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Introduction 

Petri nets [1], [2] have been found a simple and elegant formalism for the descrip-
tion of asynchronous systems with concurrent evolutions. According to the adopted 
interpretation, they can be used to model flow phenomena of information, of energy 
and of materials [3], [4] and [5]. However, this model is not complete enough for 
the study of system performances since no assumption is made about the firing of 
a transition as far as its duration and the moment at which it takes place after the 
transition has been enabled. 

Timed Petri nets have been introduced by C. Ramchandani [6] by associating 
firing times to the transitions of Petri nets. He studied the steady'state behavior 
and gave methods for calculating the throughput rate for certain classes of Petri 
nets. The results given in this paper are applicable to the class of pure [7] Petri nets 
and generalize, in some sense, those presented in [6]. The littérature on timed Petri 
nets is very poor: to the author's knowledge, the only works on this subjet are the 
Ramchandani's thesis and a paper by S. Ghosh [8] comparing the properties of 
boundedness and liveness for timed Petri nets and unrestricted Petri nets. 

I. Definitions 

Definition 1. A Petri net (PN) is a quadruple J/={P, T, a, fi) where 
P is a set of places, / V 0 
T is a set of transitions, TV 0, Pfl T= 0 
a: PXT—N forward incidence function 
ft: P X T - * N backward incidence function 
(N represents the set of natural numbers: 0, 1,2,3, ...). 
REPRESENTATION. T O a PN one can associate a digraph the nodes of which are 

the places and the transitions, represented respectively by circles and dashes. There 
is a directed edge from the placep s to the transition tj iff a(ps, tj) = nSJ^0, This edge 
is labeled by the value n s j , called weight of the edge. There also is a directed edge 
f rom the transition tr to the place p„ iff ft(pw, tr)=nWr?±0. This edge is labeled by the 
weight nWr. 
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Definition 2. Let J/'—iP, T, a, P) be a PN. We adopt the following notations: 
For teT, •t = {p£P\a(j), 1)9*0} and t'= {p<iP\P(p, t)^0). 
F o r p £ P , 'p = {tÇT\p(p, 0^0} and p={t£T\a(p, t)*0}. 
We call 'i(t') set of input (output) places of t and by analogy, 'p(p') set of input 
(output) transitions of p. These notations are extended to subsets of T and P; for 
example, if P1czP then, 'Pl — [J 'pk. 

Definition 3. A marking M of a PN Jf=(P, T, a, /?) is a mapping of P into 
N:P~N. When \P\=n, one can represent a marking M by a vector MgN" such 
that its i-th entry mi=M(pi). 

Definition 4. A transition t of a P N is enabled for a marking M iff: 

~ipCt=>OL(p, t) S M(p). 

Definition 5. Let Jlt be the set of markings for which a transition / of a P N 
is enabled. The firing of the transition t(F(t)) is a mapping of Jit into the set of the 
markings Jt defined as follows: if F(t)[Mi] = Mj then 

Definition 6. Let jV=(P, T, a, ft) be a PN and M0 one of its markings. Consider 
a sequence of transitions a=th tj%... tjs. We say that a is a simulation sequence 
or a firing sequence from M„ iff there exists a sequence of markings M l 5 M2, M3, ..., 
...,MS such that F(tj) [M i_1] = M i for /=1 , 2, 3, . . . , j . We.note that M0-~MS. Ms 
is the marking attained by applying a from M 0 . We denote by M0 the set of markings 
that can be attained from M 0 . The firing vector of a is a vector R(R£ Nm, m=\T\) 
such that its A>th entry is equal to the number of occurrences of the transition 
tk in <7. 

Definition 7. An ordinary PN is a PN jV=(P, T, a, [i), such that a: P x r - { 0 , 1} 
and p: PXT-~-{0, 1}. A marked graph is an ordinary P N such that V/>€/\ \'p\ = 1 
and A state graph is an ordinary P N such that \/t£T, and | 'T |S1. 

Definition 8. Take a PN and one of its markings MQ. __ 
We say that a place p is bounded for M0 iff BArgN such that V M £ M 0 , M(p)<k. 

A PN is bounded for M0 iff all its places are _bounded. We say that a transition t 
is live for M0 iff for every marking M,M£M0, there exists a sequence a, a^T* 
such that at is a firing sequence from M. A net having all its transitions live for 
a marking M0 is called live for M0. 

Definition 9. A pure PN is a PN such that V/€T, {V}Pl {/ '}=0. 
For a pure PN jV=(P, T, a, p) (j^P|=/i, \T\=m) one can define the matrices: 

pkiP i 

I A/F — T\ W R Mi (p) - a (p, t), VP £ 't - (•/ n f •), 
Mi(p)+P(p,t),ypef-Ctnn, 
Mi(p)+P(p, t)-a(p, O.vpevnr. 

p(Pl, tj) if P(Pi, tj) * 0, 
c = [ci]]nxm wi th ci} = -a(Pi, t j ) if a(pi, t}) ^ 0, 

0 otherwise. 
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C is called incidence matrix of the net [7]. 

C W c + 1 with c + - l P ( P " t j ) i f ^ i ' ^ 0 ' C - M „ x m with c,j - | 0 otherwise 

\a(p„tj) if oc(Pi,tj)^0, 
C - = [ci7]„xm with ty = | Q o t h e r w . s e 

REMARK. C=C+-C~. 

II. Timed Petri nets 

II. 1. Definitions 

Definition 10. A timed Petri net (TPN) consists in giving: 
a Petri net Jf=(P, T, oc, 
T=(rl5 t 2 , . . . , Tj, ...) an increasing sequence of real numbers called time base, 
a mapping v: PXT-+T such that V (p , T ¡ )£PXT: v(p, T,)=Tj=>Tj^r¡. 
SIMULATION RULES 
a,) A marker in a TPN may be in one of the two following states: available 

or unavailable. Initially each place p contains M0(p) available markers. 
b) A transition t is enabled iff every place ps(psCt) contains a ( p s , t) available 

markers at least. 
c) The firing of a transition t has to take place instantaneously as soon as t 

is enabled. It consits in removing a(ps, t) available markers from each place ps 
(psCt) and in placing P(pw, t) markers in each place pw€t'. 

d) A marker remains unavailable in a place ps during the time interval between 
the instant of its arrival r, and the instant v(ps, T;); then it becomes available. 

REMARK. According to the above definition, firings in a TPN take place only 
at moments of T. 

In what follows we study the behaviour of pure TPN's such that V ( P i , t) € 
£ P X T : Y ( P I , T)—T=Z;=constant. That is, each marker is delayed by z; in the 
place independently of the instant of its arrival. 

Definition 11. Take a TPN and let MlMz... Ms be the markings attained 
successively from an initial marking M0 by applying a firing sequence a = tio, th, ..., 
..., tis_, and T(O, TFL, . . . , T , s 1 the moments of firing of the transitions i io, th, ..., tis l 
respectively. The marking of the net at a moment xik will be by definition the marking 
of the net in the interval T/fc_1^T'<Tift. Generally, the marking of a T P N with 
T = ( T 0 , T 1 ; T2, . . . , T J 5 ...) at a moment x w i l l be the marking of the net at the 
interval / = 1 , 2 , 3 , . . . The marking at r0 corresponds to the initial 
marking. For a T P N with n places we define a general temporal variable Q'(r) = 

<7„(r)] such that VT¡£T, Q(T() = M where M is the marking at 
the moment Tf (Q' denotes the transpose of a matrix Q). The variable Q(z) will be 
called charge variable. 
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Let Ms be a marking attained from a marking M0 by applying a sequence a, 
(M0 — M s ) in a PN defined by its incidence matrix C. Then 

Ms = Ma+CR (I) 

where R£Nm, m=\T\, is the firing vector of a. Equation (I) can be written for a T P N 

e « = e w + o ( T ) . (ii) 

Let us suppose now, that T^T0 and put Ax = x — x0. We have from (II) 

A_M = GW-GFRJ = = CM => = C M M 
Ax Ax Ax Ax 

where 

is a vector representing the mean variation of the charge of the net 
Ax 

in the interval Ax, 
r ( T ) 

the A:-th entry of the vector I, — represents the mean frequence of 

firing of the transition tk during Ax. The vector 7(T) will be called current vector, and evidently V Xj € T, I(xj) > 0 . 

II. 2. Description of the behavior for constant currents 

II. 2.1 — General case. We are interested in the cases of functioning with 
constant currents for which the total charge of the net remains bounded. This amounts 
to searching for solutions of the equation 

CI = 0 ( / > 0 ) . (IV) 

Those solutions correspond to cyclic firing sequences in the net as it is shown in 
[6]. We give additional relations that the current vector I must satisfy in terms of the 
initial marking and of the delays associated to the places. 

Definition 12. Let C be a matrix of order nXm on Q. We denote by (# ') 
the set of nori negative solutions of CX= 0 (C'X= 0). A generator of #(<<?') is a set 
of vectors { X j Y j = 1 with Z ,£N m (XjdN") such that any element X„ of f€((<3') could 
be expressed as the linear combination of elements of {A^}^! with non-negative 
rational coefficients, i.e., Xn= 2 where ?.j are non-negative rational numbers. 

j=i 
If we assign constant currents to the transitions of a bounded TPN, we have 

a periodic functioning, and let Q(xko), Q(xkl), ..., Q(tj,s) be the successive markings 
of the net during a period. Then, the mean vaJue 'Q of the charge variable Q(x) 
is given by 

D_ Qfa0)+Qfa,)+Qfaa) + • • • + Q(xks) 
^ 5 + 1 

If we multiply this last equation by J l i J f e ^ ' ) , we obtain 

m = o)- • (Va) 
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But the mean value qw of the charge of a place pw satisfies the inequality 

qw - z w I 

where C+ is the w-th line of the matrix C + , and the product / represents the mean 
frequence of the arrivals of markers at the place pw. 

Let Z be the following square matrix of order n: 

Zl 0 0 0 0 . . 0 
0 z2 0 0 0 . . 0 

z = 0 0 z3 0 0 . . 0 

0 0 0 0 0 . 

Then, the set of the inequalities {qw^zwC+I}l, = 1 can be written in the form 

Q^ZC+I = ZC~I. ( V b ) 

Let J'0 be a positive solution of J'C=0. From (Va) and (Vb) one can obtain 

JIQ(t0) s JqZC+I = JHZC-I. (Vc) 

This last inequality establishies a relation between the initial marking, the current 
vector and the delays associated to the places of a TPN. 

Let / = {J{,JL,..., J'K) be a generator of <<?'. If J'0 € then any inequality JIQ (r0) 
^JL, ZC+1 can be expressed as a linear combination of the set of inequalities {J'S Q (T0) S 
SJ'SZC+IFS = 1. 

The relations 

CI=0 ( / > 0 ) ( IV) 

{J'SQ(R0) & J'SZC + IFS=1 (V) 

describe the functioning of a timed Petri net for constant currents. 

II. 2.2 — Functioning of TPN at its natural rate. 

Definition 13. Given a TPN by its incideme matrix C and its delay matrix Z. 
We say that it functions at its natural rate for a given current vector /0 iff /„ satisfies 
the e q u a t i o n s CI= 0 (IV) a n d {J'SQ(X0)=J'SZC+ IFS=1 (VI), w h e r e {J'S}K

S = 1 is a g e n e r a t o r 
of W. 

Proposition 1. There exist at most n linearly independent equations describing 
the functioning at natural rate of a TPN with n places. 

Proof. Suppose that the rank of C is equal to Q. Then (IV) contains at most 
Q linearly independent equations. Also, the dimension of the space of the solutions 
of J'C= 0 is n — Q. Thus (VI) has at most n — Q linearly independent equations, and 
consequently there exist at most n linearly independent equations in the system 
(IV) and (VI). 



190. J. Sifakis 

Example 1. Consider the TPN of Figure 1. We want to calculate the current 
vectors (if there exist any) corresponding to functionings at natural rate. Q(r0) 
and Z are supposed given. 

r - l - I 1 1 
0 1 0 - 1 

C = 

L 

0 - 1 
1 

-1 

0 
0 0 
0 0 

Solution of C / = 0: we find i2 = /4 = 3;,, i1 = i3 

Figure 1 

A generator of <8* is {/¿ = [1 1 1 0 0], J^=[0 0 0 1 1]}. Thus 

J{ZC+I = JIQ0 => <70l + ^ + <7o3 = z^ + z^ + z^ + z^ 
and 

J'2ZC+I = JIQ0 q0i + q0. = /,zi + 3i1z5 

The condition for the existence of a solution is 

go1 + go2 + go3 _ 9O4+9O5 

In this case 
4z1 + 3z2 + z3 3(Z4 + Z 5 ) 

• g04 + g05 , _ g04 + g05 
1 3(z4 + z 5 ) ' '2 z4 + z5 • 

Suppose now that we have z 1 = z 2 = z 3 = z 4 = z 5 = 1 and 2o=[ l 0 0 3 0]. Then 
the equation (a) is not verified and there is no functioning at natural rate. The ine-
qualities (V) give 

<70l + ?o2 + = z i ('3 + h) + z2'2 + z3 h => 1 3s 8 / j , 

904+?05 - ' 2 ^ + 3/^5 = > 3 £ 6i\ 

3 
yielding 

; m i n { i ' T } = i and = -
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III. Solution of CI=0 and J'C= 0 decomposition 

In this section we present some results relative to the properties of non-negative 
solutions of CI= 0 and J'C=0, where C is the incidence matrix of a PN. Many 
authors have used linear equations for the study of the properties of PN's ([6], [7], 
19], [10], [11], [12] and [14]). In particular, a part of the results on the decomposition 
of PN's exposed in this section have been developped independently by Memmi [10], 
Crespi—Reghizzi and Mandrioli [9] and the author [14]. Also, similar results, in 
a less restrained context, are well known since several years (see, for example [13]). 
Our contribution consists in making evident the ralations between the structure of 
the net (decomposability into consistent and invariant components) and the solu-
tions of C / = 0 and J'C=0. We borrowed the terms "consistent" and "invariant" 
from [6] and [7], respectively, and the term "support" from FulKerson [13], although 
it is used in a slightly different sense. This study is limited to pure and strongly con-
nected PN's. Pureness is imposed by the fact that we use the incidence matrix for 
representing PN's and strong connexity by the fact that it is a necessary condition 
for a net to be bounded [6]. In what follows, the term " P N " denotes a strongly con-
nected and pure PN. 

Definition 14. For a PN Jf= (P, T, a, ft asubnet o f ^ i s a P N ^ = (PX, T1,oi1, ft) 
such that P j c P, c T, moreover a2 : X — N and ft : A X 7\ —N are restrictions 
of a and ft respectively. 

Definition 15. The union of two subnets Ar
1 = (Pl, 7\ , , ft) and jV2 = (P2, T2, 

•a2, ft) of a PN Jf=(P, T, a, ft is a subnet J f 3 = {P3, T3, a3 , ft) of ^fwith i >
3 =P 1 Ui >

2 
.and T3 = T1UT2.' 

Definition 16. Let Jf=(P,T, a, ft be a PN and $f= T{, «¡, ft)}?=1 
•a set of subnets of J f . -yfis covered by S or S is a decomposition of ^Viî 

P = U Pi and T = U Tt. 
i=1 1 = 1 

III. 1. Non-negative solutions of CI= 0. Decomposition into consistent 
components 

Definition 17. LetjV=(P, T, a, ft be a PN. Then a set 7 \ c T defines a t-complele 
subnet -yV{=(Px., 7\ , a l 5 ft) of J f \ i P1 = -T1 = r;. 

Proposition 2. Let C be the incidence matrix of a PN and Then the set 
_F1= {tj\i0 j^0} defines a i-complete subnet of the net having C as incidence matrix. 

Proof. Consider the subnet with T± = {t j \ i0 .^§} and P ^ T j U T j . Then each 
place p of P± has at least one input transition or one output transition (by construction 
•of the set P^. Suppose that a place p„ (pwdPy) has the input transitions th, th, ..., tir 
but no output transition in the subnet defined by Pt and Then we have 
2'oij PiPwi Uj)=0 where i0iJ and P(pw, ts) are positive rational numbers which is 
j 

absurde. Thus pw must have an output transition belonging to Tx. In the same 
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manner one can prove that if a place pw has an output transition belonging to 7"L 
then it has an input transition belonging to Tx. 

Definition 18. Let C be the incidence matrix of a PN J f . A consistent component 
of ./Fis any ¿-complete subnet J f x defined by the set of transitions corresponding t a 
the positive entries of a vector FX (/1£'<f)- >s the support of IX, (we note J f x = S(IX)). 
If there exists 70 such that S(/0) = ./t/"then we say that Jf is consistent. 

Definition 19. Let a PN be given with an initial marking M. A firing sequence 
a is a cyclic firing sequence from M iff M— - M. 

Proposition 3 [6]. A PN having a live and bounded marking is concistent. 

Proposition 4. [6]. Let Jfx—(Px, Tx, zx, px) be a consistent component of a net J f . 
Then J f x has a marking M from which there exists a cyclic firing sequence 

s 
° — tkl tki ••• fks

 s u c h that U tkj = Tl. Inversely, each cyclic firing sequence 
j-1 s 

o = tkl tk2 ... tks in J f , defines a consistent component of ./^having Tx — U h as set 

of transitions. J = 1 

Proposition 5. The union of two consistent components of a net is a consistent 
component. 

Proof. Let Ix and I2 be two elements of if defining two consistent components 
S(/i) and S(I2). Then Ix+I2^ defines the consistent component S(ix)fl S(/2). 

Definition 20. Let where C is the incidence matrix of a PN J f . Then S(11) 
is an elementary consistent component of Jf iff there exists no /2 (72^0, 72£<^) such 
that ^ ( y t S f t ) . A vector Ix defining an elementary consistent component 5 (7^ 
is called elementary vector of 

Proposition 6. If C is the incidence matrix of a PN and Ix and /2 are two elemen-
tary vectors of such that S(/1) = S(/2) then Ix and I2 are linearly dependent. 

Proof. Suppose that Tx and I2 are linearly independent and S(IX) = S(I2). Let 

A = min j—ij and I3—IX — ).I2. Then 7 3 ' a n d there exists a scalar n such that 73 = U J 
We have 5(73)0:5(7!). Thus 5(7j) is not elementary. 

Proposition 7. Every consistent PN ./Fcan be decomposed into a set of elementary 
consistent components. 

Proof. Let S{I0)=^Vand suppose that J^is not elementary. Then, there 
exists a consistent component j¥x{Jfx<tJf) and Ix such that S(I^)=Jfx. Let 

X — minimi]. and I2=I0—).IX. Then it is easy to verify that there exists a scalar /« 
• V 1. v 

such that I2 = hI2£^ and if Jft=S (Ithen ¿V=Jfx\JJf2. 
Corollary 1. The set of elementary vectors of ^ is a generator. 

Definition 21. Let a PN Jf with incidence matrix C be given and S a set of 
elementary vectors of <€. Then S is a t-base of Jf iff S is a generator (of of minimal 
cardinality. 
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Proposition 8. Let £ = [ / l 5 /2 , . . . , /s] be a matrix of order mXs such that {/,-}j=i 
is a /-base of a PN. Then the rank of B is less than or equal to m — g where g is the 
rank of the incidence matrix of the net. Furthermore, if the net is consistent then the 
rank of B is equal to m — g. 

Proof. The fact that rank [B\^m — g is obvious because the space of the solutions 
of Cl= 0 is of dimension m — g. In order to prove that rank [B] = m — g, in the case 
of a consistent net, it is sufficient to prove that any solution /0 of CI= 0 can be expressed 
as the linear combination of / 1 ; /2 , ..., /s (columns of B). If / o > 0 then this is^always 
possible according to corollary 1. If not, one can obtain from I0, a vector /( /=^0) 

^ s 
such that 1=2 Pjlj + Io where the ft' s are non-negative rational numbers. But C / = 0 

J = 1 

and / defines a consistent component. Thus, according to the Corollary 1, we can 

write 7= 2 yjlj-This g ' v e s 7o= 2 (yj-Pj)^-
j = i J = i 

REMARK. CB = 0. For any current vector /£<<?, I=BIb, the £-th entry of Ib being 
the "loop current" associated to the elementary component corresponding to the 
k-th column of B. 

III. 2. Non-negative solutions of J'C = 0. Decomposition into invariant components 

The following definitions and propositions are dual of those in III. 1.' 

Definition 22. Let Jf=(P, T, a, ft be a PN. Then a set /", c P) defines a 
p-complete subnet ¿Vi = (P1, Tx, a l 5 ft) of Jf if T1 = 'Pl = P[. 

Proposition 9. Let C. be the incidence matrix of a PN and Then the set 
{PiL/o. ^O} defines a /^-complete subnet of the net having C as incidence matrix. 

Definition 23. Let C be the incidence matrix of a PN J f . An invariant component 
pf jV"\s any /»-complete subnet J/[ defined by the set of places corresponding to the 
oositive entries of a vector J{ •A'l is the support of J[, (we note J^ = S(Jl)). 
If there exists J,\ such that 5(7,5) = .yf then we say that yTis invariant. 

Proposition 10. The union of two invariant components is an invariant compo-
nent. 

Definition 24. Let Jli'tf' where C is the incidence matrix of a PN J f . Then 
S(>/i) is an elementary invariant component of Jriff there exists no (J'«^0, Jl^W) 
such that 5 ( / 2 ) C J : 5 ( / 0 - A vector J[ defining an elementary invariant component 
S(J{) is called elementary vector of . 

Proposition 11. If C is the incidence matrix of a PN and J[ and J{ are two ele-
mentary vectors of with S{J{) = S(J'2) then J[ and J'2 are linearly dependent. 

Proposition 12. Every invariant PN Jrcan be decomposed into a set of elemen-
tary invariant components. 

Corollary 2. The set of elementary vectors of W is a generator (of  c6 (). 
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Definition 25. Let Jf be a PN with incidence matrix C and S a set of elementary 
vectors of W. Then S is a p-base of Jf iff 5 is a generator (of <£") of minimal cardi-
nality. 

Proposition 13. Let D' = [J1, J2, . . . , / J be a matrix of order nXs such that 
{y/}-=1 is a /?-base of a PN. Then the rank of D is less than or eqiial to n — g where 
g is the rank of the incidence matrix of the net. Furthermore, if the net is invariant 
then rank [D]=n — q. 

Proposition 14. Let C be the incidence matrix of a pure and strongly connected 
state graph with n places and m transitions. Then the following statements are well 
known : 

a) rank [C]=H — 1, 
b) the space of solutions of CI=0 is of dimension m—n + l, 
c) the space ofsolut ionsofy 'C=Ois of dimension 1 and the vector 7,5=[1 1 1...1] 

is a base of this space. 

REMARKS. A ¿-base for a state graph is a circuit base, 
C in Proposition 14 expresses the fact that any strongly connected state 
graph is an elementary invariant component. 

Proposition 15. Let C be the incidence matrix of a pure strongly connected 
marked graph with «-places and m transitions. Then we have the dual of Proposition 

a) rank [C\—m—\, 
b) the space of the solutions of CI=0 is of dimension 1 and the vector /¿ = 

=[1 1 1 ... 1] is a base of this space, 
c) the space of solutions of J'C=0 is of dimension n—m+l. 

REMARKS. A /-base for a marked graph is a circuit base, 
b) in Proposition 15 expresses the fact that any strongly connected mar-
ked graph is an elementary consistent component. 

IV. Resolution of the equations (IV) and (VI) with given Q(T0) and Z 

In this section we show that the problem of determining the currents of a T P N 
for functioning at natural rate, when we know Q(r0) and Z may have either several 
solutions or no solution at all. The extreme cases correspond to state graphs and 
marked graphs. 

Example 2. For the TPN of Figure 2 the system of the equations (TV) and (VI) 
generally has a unique solution for I. We have: 

III. 3. Particular cases: state graphs and marked graphs 

14: 

2 1 1 0 1 1 " 

.2 1 1 1 2 . 0 . 
J and D = 
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If ix and iy are the currents associated respectively to the two elementary 

consistent components of the net, we have, I=B 

On the other hand, we have two equations expressing the charge conservation in 
the state graphs defined by the lines of D: 

and 
(¿x+ iy)2z0 = 1 (we put z0 = z5 = z6) 

2 ( i x + iy) z i + 2 ( i* + ¿y) + (i* + iy) z3 + (2iy + ix) z4 = 1. 

Figure 2 

By resolving this system, we obtain 

. _ 2(Z1 + Z2 + Z4) + Z 3 -2Z 0 

* ~ 2Z0Z4 

2z0—2(z1 + z2) — z3 — z4 

2 z0z4 

where ix and iy must satisfy the inequalities /^>0 and ix + iy>0. The second ine-
quality is always verified, and the first gives the condition 

2(Z1 + Z2) + Z3 + Z4 

TIMED MARKED GRAPHS. In this case we have n^m{n=\P\, m= | T | , the equality 
is verified only if the marked graph is a circuit). Thus, the currents determined by 
solving m equations among the n equations (IV) and (VI) must satisfy the remaining 
n—m equations in order to have a functioning at natural rate. If not, it is sufficient 
to search for the solutions of 

{J'rQ0 ^ J<rZC+iyrZ?+1 

where {/r'}pr]"+1 is a p-base (base of circuits in this case) and I' = [ii...i] a solution 
of CI=0. 
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The r-th inequality can be written in the form zt)>' where is the 
kr kr kr 

sum of the markers in the circuit Kr, Kr=S(J'r) and 2zi is the sum of the delays 
К associated to the places of this circuit. Therefore, 

n — /71 + 1 

'max = min { ( 2 g 0 ) K 2 Zi)}-r=1 kr kr 
This result is given in [6]. 

TIMED STATE GRAPHS. In this case m^n, and for I it is always possible to solve 
the system (IV) and (VI). One can construct a system having a imique solution for 

I by giving additional equations imposing a 
constant ratio between the currents of the 
transitions having the same input place. There 
exist exactly m — n linearly independent 
equations of this kind for any state graph. 

Example 3. Consider the timed state graph 
of Figure 3. The solution of C / = 0 gives 

' i = г"з + ' 4+ 'б> 

¡2 = (3 + '4> 

h = <6 + '4 • 

The equation of conservation of the charge in the graph is 

4 

(¡6 + i3 + i4) (zL + z2) + (¡3 + i4)z3 + (i4 + i 6 )z 4 = 2 • 
j=i 

If we impose and = we have 

h = ¿1 t'i 
K+V 

X1X2i1 

о + д а + л , ) ' 

( 1 + ^ ( 1 + ; . , ) ' 

u = 
Alii 

(1 + ; . 1 ) ( i + ; . 2 ) ' 

IR = 

We can now uniquely determine the currents in terms of Q0, Z and parameters 
X1 and X2. For example, for i\ we obtain 

• x h 1+/-X+/-2 1 J , 

REMARK. One can construct a system having a unique solution for / , from the 
system of the equations (IV) and (VI) by imposing the additional constraint that 
the sum of the charge of each circuit of a base of circuits of the state graph is constant. 
In this case we have (« — 1) linearly independent equations from the system C / = 0 
and m—n + l linearly independent equations by application of this constraint. Thus 
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we have m equations describing the behaviour of the net. (The equation [1 1 1 ... 1] 
0 O =[1 1 1 ... 1] Z C + 7 can be obtained as the linear combination of n—m + l 
equations). The analogy with the electrical circuits is obvious. The m—n + l equations 
express the application of the Kirchhoff's voltage law: the sum of ij • Zj (voltage drops) 
for a circuit is equal to its total charge (electromotive force). 

V. Applications 

Example 4. Producer-consumer system. Consider the producer-consumer problem 
with a buffer of bounded capacity N0. We suppose that the producer and the con-
sumer do not try to access the buffer at the same time. The producer deposits items in 
the buffer as long as it is not full and the consumer does not try to take an item from the 
buffer when it is empty. Items are produced, deposited, taken and consumed one by 
one. 

The TPN of Figure 4 describes the system producer-consumer with a possible 
initial marking. Interpretation of the delays associated to the places: 

zp means time of producing an item, 
zd means time of depositing an item, 
zt means time of taking an item, 
zc means time of consuming an item. 
We suppose that the z\ s associated to the other places are equal to zero. That is, 

the producer and the consumer are functioning at maximum speed: the producer 
is allowed to deposit an item right after having produced one and he always finds 
the access to the buffer free. Also, the consumer is allowed to take an item right 
after having consumed one and he always finds the access to the buffer free. 

By solving the equation CI=0 we find that the same current i must be associated 
to all the transitions. Also, a cover by elementary invariant components (state graphs 
in this case) is given in Figure 5. 

PROBLEM. Considering as initial marking the marking given in Figure 4 , find 
conditions for functioning at natural rate. 

The inequality (V) applied for SGI, SG2, SG3, SG4 gives, respectively, 

1 1 1 ' . . N 0 ' 
r S , i S , , i s zp + zd zd + z,+.zs zc+z, ,zd + z, + za . , 

, • , '1*1 • / 1 1 1 # 0 ' 1 which yield: ima„ = mini , , , h. 

I zp + zd' zd + zt+zs' zc+zt' zd + zt+zal 

Conditions for functioning at natural rate are 

z, = zp-z, = ze-zd>.0 and' JV c- l = i ^ = g zp + zd zc+tt 

CONCLUSION. The producer's and consumer's periods must be equal: z = z p + z d = 
=zc+z,. Also, z,. the mean time between two successive accesses, is given by zs = 

z —z =zp—zt=zc—zd>0. From N0—1 = — — 1 we deduce that: 

4 Acta Cybernetica IV/2 
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a) for z 0 <z 5 , a finctioning at natural rate is impossible, 
b) if za=zs, a minimum capacity N0= 1 is necessary, 

c) if z„>z s , a minimum capacity of Nn= 1 +——— is necessary. 

Example 5. System of r producers and w consumers. Let a system of r producers 
and w consumers be connected with a buffer of capacity N0. The simultaneous access 
to the buffer is not allowed. We consider for the delays associated to the places the 
same notations as in the preceding example by adding an index in order to distinquish 
the producers and the consumers among them. Thus, zdl is the time for the deposit 
of an item by the i-th producer and zc. is the time of consuming an item by the 
j-th consumer. We consider the case in which procuders and consumers are func-
tioning at maximum speed, which implies] zero waiting times before the deposit'or 
before taking an item (Figure 6). 



Use of Petri nets for performance evaluation 199 



200. J. Sifakis 

In Figure 7, we give a decomposition of the PN representing the system into 
elementary invariant components. 

Figure 7 

If i0j and i0j are the currents associated to the cycles of the y'-th producer and 
y-th consumer, respectively, we have: 

i'1' ~ -Zdj + Zp, i=i a n d ^ 
r w 

Furthermore, 2 hj = 2 = h • where /„ is the current throughout the buffer. 
j=i j=i 
( r 1 w 1 1 

Thus, i0 = min 2 — — 2 7 , . f-
lJ = l Zdj + z p j j=1 Zcj + Ztj> 

The equation of conservation of the charge for SGS is: 
r w 

1 - 2 >ijzdj - 2 hjztj 

But, 
2 h j z d j + 2 h j z , j + iozs = 1=> zs 

j=i j=i 

j=i j= i (a) 

a n d Z ^ r -J = L J = 1 ZDJ+ZPJ J = 1 J = 1 I C . - T I T J 

From the two preceding inequalities and (a) we get 
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Finally, for SGO (Figure 7) we have 

(c) 

2 hjzdj+ 2 h/.j + zJo = N0 => l-i0zs + i0za = Nq =• J V 0 - 1 = (za-zs)i0. j= j . j = I 

From l his last equation and the inequality (b) we obtain 

The inev jualities (b) and (c) give least bounds for the mean time between two successive 
accesses to the buffer ( z j and for the mean waiting time ( z j of an item in the buffer. 

Example 6. Consider the TPN of Figure 8. One could imagine that it represents 
the functioning of an enterprise of car lo-
cation having customers of two types. Cus-
tomers of type 1, whose number is Nx, have 
a mean location time zx and a mean time 
between two succesive demands for location 
za i. Also, customers of type 2, whose num-
ber is N2, have a mean location time z2 and 
a mean time between two successive de-
mands for location z„2. We suppose that the 
total number of cars of the enterprise is N0 
and that after location, a service of mean 
duration zs is done to each car. We finally 
admit that a car ready for location waits Figure 8 
during z0 before a customer demands it. 

By solving CI= 0, we get iy=/3, z'2 = /4, / 5 =/ j + ;2. Furthermore, the resolution 
of J'C=0 gives a decomposition into state graphs (Figure 9). 

PROBLEM. Knowing N1 and N2 as well as the delays associated to the places, 
determine N0 such that a functioning at natural rate will be possible. 

The equations of charge conservation for SGI and SG2 are, respectively, 

N x 

zl +zai 
and • No 

¿2 + Z„, 
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For SGO, we have 

N0 = Ox -I- ¿2) (z„ + zs) + ijZj + /2z2 => Â o = 
^ l Ç Z n + Z t + Z,) 

+ N2 
(z0+zs + z2) 

za, + z2 

N0 is the minimum number of cars to satisfy the demands of the (A^ + N2) customers. 

We study the behavior of pure timed Petri nets for constant current assignments. It is given 
a set of relations describing the behavior of a timed Petri net and it is shown that its maximum 
computation rate can be calculated by solving a set of n linear equations where n is the number 
of its places. These relations are established between the currents, the initial marking and the delays 
of the network. Also, in order to better understand and use these relations, we give some results 
on the decompositions of a Petri net, obtained by studying the types of solutions of the equations 
C / = 0 and J'C=0 where C is the incidence matrix of the net. It is shown, that every consistent 
(resp. invariant) Petri net can be decomposed into a set of consistent (invariant) "elementary" sub-
nets. We finally give some examples in order to illustrate the use of timed Petri nets in the study 
of the dynamic behavior of the systems. 
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