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The Convergence Time for Selfish Bin Packing∗

György Dósaa and Leah Epsteinb

Abstract

In classic bin packing, the objective is to partition a set of n items with
positive rational sizes in (0, 1] into a minimum number of subsets called bins,
such that the total size of the items of each bin at most 1. We study a bin
packing game where the cost of each bin is 1, and given a valid packing of
the items, each item has a cost associated with it, such that the items that
are packed into a bin share its cost equally. We find tight bounds on the
exact worst-case number of steps in processes of convergence to pure Nash
equilibria. Those are processes that are given an arbitrary packing as an
initial packing. As long as there exists an item that can reduce its cost by
moving from its bin to another bin, in each step, a controller selects such an
item and instructs it to perform such a beneficial move. The process converges
when no further beneficial moves exist. The tight function of n that we find is
in Θ(n3/2). This improves the previous bound of Ma et al. [14], who showed
an upper bound of O(n2).

1 Introduction

We study a class of bin packing games, that are based on the well-known standard
bin packing problem [17, 4, 6, 5], a basic combinatorial optimization problem. In
this problem, a set of n items I = {1, 2, . . . , n} is given, where the size of item t,
denoted by st, satisfies 0 < st ≤ 1. The goal is to partition (or pack) the items
into a minimum number of subsets or blocks. Each such block is packed into a unit
capacity bin, and the load of a bin is defined to be the total size of items packed
into it (and can never exceed 1). Here, we study bin packing from the point of view
of algorithmic game theory.

We now define the game theoretical concepts required for the definition of the
bin packing game. In a strategic game, there is a finite set of players, and a finite
and non-empty set of strategies (or actions) that players can perform. Each player
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has to choose a strategy (possibly independently from other players). Each player
has a cost for each one of the possible situations or outcomes, where an outcome
is a possible set of strategies of all players, containing one strategy for each player.
A classic form of a stable solution is a Nash equilibrium (NE) [21]. This is a
kind of solution concept of a game with at least two players, where no player can
decrease its cost by changing only its own strategy unilaterally. That is, if each
player has chosen a (pure or mixed) strategy and no player can benefit by changing
its strategy while the other players keep theirs unchanged, then the current set of
strategy choices and the corresponding costs result in an outcome or solution that
is a Nash equilibrium (NE). We are interested in pure Nash equilibria, where the
actions of players are chosen in a deterministic way, and will discuss only this kind
of NE.

Given an input for bin packing, the set of players are the items. The pure
strategy of a player is the index of the bin into which it is packed (the number of
possible bins is n, as this number of bins is always sufficient). We say that a bin
B ⊆ I is a valid bin if

∑
t∈B st ≤ 1, that is, if its load does not exceed 1. Changing

the strategy of an item means that it moves to be packed in a different (non-empty
or empty) bin. For 0 ≤ k ≤ n, we define a k-bin to be a bin that has exactly k
items, and a k+-bin is a bin that has at least k items. The cost of an item packed
into a valid k-bin (for k ≥ 1) is 1

k . We let the cost of an item that is not packed
into a valid bin be infinite. The deviation of an item t packed in a k1-bin B1 (where
t is included in the number of items of B1) to a k2-bin B2 (where t is not included
in the number of items of B2) is beneficial if s(B2) + st ≤ 1 (since otherwise the
cost of the item in the alternative bin is infinite) and k2 ≥ k1 (as otherwise its cost
is not reduced by moving). The standard bin packing problem can be therefore
seen as a class of games, where every input corresponds to a game. The uniform
cost sharing rule is motivated by the well-known egalitarian or Shapley model in
game theory, which was introduced in an algorithmic game-theoretic context by
Anshelevich et al. [2]. Unlike other bin packing games, the variant with uniform
sharing is a congestion game.

In this paper, we are interested in convergence processes. Such a process receives
a set of items and a packing. The packing obviously corresponds to an outcome
of the game whose players are those items. The process stops when it reaches a
solution that is an NE. As long as it is not an NE, a step is performed. In each
step, a controller selects an item that can benefit (reduce its cost) by moving to
another bin, and instructs it to move from its current bin to a specified bin (where
its cost will be smaller). In each step a single item moves and decreases its cost,
while other items may be affected (those that were packed with the moving item
will have larger costs, and those that were packed into the bin where it moved will
have smaller costs). It is shown by Ma et al. [14] (who were the first to study the
variant with equal sharing of the bin costs) that such a process always converges
in O(n2) steps. This kind of games are in fact singleton congestion games [15, 16],
but the number of resources has an exponential size in the number of players, and
it is not given explicitly (these are all possible subsets of items that can be packed
into a bin), so the convergence and existence of NE can be deduced from previous
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work on congestion games, but the polynomial time convergence cannot be deduced
from those.

Bin packing in general, and more specifically bin packing games, have a number
of applications [3, 9, 10]. Equal sharing is the simplest form of sharing, and it
does not require prior information given by the players (who may or may not be
truthful). Bin packing games where items share the cost of the bin proportionally
(according to sizes) rather than equally was introduced by Bilò [3], who was the first
to study the bin packing problem from this kind of game-theoretic perspective. He
proved that every game in this class has an NE. He also proved that any such bin
packing game converges to an NE after a finite (but possibly exponentially long)
sequence of steps, starting from any initial configuration of the items. The time
of convergence for this type of cost sharing was also studied in [19, 20]. Multiple
papers studied the quality of NE and other types of equilibria [3, 9, 10, 7, 1].
Polynomial time algorithms that compute an NE for games with proportional cost
sharing and for equal cost sharing are given in [22, 14, 7]. Note that the term “bin
packing games” is used in the literature for a completely different type of games
[12, 13, 18], and there is recent interest in those games as well.
Our result. We show that the worst-case number of steps for convergence is
Θ(n1.5). The exact function expressing the worst-case number of steps is

i(i+ 1)(i− 1)

3
+ j − ij ,

where

n =
i(i+ 1)

2
− j for 0 ≤ j ≤ i− 1 .

We prove the lower bound by defining a sequence of steps, while the upper bound is
proved using two potential functions, one of which is used in [14] and the other one
is completely different. Interestingly, combining the two potential functions allows
us to find a tight bound for any n ≥ 1.

The maximal number of steps is achieved by a process that is not completely
intuitive. The process is started with a packing where every item is packed into
its own bin, and it ends with a packing where all items are packed into one bin.
Moreover, it is obtained using items whose sizes are sufficiently small, such that all
items can indeed be packed together. Those last properties of the initial packing
and the final packing are natural as converting an arbitrary process to such a
process, by reducing the sizes and adding steps in the beginning and at the end,
obviously increases the number of steps. We show that the process of convergence
can be split into two clear parts. In the first part, items migrate until a packing
with a special structure which we call a staircase packing will be achieved. In such a
packing, any non-empty bin contains different number of items, and these numbers
(of items) are as small as possible (for example, if there are 17 items, there are
five bins, containing one, two, three, five, and six items, respectively). After the
staircase structure is built, it is destroyed again, to obtain fuller bins along time.
The steps are carefully chosen such that the process is applied exactly in this way,
and other steps are not performed. As we prove an exact bound (and not only an
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order of growth), the process is defined very carefully. An important part of the
proof of the upper bound is Lemma 6, where we consider an interesting invariant
holding until a staircase packing is created.

A preliminary version of this work appeared as [8].

2 The exact convergence time

In [14], processes of the following kind were studied. The process starts with an
arbitrary packing, and in each step one item that can reduce its cost by moving to
another bin is selected by a controller and is moved to another bin such that its
cost becomes smaller. The number of steps for convergence was shown to be O(n2)
[14]. In this section we find the exact worst case number of steps, which turns out
to be Θ(n3/2). Note that [19] showed using methods from [11] (where convergence
for scheduling problems is studied) that for the case of proportional cost sharing,
the number of steps can be exponential.

Given an integer n ≥ 1, we let

i = min{h|h(h+ 1)/2 ≥ n} and j = i(i+ 1)/2− n .

Thus, n = i(i+1)/2−j, where i ≥ 1, and 0 ≤ j ≤ i−1 (since n > i(i−1)/2 = i(i+
1)/2−i). Additionally, since n ≤ i(i+1)/2 < (i+1)2 and n > i(i−1)/2 > (i−1)2/4,
we have i >

√
n − 1 and i < 2

√
n + 1, and thus i = Θ(

√
n). We show that the

maximum number of steps that can be performed for any set of items and initial
configuration is exactly

∇i,j =
i(i+ 1)(i− 1)

3
+ j − ij .

Note, that in case i ≥ 12, the next inequalities are valid: i− 1 ≥ i/2, i/6− 1 ≥
i/12, and i+ 1 ≤ 2i. Thus, it can be verified that

∇i,j ≤
i(i+ 1)(i− 1)

3
< i3

and

∇i,j >
i3

6
− i2 = i2(i/6− 1) ≥ i3/12 .

Thus, ∇i,j = Θ(n
3
2 ).

We start with the lower bound.

Lemma 1. For every positive integer n, there exists an input of n items, for which
there is an initial packing of these items, and a sequence of ∇i,j steps that are
performed until no additional steps can be done.
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Proof. Consider a set of n items, each of size 1
n , and an initial packing where each

one of the items is packed in its own bin. Let a staircase packing be a packing
where for every 1 ≤ η ≤ i, η 6= j, there is exactly one bin with η items.

We show using induction on i that there exists a sequence of exactly ∆i,j =
i(i + 1)(i − 1)/6 − j(j − 1)/2 steps that results in a staircase packing. Note that
for i = 1, it holds that j = 0, and thus ∆1,0 = 0. Otherwise i ≥ 2, and in this
case j ≥ 0 and 0 ≤ j(j − 1) ≤ (i − 1)(i − 2) hold. Thus we get the next chain of
inequalities:

i(i+ 1)(i− 1)− 3j(j− 1) ≥ i(i+ 1)(i− 1)− 3(i− 1)(i− 2) = (i− 1)(i2− 2i+ 6) > 0

where we used the property i2 − 2i+ 6 ≥ 6. First, we show the claim for the case
j = 0 (where ∆i,0 = i(i+ 1)(i− 1)/6) by induction on i.

For i = 1, in every packing there is exactly one bin with one item, and this
packing is a staircase packing. For a given value of i, n = i(i+ 1)/2. We consider
a subset of n′ = n− i = i(i− 1)/2 items. By the induction hypothesis it is possible
to obtain a packing such that for any 1 ≤ η ≤ i − 1 there is a bin with η items.
Considering the complete set of n items, we get that for any 2 ≤ η ≤ i− 1 there is
a bin with η items, and additionally there are i + 1 bins, each with a single item.
By the induction hypothesis, this packing is obtained in i(i− 1)(i− 2)/6 steps. Let
Bη denote a specific bin with η items for 1 ≤ η ≤ i− 1, where the bin B1 is chosen
arbitrarily. The i other items packed in dedicated bins are called free items. For
k = 1, . . . , i − 1, the k-th free item is moved from its bin, to the bins B1, B2, . . .,
Bi−k, in this order. Bi−k will now contain i − k + 1 items and will not be used
again in this process. After all these steps, Bη (for 1 ≤ η ≤ i− 1) will contain η+ 1
items. The i-th free item remains packed in its own bin, so as a result, for any
1 ≤ η ≤ i there is a bin with η items. The number of additional steps for the free
items (the steps that are applied after the bins Bη are created using the induction
hypothesis) is

i−1∑
k=1

(i− k) = i(i− 1)/2 ,

as the number of steps for the kth free item is i− k. The total number of steps is
therefore

i(i− 1)(i− 2)

6
+
i(i− 1)

2
=
i(i+ 1)(i− 1)

6
.

To show the claim for the case for j 6= 0 (and i ≥ 2), we use the claim that was
proved for j = 0. Assume that n = i(i + 1)/2 − j where 0 < j < i. In this case,
first we create a staircase packing of a subset of n′ = i(i− 1)/2 items, leaving i− j
free items. For k = 1, . . . , i − j, the k-th free item is moved from its bin, to the
bins B1, B2, . . ., Bi−k, in this order. The bin Bi−k will contain i− k + 1 items as
a result and will not be used for later steps. After this is done for i− j items, Bη
will contain η + 1 items for j ≤ η ≤ i− 1, and for 1 ≤ η ≤ j − 1, Bη still contains
η items. Thus, for every 1 ≤ η ≤ i, η 6= j, there is exactly one bin with η items
and this is exactly a staircase packing as required. The number of additional steps
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(after the bins Bη are created using the claim for j = 0) is

i−j∑
k=1

(i− k) = i(i− 1)/2− j(j − 1)/2 .

The total number of steps is

i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

Once a staircase packing is achieved, we show that it is possible to reach a
packing where all items are packed in one bin together using exactly i(i + 1)(i −
1)/6 − ij + j(j + 1)/2 steps. We define a phase as follows. In the beginning of a
phase there are bins with different numbers of items. Let

J = {j1 < j2 < · · · < j|J|}

be the set of numbers of items before some phase, and let the bin Bη for η ∈ J be
the bin with η items. If |J | > 1, we repeatedly take an item from Bj1 , and move it
to Bj2 then to Bj3 and so forth until it reaches Bj|J| . A phase ends when all items
of Bj1 were moved. If j = 0, then initially J = {1, . . . , i}, there are i − 1 phases,
and the number of steps in all phases is

i−1∑
k=1

k(i− k) =
i2(i− 1)

2
− (i− 1)i(2i− 1)

6
=
i(i− 1)(i+ 1)

6
.

Otherwise, initially J = {1, . . . , i}− {j}, there are i− 2 phases, and the number of
steps is

j−1∑
k=1

k(i− 1− k) +

i−1∑
k=j+1

k(i− k) =

i−1∑
k=1

k(i− k)−
j−1∑
k=1

k − j(i− j)

=
i2(i− 1)

2
− i(i− 1)(2i− 1)

6
− j(j − 1)

2
− j(i− j) =

i(i+ 1)(i− 1)

6
− ij+

j

2
+
j2

2
.

The total number of steps is therefore

i(i + 1)(i− 1)

6
− j(j − 1)

2
+

i(i− 1)(i + 1)

6
+

j

2
− ij+

j2

2
=

i(i + 1)(i− 1)

3
+ j− ij = ∇i,j .

Next, we prove the main result of this paper.

Theorem 1. The number of steps until convergence is at most

∇i,j =
i(i+ 1)(i− 1)

3
+ j − ij = Θ(n

3
2 ) ,

and there exists an input of n items where this bound can be achieved.
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Proof. The lower bound was proved in the previous lemma. For the upper bound,
consider an input I of n = i(i + 1)/2 − j items for 0 ≤ j ≤ i − 1, an initial
configuration and a sequence of moves. Let pmin denote the smallest item size in
I. Let ε = min{pmin, 1/n}, and let I ′ be the input where st = ε for 1 ≤ t ≤ n. For
the input I ′ there cannot be invalid moves, since all items can be packed into one
bin.

Lemma 2. The initial configuration and the sequence of moves of I are valid for
I ′ as well.

Proof. Since no item size was increased, all configurations of I are valid for I ′.
Since the cost of an item in a packing depends only on numbers of items in its
bin and not on their sizes, modifying the sizes may only increase sets of beneficial
deviations, that is, every move that was beneficial and possible for I remains such
for I ′ and the sequence of moves is still valid.

In what follows, we will consider only sequences of moves for I ′. In particular,
we consider only sequences with a maximum number of moves. Such a sequence
must exist since from the results of [14] every sequence of moves has a finite length.

Lemma 3. Every sequence with a maximum number of moves starts with the config-
uration where every item is packed in a separate bin, and ends with the configuration
that all items are packed in one bin.

Proof. Consider a sequence of ` moves. Assume that there is a bin B with k ≥ 2
items in the initial configuration, and let φ ∈ B. Modify the configuration such
that instead of B the starting configuration has the two bins B \ {φ} and {φ}
(other bins remain unchanged). Next, add a step in the beginning of the sequence
of moves where φ moves to join the items of B \ {φ}. This is an improving step
since φ reduces its cost from 1 to 1

k . This results in a sequence of `+ 1 steps, which
contradicts maximality.

Next, assume that after the sequence of moves there are at least two non-empty
bins, containing k1 and k2 items respectively, where k1 ≤ k2. Let ψ be an item
packed in the first bin. Add a move of ψ to the second bin in the end of the sequence.
This is an improving step since ψ reduces its cost from 1

k1
to 1

k2+1 ≤
1

k1+1 <
1
k1

.
This results in a sequence of `+ 1 steps, which contradicts maximality.

Let k > 0 be an integer. We define a level k small step to be a move where an
item moves from a k-bin to another k-bin. A step is called a small step if there is
an integer k such that the step is a level k small step. Given the set of sequences of
steps of maximum length we focus on sequences where the maximum length prefix
of small steps has maximum length.

Lemma 4. Assume that after a prefix of the sequence of steps is applied there are
at least two k-bins. Then the first step in the remainder of the sequence of steps
involving a k-bin is a level k small step.
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Proof. Assume by contradiction that there is no level k small step in the remaining
part of the sequence. Since the sequence of steps terminates only when all items
are packed in one bin, there is at least one item in the union of the k-bins that
will perform a move (in fact, all the items of all the k-bins except for possibly one
such bin will do that). Consider the first step after the current configuration was
reached that involves a k-bin (either an item moving to the bin or moving out of
it).

There are two possible moves. If an item ψ moves from a k-bin into a bin with
k′ > k items, we modify the sequence as follows. First ψ moves to another k-bin,
and then it moves to the bin with k′ items. The second step is still beneficial for ψ
since in the second step it moves from a (k+ 1)-bin to a bin with k′ ≥ k+ 1 items.
This modification augments the length of the sequence by 1, which contradicts
maximality.

If an item φ moves from a bin with k̃ < k items to one of the k-bins, we modify
the sequence as follows. First choose an arbitrary item from one of the k-bins and
move it to another k-bin. Then, move φ to the bin out of which the item was just
moved (which now has k − 1 items). This last move is beneficial since k̃ ≤ k − 1.
This modification augments the length of the sequence by 1, which contradicts
maximality.

Lemma 5. Consider a maximum length prefix of small steps. After this prefix is
performed, every bin has a different number of items.

Proof. Assume by contradiction that at this time there are two k-bins. Using
Lemma 4, there will be a level k small step later in the sequence, which will be
the first move that involves k-bins. Since all items are identical, it is possible to
perform such a step immediately instead of at a later time. This does not change
the number of steps in the sequence, and it increases the length of the maximum
length prefix of small steps, which contradicts maximality of the prefix (out of
sequences of maximum length).

Lemma 6. Consider the maximum length prefix of small steps. After this prefix is
performed, there is one bin of each number of items in {1, 2, . . . , i} \ {j}, that is, a
staircase packing is created.

Proof. We prove an invariant that is kept as long as only small steps are done. Let
bk be the number of bins with k items, and recall that initially b1 = n and b` = 0
for 0 < ` ≤ n. Assume that at a given time, km is the maximum integer such that
bkm > 0. We say that a number 1 ≤ k ≤ km − 1 is bad if bk = 0, and otherwise it
is good. That is, a number k is bad if there are no k-bins, but there exists at least
one (k + 1)+-bin. If bk ≥ 2 then we say that k is very good. Two bad numbers are
called consecutive bad numbers if all numbers between them are good, that is, if k1
and k2 such that k1 < k2 < km are both bad (bk1 = 0 and bk2 = 0), and for all k′

such that k1 < k′ < k2, bk′ > 0.
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The invariant is as follows. For every pair of consecutive bad numbers k1, k2,
where 1 ≤ k1 < k2 < km, there exists a number k̃, where k1 < k̃ < k2, such that k̃
is very good.

Initially, km = 1, thus there are no bad numbers, and the invariant holds triv-
ially. Recall that we only analyze small steps and consider the change resulting
from a single level k small step. Every level k small step implies that before this
step there are at least two k-bins and so k is very good.

Note that k is the only number that can become bad as a result of a level k small
step. Moreover, if k = km, then the value km increases by 1. Assume first that k
remains very good. No bad numbers are created, and since no number stops beings
very good then the invariant holds (even if some number stops being bad). If k
remains good, but not very good, then still no new bad numbers are created and we
only need to consider the case that k was the only very good number between two
consecutive bad numbers. Let these two numbers be k1 < k < k2. If k2 > k+1 and
k1 < k − 1, then the numbers of k1-bins and k2-bins are unchanged (that is, these
numbers remain zero) and the numbers k1, k2 remain consecutive bad numbers
between which we need to show that a very good number exists after the step. Since
k + 1 was good, as a result of the move bk+1 ≥ 2, and since k1 < k + 1 < k2, there
is a very good number between k1 and k2, as required. If k1 = k− 1 but k2 > k+ 1
then k1 becomes good. If k1 was the minimum bad number then we are done.
Otherwise, let k3 < k1 be a bad number such that k3 and k1 were consecutive bad
numbers. We now have that k3 and k2 are consecutive bad numbers and bk+1 ≥ 2
so k+ 1 is a very good number between them. If k1 < k− 1 but k2 = k+ 1 then k2
becomes good. If k2 was the maximum bad number then we are done. Otherwise,
let k4 > k2 be a bad number such that k2 and k4 were consecutive bad numbers.
We now have that k3 and k4 are consecutive bad numbers and bk−1 ≥ 2 so k − 1
is a very good number between them. Finally, if both k1 = k − 1 and k2 = k + 1
hold, then the only case of interest is when k1 was not the minimum bad number
and k2 was not the maximum bad number. We let k3 < k1 be a bad number such
that k3 and k1 were consecutive bad numbers, and let k4 > k2 be a bad number
such that k4 and k2 were consecutive bad numbers. Now k3 and k4 are consecutive
bad numbers. There is a very good number in (k3, k1) which is now a very good
number between k3 and k4.

Finally, we consider the case where k becomes bad. If there previously was a
bad number k2 such that k2 > k, we distinguish two cases. If k2 > k + 1, then
k and k2 becomes a consecutive bad pair of numbers, and k + 1 becomes a very
good number between them. Otherwise, k2 = k + 1 becomes good. If k2 was the
maximum bad number then we are done, and otherwise, let k4 > k2 be such that k2
and k4 were consecutive bad numbers. Instead, k and k4 are now consecutive bad
numbers, and the very good number between them is the same one which was very
good between k2 and k4. The proof is symmetric for the case that there previously
was a bad number k1 such that k1 < k.

To complete the proof, consider the configuration after the (maximum length)
prefix of small steps. Since every bin has a different number of items, there are no
very good numbers, and hence, by the invariant, there is at most one bad number.
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If there exists a bin with at least i + 1 items, and there is just one bad number,
then there are at least (i+ 1)(i+ 2)/2− i = i(i+ 1)/2 + 1 > n items. If there is no
bin with at least i items, then there are at most i(i− 1)/2 < n items. Thus, there
is a bin with i items, and since there is at most one bad number, the bad number
must be j if j 6= 0, and otherwise there is no bad number. Therefore, the packing
at this time is a staircase packing.

Lemma 7. The number of steps in the (maximum length) prefix of small steps is
at most

i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

Proof. We use the potential function as in [14] which is the sum of squares of
number of items in the bins. In the beginning every item is in a dedicated bin, so
the potential is equal to n = i(i + 1)/2 − j. Consider a level k small step. The
potential function increases by exactly 2 in this step, since the only change is that
instead of two k-bins, there is a (k − 1)-bin a (k + 1)-bin, and the increase in the
potential is exactly

(k + 1)2 + (k − 1)2 − 2k2 = 2 .

Since a staircase packing is achieved in the (maximum length) prefix of small
steps, the value of the potential after this prefix is

i∑
k=1

k2 − j2 =
i(i+ 1)(2i+ 1)

6
− j2 .

Thus, the number of steps cannot exceed half the difference between the final
potential and the initial potential, which is(

i(i+ 1)(2i+ 1)

6
− j2 −

(
i(i+ 1)

2
− j
))

/2 =
i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

Lemma 8. The number of steps in the remainder of the sequence after the (max-
imum length) prefix of small steps is at most

i(i+ 1)(i− 1)

6
− ij +

j(j + 1)

2
.

Proof. In this case we define a different potential function. Sort the bins in non-
increasing order according to numbers of items. Let the index of an item be the
index of the bin into which it is packed. The potential of a packing is sum of indices
of items.

The potential is clearly positive at all times. The final potential is n, since all
items are packed in one bin. Consider a step in which an item moves from a k1-bin
Bv to a k2-bin Bu (where k2 ≥ k1). Since all items are identical, we assume that
Bv is the k1-bin of maximum index, and Bu is the k2 bin of minimum index. This
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holds even if k1 = k2, since in this case there are at least two bins with this number
of items. Since the bins are sorted by non-increasing order according to numbers
of items we have v > u. As a result of the move, Bv now has k1 − 1 items, and Bu
now has k2 + 1 items. By definition, if u > 1 then Bu−1 has at least k2 + 1 items.
Similarly, if Bv+1 exists then it has at most k1− 1 items, so the sorted order is still
valid. The change in the potential in this step is the change in the index of the bin
of the moving item, which is v − u ≥ 1.

If j = 0, then the potential before the remainder of the sequence of moves is
performed is

i∑
k=1

k(i− k + 1) =
i(i+ 1)2

2
− i(i+ 1)(2i+ 1)

6
=
i(i+ 1)(i+ 2)

6

while n = i(i+1)
2 , so the number of steps is at most

i(i+ 1)(i+ 2)

6
− i(i+ 1)

2
=
i(i+ 1)(i− 1)

6
.

If j > 0, then the potential before the remainder of the sequence of moves is
performed is

i−j∑
k=1

k(i− k + 1) +

i−1∑
k=i−j+1

k(i− k) = i

i−1∑
k=1

k +

i−j∑
k=1

k −
i−1∑
k=1

k2

=
i2(i− 1)

2
+

(i− j)(i− j + 1)

2
− i(i− 1)(2i− 1)

6

=
i(i− 1)(i+ 1)

6
+
i2

2
+
j2

2
− ij +

i

2
− j

2
.

In each step the function decreases by at least 1, so the number of steps is at
most

i(i− 1)(i+ 1)

6
+
i2

2
+
j2

2
− ij+

i

2
− j

2
− i(i+ 1)

2
+ j =

i(i+ 1)(i− 1)

6
− ij+

j

2
+
j2

2
.

Taking the sum of the maximum number of steps in the prefix (till the last small
step of the maximum length prefix of small steps) with that of the remainder we
get

i(i + 1)(i− 1)

6
− j(j − 1)

2
+

i(i + 1)(i− 1)

6
−ij+

j(j + 1)

2
=

i(i + 1)(i− 1)

3
+j−ij = ∇i,j .
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