~On the behaviour of some cyclically
symmetric networks

By A. ApAM and U. KLING

Zusammenfassung. 'In diesem Artikel beschiftigen wir uns mit dem folgenden
speziellen Typ von Netzwerken: die Punkte des Graphen werden durch Py, Ps, ..., P,
bezeichnet; es existiert ein Zahl k (1 =k <n) so daB von jedem Punkt: P; die Kanten
zZu den Punkten )

Pi—la Pi—2, cees Pi—k

und nur zu diesen fithren (wobei die Subtraktion modulo n gemeint wird). Wir
setzen dasjenige kontinuigrliche Modell fort, das im Abschnitt 3 der Arbeit [2]
eingefiihrt wurde. Der Zustand 2 eines derartigen Graphen heifit zyklisch, wenn
es eine positive Zahl p gibt, so daB nach einem Zeit-Intervall der Linge p der aus
A entstehende Zustand mit U libereinstimmt. Wir unterscheiden im § 1 reguldre
und nicht-reguldre Zustinde. In den §§ 2—3 wird das Funktionieren eines Graphen
mit einem reguldren Anfangszustand diskutiert; wir stellen -fest, daB jeder reguldre
Zustand zyklisch ist. Im § 4 beschéiftigen wir uns mit dem Funktionieren eines
Netzwerkes mit einem nicht-reguldren- Anfangszustand; unser Hauptergebnis be-
* sagt; daB kein nicht-reguldrer Zustand zyklisch sein kann."

§ 1. Introduction

In this paper we deal with the function of a special graph-theoretical class of
networks. (We speak of a nerwork if numerical values or numerical functions are
assigned to the vertices of a graph.) We shall point out that the behaviour of net-
works in question can be described-more explicitly in comparation to the general
model elaborated in Sect. 3 of [2]. It is throughout supposed that the reader is familiar -
with Sections [—3 of . the former article [2].

Now we delimit the graph-theoretical structure of the netw01 ks to be mvestngated .
“Let G(in; my,m,, ..., m) (where | =m; <m,<---<m<n) denote the graph con-
sisting of n vertices. labelled as Py, P,, ..., P,,, so that the directed edge P; P exists
if and only if there is an integer /2 (1 =h=k) for which the congruence

i—j=m, (mod n)

holds.! We shall regard the graphs G(n; 1,2, ..., k) (where 1=k <n) in the whole

T For the isomorphism problerﬁ of these graphs see [1] and the most recent papers [3], [4].
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paper. We note that the subscripts of the vertices of such a graph (and consequently,
also the subscripts of the functions «; assigned to them) are mostly undersfood
modulo 7.2 . .

Let a state

‘3[‘= (o (2), 25(1), -, 2 (2))

(at the instant® ¢) of a graph G (containing » vertices) be considered. Let us denote
by A[+p] the state of G at the instant ¢4 p where p is an arbitrary non-negative
real number. (More precisely: let us apply the continuous model defined in Sect. 3
of [2] for G, starting with 2 at ¢; let A[+ p] be the vector

(. (t+p), % (t+p), ..., “n(t‘l'l’))-)

We say that 9 is a cyclic state (and p is its period) if there exists a positive p such
that A=A[+p]. In the contrary case, U 15 an acyclic state.

We use for «;(0)-the shorter notation f;, too.

Let us consrder a network G(n; 1,2,..., k). Assume that there exists at least one
vertex P; with «;(¢) = 1. (If this holds forP , then each of o _ 1(t) a;_o(t), aj—5(1), .

;- k(t) is 0) We say that the vertices '

(1) : P,+1,P,+2,...,PJ_:,,Pj_l,Pj
form an arc (at the instant l) if A
I =0;(t) > ;1 (t) > 240(8) == o551 () =
=0 (1) = 0 11(1) = 0 x40(t) == a;_1,(t) = 0

(and of course, a;(¢) = l) hold. Evidently, the number of vertices of an arc is neces-
sarily at least k + 1. (We emphasrze that P;-does not belong to the arc (l)) A state
of a graph G(n; 1,2, ..., k) is called regular (at t) if each vertex is contained in an
arc (obviously, it may be contained in only one). In a regular state, we denote by

@(P;, t) the first vertex PJ in the sequence

Pr+1’ Pt+”’ P1+31

which satisfies «;(t) =1; in other words; ¢ (P;, 1) is that vertex P in the arc contain-
ing P;,, which fulﬁls o (t)—l (P; and P;,, are in the same arc unless a (t)—l )

In what follows, we shall obtain that a state of a network G(n 1,2, ..., k)
is ‘cyclic if and only if it is regular (Propositions 2, 8).

§ 2. Discussion of the behaviour of a network starting
with a regular state

Let us consider a regular state of a network G(n; 1,2, ..., k) at the instant 0.
Our next aim is to give a detailed discussion of the function «; associated to a vertex
P; (chosen arbitrarily) of G during the time interval [0, 7). Our treatment is based

2 For example, we write simply “the vertex P,*, instead of “the vertex P “whose subscnpt
is determined by j = i+/ (mod n), 1=j=n".
3 In what follows, ¢ will be almost everywhere 0.
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. upon Sect. 3 of [2]. We shall formulate several consequences of the present discus-
sion in § 3; one of these consequences is ant1c1pated _]ust now:

‘Proposition 1. If
A = (o, (0), 2,(0), ..., x,(0))
is a regular state,. then we have »
;i (r) = %4x41(0)
- for each i (i can be 1,2, ..., n). o
‘We are going to perform the discussion. We distinguish. three cases according

to the possibilities 0 <f; <1, f,=0, f;=1. Any case is subdivided to some sub-
cases with respect to the smallest integer /2 _satisfying P, y=@(P;, 0). In every dis-

cussed case, the following statement will be always. true: whenever a;(t)=0 and -

there exists a positive number & such that «;(¢") >0 holds for every ¢’ fulfilling t —é <
< 1’< 1, then a;,,(t)=1. We shall apply this method of inference (in a number of
steps) withouit being mentioned explicitly. :

<Case 1: 0<pf;<1. We distinguish three subcases. - :
Case l/a: h > 2k +1, in other words, each of Py, Piys, ..., Piygyiq differs
from (p(P,,O) This assumption implies (by the definition of the regular state)’

Bi=PBix1= _ =Bk = Bivkrr T Piars == /3;+2k+1- :

The behaviour of «; in [0, t] can be described as follows: .
(@) in the interval [0, t(1 — ;)] the value of «; grows linearly from'f; to I,

(i) in the interval {t(1 =B, T(1 = fisq)) o; is constantly 1,

(iii) in the -interval [t(1 —B;,1), (1 — B;i+rx+1)] &; is constantly 0,

(iv) in the interval [t(1 — B;41 1), 7] (of length r/i,+k+1) the value of «; grows
linearly from O to 744 44/T = Bisx+1-

Indeed, P; gets edges exactly from the vertices P;,;, P;.,, ..., P;;,. None of
“Oi41, o> Xy Can be 1 in the interval [0, T(1 —f,4,)). However, at every instant ¢
of the interval [t(1 — ﬂ,ﬂ) 1:(1 B1+k+1)) (exactly) one of o, ,(¢), ..., a; () is 1.
In the interval [t(1 —B;sr+1)s T) %1s+1 1S constantly 1, thus each of Ciprs o> Kjag

.is constantly 0. We have also o;,,(1) =+ =a;,,(1)=0, hence a; may grow in
[c(1— Bi+k+1)s Tl : :
"Case l/b: k+2 = h = 2k+1. Then

Bi>ﬁi+1> o= Piinker ZBivn-r = Bisnar1 == Biyn=1 =0,
1= Bion>Bivnsr = Bivnre = = Biyns-
The condition of the case implies the inequalities _
i+2=ith—k =itk+1 = ith—1=i+2k,

thus B;14,+1=0. The behavio’ur of «; satisfies the assertions (i), (if) of Case 1/a,
-moreover, ’ v

(iii) in the 1nterva1 [t(1 —B;+1), ] @; is constantly 0. Indeed, since o;;,4,(t) <1
at each instant ¢” of the interval [0, 7), the behaviour of «;,;, ..., ;s similar to
Case 1/a (with 1 instead of T(1 — Bi4+1))- .



72 _ A. Addm and U. Kling

Case 1fc: h = k+1. Then
Bi=Bist = Biya= ... = Bisk =0,
1= Birks1> Biskse = Piskss = = Birokso-

The behaviour of «; can be described as follows:
() in the interval [0, (1 —B))] the value of a; grows linearly from f; to 1,
(ii) in the interval [t(l1 —f,), 7] «;-is constantly 1.
Indeed, none of %1, @; 42, ..., %44 can reach 1 in the interval [0, T(2 — B4 1+2)),
furthermore 7 < 7(2 —B;sx10)-

- Case 2: ;=0. We distinguish four subcases:
Case 2/a: h = k+1. We can prove by ideas similar to Case 1/c that «; grows
linearly from O to 1 in the whole interval [0, 1].
Case 2/b: h=k. Then

fi=Piz1i=.=Bix1=0,
1= Bivk>Bivksr Z Pisise = = Bisana.

The behaviour of «; is as follows:
(i) in the interval [0, T(1 — ff;+4+1)} @; is constantly O, -
(if) in the interval [t(1 —f; 4541, 7] ; grows linearly from 0 to

(T_T(l _ﬂi+k+1))/f = Birk+1-
Case 2/c: 1 = h =k—1 and Bisrvs1=0. Then
Bi=Pisi== Biznor = 0,1 =Bsp>PBishs1>
oo > Bivkr1™ Bivkae Z Pisrss =0 = Pliokso-

The saine conclusions (i), (ii) are true as in Case 2/5.
Case 2/d: 1 = h = k—1 and f;4,+1:=0. Then

Bi= Bisn == Birn-1=0,
1= Bin>Bisns1 = Bivnre = = Pisnsr = 0.
In this case «; is constantly O in the whole interval [0, t].

Case 3: f;=1. This case can be discussed similarly to Case 1. The single modifi-
cation is that (1 — B;)=0, thus the conclusions (i) do not occur in the subcases.

§ 3. Propositions on the behaviour of a network startihg
with a regular state

We are going to expose some statements which summarize the discussion per-
formed in the preceding paragraph. Let g be the least common multiple of k+1
and n.

Proposition 2. Any regular state is cyclic; gt/(k+1) is a suitable period.
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Proof. If we apply Proposition1 g/(k+1) times, then we get
#;(0) = oy ke 1y(D) = Xipogesy(27) =0 = ai+g(g“'/(k+ 1)) = a;(gr/(k + 1))
for every i.

Proposition 3. If W is a regular state, then the state N[+ 1] is regular for each
non-negative t.

Proof. Assume that the instant of 2 is denoted by 0. Let 4 be the greatest in-
teger so that dr=t¢. We get by successive application of Proposition 1 that the con-
clusion of the present proposition is true for dz. By analyzing § 2, we obtain that
it holds for ¢ too (because ¢t —dr < 7). The proof is completed.

An easy consequence of our former investigations is

Proposition 4. If W is a regular state and t is a non-negative number, then the
number of arcs of W equals to the number of arcs of W[+1t].

Let us fix a vertex P;, let us consider the sequence
@) 'Ph Pi+(k+1): Pi+2(k+l)’ Pi+3(k+l)’ ) Pi—(k+1)
consisting of g/(k +1) (distinct) vertices and the sequence
(3) Pi+1! Pi+(k+1)+15 Pi+2(k+1)+1’ Pi+3(k+1)+15_ s Pi—(k+1)+1

which consists likewise of g/(k+ 1) vertices. Either n, k+1 are relatively prime
to each other (thus g = n(k+1) and both of (2), (3) contain all the vertices) or
(2), (3) are disjoint.* Let us define the instants v, and w, by .

vy = T(h—=Bivn-nw+1y) and w, = T(h_ﬁi+(h—l)(l.:+1)+1)

(where h can be 1,2, ..., g/(k+1)). This definition implies immediately

Lemma 1. For any h,

tth—D)=v,=th and t(h—1) = w, = 1h.

Lemma 2. For any h we have one of the three possibilities

(a) vy=<w,

(ag) vy=w,=1h

(@g) wo=t(h—1) and v,=rth
(according as

(b ﬂt;+(h-1)(k+1) >Bi+(h—1)(k+1)+1

(bz) Bi+(h—1)(k+1) = »Bi+(h-1)(k+l)+1 =0

(bs) .3i+(h—1)(k+1) =0, Bi+(h—1)(k+l)+1 = 1).

4 For, if (2), (3) contain a vertex in commoh, then some multiple of k+1 is congruent to 1 mo-
dulo n, hence n and k£+1 are relatively primes.

3 Acta Cybernetica



74 A. Adam and U. Kling

Proof. The equivalence of (a;) and (b;) can be shown easily (for all the three
values of i), the proof is completed by the remark either (b,) or (b,) or (b;) is true
since the state is regular.

Lemma 3. If v,_y <w,_, and v,<w,, for some h(=2), then either w,_, = v, =
=1h—1) or wy_, < v,—1.
Proof. The supposition implies
ﬁl’+(h—2)(k+1)>ﬂi+(h—2)(k+l)+1a
ﬁi+(i-—1)(k+1)?ﬁi+(h—1)(k+1)+1-

The sequence (consisting of k + 1 numbers) -

)] ﬁi+(h—2)(k+l)+17 ﬁi+(h—-2)(k+1)+2: ﬂi+(h—2)(k+1)+3a cers ﬂx+(h—1)(k+1).

is monotonically decreasing unless f;, - 1)(kﬂ)_l (by the regularity of the state),
thus we can distinguish two cases.

Case 1: (4) is monotonically decreasing. Then the number

ﬁi+(h—2)(k+l)+1_ﬂi+(h-1)(k+1)(: (4 —T—Wh—1)/7)
is positive, hence w,_, < v,—1.

Case 2: B4 (h-1y@+1y=1. Then, on the one hand, v, = t(h—1); on the other
hand, B;.p-2u+1+1=0, this implies w,_, = t(h—1).

.By use of the numbers v,, w, we can explicitly characterize the behaviour of a;
in the interval [0, g7/(k +1)):

Proposition 5. Let us consider a regular. state at the instant 0. The function «;,
assigned to a vertex P;, satisfies the following four assertions:

(A)If (1 = h = gl(k+1) and) v,<w,, then x; is constantly 1 in the interval
[Ons w)-° ’

(B) If(2 = h = g/(k+1) and) w,_y <v,<w,, then «; grows linearly in the inter-
val [v,—1, v} from O to 1.

(C) If vy<w,, then a; grows linearly in the interval [0, vy] from 1 —uv,ft to 1.

(D) The value of a; is O at all the instants of the interval [0, gr/(k+ 1)) which
are not referred to in (A) (B) and (C).

Proof. Let an instant t lying in [0, gr/(k + 1)) be considered. There exists a
number A such that t(h—1) =t < th (where | = i1 = g/(k+l)) By using Pro-
position | successively #—1 times (with t—1,1—=2t, 137, ..., 1 —1(h—1) instead
of 0), we get

o (t) = ai+(k+1)(t—7) = Kipop+ny(t—27) =
- = ai+(h—2)(k+1)(t‘—r(h_2)) = “i+(h~1)(k+1)(t—'f(h— 1)),

i.e. the behaviour of a; in the interval [1(h —1), th) is the same as the behaviour of
%4+ h-nk+1y 0 [0, T) (with the appropriate translation).

.
5 Since w,=v, ., may occur, two or more intervals of this character can be joined.
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First we show (A). The function ;4 ;_1)«k+1 takes the value 1 exactly in the
sub-interval

[T(l "'Bi+(h—l)(k+1)): (1 _'/}i+(h-—1)(k-fl)+1))

of [0, 7) by Cases l/a, 1/b, 1/c, 3/a, 3/b, 3/c of the discussion in § 2 (even if at least
one of

/)’1+(h 1k+1) — 1, /3:+(h Hk+)+1 = 0
is true).

In order to verify (B), let 1(=1) be such an instant that o;(1) =1 but, for every
positive ¢, there exists a ¢* fulfilling o;(+*) <1 and t—¢ < ™ < 1. Then &;4 (,_ay4 41,
has the analogous property at the instant t—(h—2), and 7 = t—1(h—2) < 21.
By analyzmg the discussion and by Proposition I, we get that a;, 2)(k+1) GrOWS
linearly in [t —t(h—1), t —t(h —2)] from O to 1, consequently «; behaves in [r-—r t]
analogously.

(C) follows from the discussion immediately.

(D) is equivalent to the subsequent statement: any function «; is O at ¢ unless
t is contained in an interval (¢”,t"+ 1] such that o;(z"+1) = 1. This statement fol-
lows easily from the discussion and Proposition | in the interval [0, 21], it can be
extended for any non-negative ¢ by Proposition 1.

The last assertion we state relying upon §2 is the evident

Proposition 6. The following three statements are equivalent for a regular state:
(A) The state is steady.

(B) Every arc of the state consists of exactly k + 1 vertices.

(C) k+1 is a divisor of n and the number of arcs in the state is nf(k+1).

§ 4. Study of non-regular states

The purpose of this paragraph is to show that only the regular states are cyclic.
First we define the irregularity indices of an arbitrary permitted state® 2 by the fol-
lowing three rules:

() if B;_y<P;=<1, then i is an irregularity index,
@ai) if B;_,=p;=0, then i is an irregularity index,
(iii) if B;_,=p;=0 and each of B, 1, Bire, ---» Bisx is <1, then i is an irre-
gularity index.
(The conditions in (i), (i}, (iii) exclude each other.) We agree that no remain-
ing number (out of the set {l,2,...,n}) is an irregularity index. The irregu-
larity number of the state ¥ is the number of its irregularity indices.

If (i) or (iii) holds for i/, then i is called a strong irregularity index, the number
of strong irregularity indices is the strong irregularity number of . 1f (ii) holds for i
then we call i a weak irregularity index.

Lemma 4. The irregularity number of W is 0 if and only if W is a regular state.

Proof. 1t is obvious that the definition of the regular state does not admit
any of the possibilities (i), (ii), (iii). — Conversely, assume that no vertex fulfilling

¢ A state is permitted if o;=1, P;¢x(P;) imply a;=0.

3%
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the condition of either (i) or (ii) or (iii) occurs in UA; let P; be an arbitrary vertex.
If B;=1, then ' _
Bick = Bicks1 = Bickse=-=Bi.1 =0

(since the state is permitted). If 0 <f, <1, then 8,_,>p; (smce otherwise (i) or (ii)
would be violated). If ;=0 then either one of B, Biss, .., Biryis 1 or By >p;
(in consequence of (iii)). Thus A is a regular state.

Lemma 5. Let U be a state at the instant O and t be a positive instant such that
the functioning of the network is defined (at least) in the interval (0, t]. If i is not a
strong irregularity index at 0, then i is a strong irregularity index nor at t.

Proof. Let t* be the (possibly non-existing) least real number such that 0 =* =1
and none of o, , &40, .-, ;4 takes the value 1 in the interval [¢*, r]. Either t* =0
or there exists a number ¢ such that 1 =g =k and to every positive ¢ there exists a
¢’ satisfying both ¢* —e < ¢ < t* and o, (t")=1.

Case 1: t*>0 and g <k. We have
| &1 (1) = a,(t*) = 0,

the functions «;_;, «; are equal and increase linearly in the whole interval [r*, 1]
from O to (¢ —r*)/r. (Necessarily t —1* < 7; if the contrary were true, we should
get a contradiction to the hypothesis that the functioning is defined in [0, ].)

Case 2: t*=>0 and g =k. We have

. o (") za;(t*) = 0.
Three subcases are possible:
Case 2/a: o;_4(t*)=0. This subcase can be treated similarly to Case 1.
Case 2/b: a;_,(¢t*)=>0 and 1t —¢* < 7. Then ¢; increases linearly in the whole
interval [t*, ¢] from O to (+ —¢*)/z. o;_; increases linearly from

1 (t%) to{ai_l(t*)+(t—t*)/r in [t*¢] if a_,(tN+@E—1M=1,
-1 1oin [ ¥+ (L= (0] if o )+ —1%)/r>1.

In the second of these cases «;_, is constantly 1 in [t*+ (1 —a;_,(t*)), 7].

Case 3: t*=0 and f,_;>B;. Let us assume that ¢ is so large that all the inter-
vals to be discussed are in [0, ¢t]. (If this assumption is not fulfilled, then the sub-
sequent dlscussmn is altered so that it breaks off at the instant ) In the interval
{0, (1 —B;_,)] both «;_, and «; increase linearly. In [‘L’(l— im0 T(L =) oy is
constantly 1 and «; increases lmearly In [t(1 —B), t] «; is constantly 1 and «;_, is
constantly 0

Case 4: t*=0 and f;,_,=p;. Then t<7, furthermore o;_,, «; are equal and
increase from O to t/tr similarly as in Case 1.

Case 5: t* does not exist. Then there is at least one number g such that 1 =g =k
and a;,,(t)=1, thus o;(r)=0. i fulfils the conditions of neither (i) nor (iii) at ¢.
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Lemma 6. If the strong irregularity number of a state W at the instant 0 is positive
and the functioning of the network in the interval [0, 1] is defined, then the strong
irregularity number of the state U[+1] is O.

Proof. Let i be an arbitrary index. If i is not a strong irregularity index, then
we can apply Lemma 5. Otherwise, let us define #* and ¢ as'in the proof of Lemma 5.
If 1* >0 then Cases 1, 2 of the preceding proof remain valid; if +* does not exist,
then the inference of Case 5 can be applied. We have still to study the cases when
t*=0 and i fulfils (i) or (iii).

If (i) is true, then

ai(t(=B) =1 and @1(z(1—B)) = O,

i is not a strong irregularity index at 7(l — ;) consequently nor at t (by Lemma 5).
If (iii) holds, then it is easy to see that the functioning of the graph is defined
at most in the interval [0, 7); this contradicts the supposition of Lemma 6.

Lemma 7. Let W be a state at the instant O such that the strong irregularity number
of W is 0. If the functioning of the network in the interval [0, 1] is defined, then the
irregularity number of U[+1] is O.

Proof. Whenever j is an arbitrary index and ¢’ is an instant such that 0=¢"=7,
then j cannot be a strong irregularity index at ¢#” (by Lemma 5). We shall study a
function «; in [0, 7). Let us define ¢* and g in the same manner as at beginning of the
proof of Lemma 5. '

Case 1: t*>0. Necessarily g =k (since now the value 1 “steps” from j to j+ 1,
similarly to the case of a regular state; discussed in § 2). Hence «;_,(+*) >0, (¢*) =0.

In the interval
[*, * +1(1 —o;— 1 (#"))]

o;_,, o; increase parallel (i.e. «;_, —o; remains constant). In the interval
[+l —o= 1 (t7)), 7]

(provided that it exists) a;_, is constantly 1 and o; continues its growth.

Case 2: t* =0. We distinguish two subcases.

Case 2/a: f;_,=p;. This assumption implies that the functioning of the net-
work is defined only in [0, 7(1 — B)), i.e. it contradicts the supposition of Lemma 7.
Case 2/b: B;_;=B;. In the interval [0, 7(1 — B;- )], #;—; and «; increase paral-

lel. In _
[T(l —Bi—y), (1 '—Bi))

a;_, is constantly 1 and o; continues its growth. In [t(1 —8)), 7] «; is constantly 1
and «;_, is constantly 0. )

Case 3: t* does not exist. We get o;(7) =0 similarly to Case 5 of the proof of
Lemma 5, hence i does not fulfil the condition of (ii).

Proposition 7. If the state W (at the instant 0) is non-regular, then either T,
is defined for W and 0<T,,,, <21 or W[+ 21] is regular.”

? T, was introduced in [2].
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Proof. Assume that the states AUA{+t] are definable whenever 0=7=2¢. The
state [+ 7] cannot have a strong irregularity index (by Lemma 6), hence the state
A{+ 21] is regular (by Lemmas 7 and 4).

- Proposition 8. Any non-regular state is acyclic.

Proof. Let A be a non-regular state (at the instant 0). If the state 2{ +¢] is not
definable for every positive ¢ (i.e. if T, does exist), then U is obviously acyclic.
Assume that A[+ 1] is defined for every ¢. Let U be cyclic and p be a period of it,
we shall get a contradiction. Let d be the least integer such that dp =2t holds. On
the one hand,

A=A[+p]=AU[+2p]=---=A[ +dp),

thus [ + dp] is non-regular. On the other hand, [+ 27] is regular by Proposition 7,
hence also [+ dp] is regular by Proposition 3.

§ 5. On some possibilities for future researches

Let us consider a graph. Denote by A the set of its permitted states (i.e. all
the mappings of the vertex set into the interval {0, 1] such that the restriction mentioned
in Footnote 6 is satisfied), by A4,(c A4) the set of its regular states. We define two
partitions m,, 7, of 4 and a further partition 7z of A, in the following manner:

A€ A), W(cA) are in a common class mod =, if there exists an integer s such
that 0 = s = n—1 and

. ’ ’ . ’
Oy =0y gy A=W pgy veny Ly = Ag g, K, =0

where A ={(a;, s, ..., 0,), W=}, a5, ..., ).

A (€ A), W(€A) are in a common class mod r; if the inequalities a; <a; and
a; <o are equivalent to each other for every index pair i, ;.

AU(€A,), W(cA,) are in a common class mod n, if there exists a non-negative
real number ¢ such that W[4 ¢]=".

The partitions 7, and 7, generate a sublattice of the lattice of all partitions of
A; similarly, n,, n, and 7, generate a sublattice in the partition lattice of 4,. Various
questions (concerning both the lattice-theoretical properties and numerical problems)
can be raised on the lattices generated in this manner.

Fmally, we mention a problem of this character. Let A4, be the set of the states
N=(x, %, ..., o,y fulfilling the three requirements:

() ;= l holds for exactly one index /,

(i1) the state is permitted,

(i) whenever [/ and [’ are two indices such that 1=/</"=n, P ¢ {P}U/(P)
Pg {P}Uy(P) then the inequalities 0 <a; <1, O<af <1, oy hold.

It i1s easy to see that a randomly chosen element 9[’ {as, aq, ey of A
satisfies [+ 1]€ A4, with probability 1 where t = 7(1 —max (], 3, ..., a,’,)).

Let us consider the graphs G(3;2), G(4; 3), G(5;4),...,G(n; n—1), ... . Start-
ing with the general member G(n; n—1) of this sequence, we denote by @, the
factor set A{”/n, where A denotes the set 4, with respect to the graph- G(n; n— L).
Q, is a finite set. On the other hand, let us define the subsets 4™ of A{” so that
A€ A if and only if the regular state A[+¢] (with the least possible (= 0))
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(exists and) consists of x arcs (x = n/2). The sets Aj™* are pairwise disjoint (for
varying x), moreover, A€ A, A € A, A=A’ (mod n,) imply x =x’. Let QF
be the subset of ©, which consists of the classes whose elements are in A", It is
interesting to examine the asymptotical behaviour of the numerical function

|2:]

f(n, x) = |Qn! .

(/2] .
(Evidently, > f(n, x)=1.) A discussion shows that the first values of f(n, x) are:
x=1 .

. " Vz | 3 4 5 6
1 1 112 | e | 1y2s
2 | sie 17
3 1/4

We conjecture that f(n, [(n — 1)/2]) converges to 1 if n tends to the infinity.

MATHEMATICAL INSTITUTE OF THE INSTITUT FUR NACHRICHTENTECHNIK DER
HUNGARIAN ACADEMY OF SCIENCES TECHNISCHEN HOCHSCHULE
BUDAPEST, HUNGARY MUNCHEN, BR DEUTSCHLAND
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