MCFLs. In Béal, Marie-Pierre and Carton, Olivier, editors, Developments
in Language Theory - 17th International Conference, DLT 2013, Marne-la-
Vallée, France, June 18-21, 2013. Proceedings, volume 7907 of Lecture Notes
in Computer Science, pages 215–226. Springer, 2013.

[13] Ésik, Zoltán and Iván, Szabolcs. MSO-definable properties of Muller context-
free languages are decidable. In Câmpeanu, Cezar, Manea, Florin, and Shal-
lit, Jeffrey, editors, Descriptional Complexity of Formal Systems - 18th IFIP
WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8,
2016. Proceedings, volume 9777 of Lecture Notes in Computer Science, pages
87–97. Springer, 2016.

[14] Ésik, Zoltán and Okawa, Satoshi. On context-free languages of scattered words.
In Yen, Hsu-Chun and Ibarra, Oscar H., editors, Developments in Language
Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August
14-17, 2012. Proceedings, volume 7410 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2012.

[15] Gelle, Kitti and Iván, Szabolcs. Expressions for regular languages of infinite
trees. Manuscript, 2017.

Regular Expressions for Muller Context-Free Languages 369

[16] Iván, Szabolcs and Mészáros, Ágnes. Müller context-free grammars generating
well-ordered words. In Dömösi, Pál and Iván, Szabolcs, editors, Automata
and Formal Languages, 13th International Conference, AFL 2011, Debrecen,
Hungary, August 17-22, 2011, Proceedings., pages 225–240, 2011.

[17] Khoussainov, Bakhadyr, Rubin, Sasha, and Stephan, Frank. Automatic linear
orders and trees. ACM Trans. Comput. Logic, 6(4):675–700, October 2005.

[18] Mostowski, Andrzej Wlodzimierz. Regular expressions for infinite trees and
a standard form of automata. In Symposium on Computation Theory, pages
157–168, 1984.

[19] Nivat, Maurice. Sur les ensembles de mots infins engendrés par une grammaire
algébrique. ITA, 12(3), 1978.

[20] Niwinski, Damian. Fixed points vs. infinite generation. In Proceedings of the
Third Annual IEEE Symposium on Logic in Computer Science (LICS 1988),
pages 402–409. IEEE Computer Society Press, July 1988.

[21] Perrin, Dominique and Pin, Jean-Éric. Infinite words: automata, semigroups,
logic and games, 2004.

[22] Rabin, Michael O. Decidability of second-order theories and automata on
infinite trees. Bull. Amer. Math. Soc., 74(5):1025–1029, 09 1968.

[23] Rosenstein, Joseph G. Linear orderings. Academic Press New York, 1981.

[24] Wojciechowski, Jerzy. Classes of transfinite sequences accepted by finite au-
tomata. Fundamenta Informaticae, 7:191–223, 1984.

[25] Wojciechowski, Jerzy. Finite automata on transfinite sequences and regular
expressions. Fundamenta Informaticae, 8:379–396, 1985.

