On the weak equivalence of Elgot’s flow-chart schemata

by Z. Esik

Notions and notations.

Algebraic theories were originally introduced in [10]. An equational presenta-
tion of algebraic theories can be found in [1]. Following this latter work, by an
algebraic theory we shall mean a many-sorted algebra T=(T(n,p); -, (), nt)
where n, p are non-negative integers; composition, denoted by - or juxtaposition,
maps T(n, p)XT(p,q) into T(n,q); source-tupling associates a unique element
(fis <5 Jup€T(n, p) with each family of scalar elements f;, ...,£,€7(1, p); finaily,
there is an injection nt€T(1, p) for each i and p such that €[p] ([p1={l, ..., p).
Furthermore, the following identities have to be satisfied by T

Ay f(gh) =Rk if feT(m,n), geT(n, p), heT(p, q),
A) [y, onb)y =S if feT(n, p),

Ay mlfi, Sy =F i S, i€T(L p),

(A) (mif, .., mpf)y=f if feT(n, p).

Although identities (A,), ..., (A,) above are sufficient to characterize algebraic
theories, in order to have identity (f)=f if feT(l, p) we require identity

(A9 (rh=nj*

In case of n=0, (A,) means that T(0, p) is a one-element set, its unique ele-
ment will be denoted by 0,,. It follows from the axioms that elements 1,=(n;, ..., 7}
are identities with respect to composition. Therefore, an algebraic theory can be
viewed as a small category. According to this analogy, we shall often write f: n—~pcT
instead of f¢€ T'(n, p).

Pairing, denoted also by (), and separated sum, which will be denoted by +,
are frequently used derived operations in algebraic theories. As regards the defini-

1 In spite of the fact that identity (n3)=n} is used many times by several authors, it is usually
not explicited stately. This is the case in [6] and [7], too. )
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tion of these derived operations cf. [3]. Given a mapping g: [n]—[p], there is a
corresponding base element g: n—p€T: It is defined by o=(ng®, ..., ns™). If
the mapping ¢ is surjective then the corresponding base element is also called sur-
Jective. Injective and bijective base elements are similarly defined. If ¢: [n]—[n]
is bijective then g~! denotes the inverse of g.

Iteration theories were introduced in 12). They were called generalized iterative
theories in [6] and [7].

An iteration theory is an algebraic theory equxpped with a new operation, called
iteration and usually denoted by '. In an iteration theory [= (I(n D (),
iteration maps I(n,n+p) into I(m, p). According to [6], 1teratxon theorles can be
characterized by the following identities :

B) O, +NHt=f if f: n-pél,
(Ba) (f+0)t =f'f+Oq if f:n-n+pel,
(Bd (/. &) = (i, (go)i(i%, 1)) where j: i —~ nt+m-+pel,
g m—n+m+p€l, 0= (0p+1, 1,+0,)+1,,
h = f(1,+0,,(g0)", 0,+1,),
(By) (nhog(or+1,), ..., nheg(en.+ 1)t = e(gle+1,) if
g:n->m+p€El, and ¢: m -+ n€l, @y, ..., 0p: m —~mel
are base with g,0=...=g,0=p and g is surjective, .

(B L1,y =/t if f:n—n+pel.

(By) is called Elgot’s fixed-point equation. It was shown in [8] that (B;) is not
independent from the other defining identities of iteration theories. Iteration theories
are natural generalizations of iterative theories (cf. [3]) and rational algebraic theories
(cf. [13]).

Given a ranked alphabet Z — i.e. Z=U(Z,[n=0,1,...) with Z,NZ =0 if
n#m, and a fixed countable set of variables X= {x,, x;, ...}, the iteration theory
of all (partial infinite) Z-trees on X play an important role in the fixed-point theory
of program schemes. Denote by N the set of natural numbers {1,2,...} and by
X, the set of the first n variables {x,,x;,...,x,} for each neEN. Furthermore
denote by A* the set of all strings over a set A Then, according to [9], the set of -
n-ary I-trees is the set T5°(X,) consisting of all partial functions f: N*Z —e> UX,
satisfying the following condition :

if f(wz) is defined where weN* and i€N then also f(w) is defined, and there

is an integer m(=i) with fwEZ,.

The n-ary Z-trees give rise to an jteration theory T3°=(T5(mp); -, (), 7, 1,
where Tg(n, =Tz (X)) (n, p=0), composmon is defined by tree substltutlon
source-tupling is the tuplmg of trees, 1n_|ectlon b is the variable x; considered to be
a p-ary tree, and iteration is defined in the followmg way: let f—(fl s s Suy: n—~
~n+peTy and g={(g, .., gw: n—+p€Ts. Then fi=g holds prov1ded that

2 T(X,) is denoted by CTz(X,) in [9].
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for any i€[n] and wéN* wEdom g; if and only if there exist r(z0), lo(—l)
»5,€[n] and wiedomf, (j=0,...,r) such that f,(wo)=x;, ....f; (Wi _)
—x,r f,r(w,)e{X and W=W,...W,. Furthermore in this case

_[fiw) i fi(w)eZ
&i(w) = {xj it fi,(w) = X4

Everywhere in the paper L,, denotes (1,+0,)". InTy, 1,,=(L,..., L) (n-times),
where L is the totally undefined nullary tree.

By viewing an n-ary operational symbol ¢€Z, as an n-ary tree, X can be
embedded into 73" in a natural way. Denote by Ry;=(R;(n,p); -, (), 15, T) the
‘subalgebra generated by 2 in T7°. R; is freely generated by X in the class of all
iteration theories. In more detail, any map ¢: Z—~I into an iteration theory I
can be uniquely extended to a homomorphism @: Ry—I provided that ¢ is a
"ranked alphabet map, ie., ¢(Z,)E1(1,n) (n=0). - |

Resmctmg ourselves to finite X-trees we obtain the algebraic theory Ty=
=(Tx(n, p); ) In this theory Ty(n,p)=Ty(X,)" and Ty(X,)=
={fe T:“(X )]domf is finite}. Note that T is a subtheory of R;. Let

Tv(X,,) = {feT:(X,)IVWEN™, r > O, i€fr], fw)€Z, = wicdom f}.

Put T; (Te(n, p); -, (), ny) where Ty(n, p)=T:(X,)" (n,p=0). It is well-known
that Ty is a subtheory of Ty and in fact it is freely generated by £ in the class of all
algebraic theories.
The trees in Ty(1, p) can also be represented as finite strings over the alphabet
-ZUX,. Namely, Ty(1,p) can be viewed as the smallest set satisfying

(0 X,,% S Tx(1, p),
() if o€Z, r=0, fi,..,f€T:(1,p) then of;..f,€ (L, p).

Another interesting iteration theory is the theory [A]=([4] (1, p); -, (), n}, ) ona
set 4. Here [4](n, p) stands for the set of all partial functions f: 4 X[n] ~e=AX{p], -
is the composrtion of partial functions, source-tupling is the source-tupling of partial
functions, injection =, is the mapping a»—»(a i) with AX[1] and 4 bemg inden-
tified, finally, if f: AX[n] o> AX[n+p] is a partial function then f7 is the least
fixed-point of the mapping g—f(g, 1,) (g: AX[n]—AXIp]). Here least means least
with respect to the natural ordering of partial functions.

Concemmg flow-chart schemata we accept Elgot’s definition of flow- chart
schemata in [4], with the exception that in order to make iteration to be a totally
‘defined operation rather than a partial on€; we allow nodes to be unlatelled in a
flow-chart scheme. In this manner, cf. [4], R; becomes the iteration theory of the
strong behaviours of finite flow-chart schemata on a ranked alphabet ZX. There-
fore, we may treat flow-chart schemata on X as elements of R;.

From now on we fix a ranked alphabet T with Z,=0 if n=1 and n=2,
and denote X, and X, by Q and II, resp. Q is called the set of action symbols and
II the set of predicate symbols. Furthermore, we shall assume ‘that II is finite, say
O={ny,...,m,}. Given a set 4, by an mterpretatlor Fof Zin A we mean any
ranked alphabet map £: X—[A] such that £ (zn) is a total predicate for each n€ll.
That is, if £ (n)(@)=(b, i) (a, b€ A, i€[2]) then a=b, and J(n) is totally defined.

1o,
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Denote by # the unique homomorphic extension of # from Ry into [A], as well.
We say that f, g€ Ry(n, p) (n, p=0) are equivalent under # provided that #(f)=
=.£(g) holds. Moreover, f and g are called weakly equivalent, written f=g, if
F(f)=F(g) holds for every interpretation £ (cf. [4], [11], [12]).

Relation = 1s a congruence relation of the iteration theory R;. The problem
we are going to solve is the presentation of a generating system of this relation.
If such a system is found then this system together with the defining identities of
iteration theories can be viewed as an axiom system for the weak equivalence of
finite flow-chart schemata on X.

A generating system of the relation =

In the sequel we shall frequently use some consequences of the defining identities
of ite.ration j[heories. Among these identities there are identities of poor alge})raic
theories, which will be used without any reference. In the other part of these iden-
tities we have identities involving the t operation, and they are listed here:

By (ef(e'+1))t =oft if fin—-n+p and ¢:n-—n

is bijective, . '
(B> <f<1n+m+0k+pa b 0yymint 1), 8 h>T ={(f,& Mt
if fin—nt+mtk+p, g:m-—-n+m+k+p, h: k ~n+m+k+p,
(B (f(1,+g)' =ftg where f:n-—n+p, g:p—g,
By  (1,+0.)a, ..., a,, 1 +0, . ) = {ay, ..., a,)! where
ay, ..y 1 = n+p, a, = aq(1,+0,+1,) if k=i,
a; = a((l;_1+Opp2j, mpiL, 05+ 1, ;+00)+ 1)), 4, j€[n],
By} (1,+0,){f(1,+0,+1,), gt =ft if f:n—n+p,
g:m—~n+m+tp, i
B Mria{Mi1ep, 0T =mft if fin—~n+p.

Now we present the system (C) and prove that this system. constitutes a generat-
ing system of the weak equivalence relation. (C) consists of the following pairs,
written as equalities:

C) n(fif)=f if n€ll, f:1—~p€Ry,
(C) (i, fohs W fas fa)) = W (n{fr, fo), n{fa: fa)) Where . m, n’€l,
fis - far 1 — pERy, .
©) w(w(fifid n(fonfdy = n (/.S where a€ll, fi,...f: '~ peRy,
(C) f=1L if f:1~-0€Ry, '
(Cs) fr=f(Lyp, 1 if fi1>14peTy.
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Denote by 0 the congruence relation induced by (C) in Ry. The following state-
ment is immediate by (C)C€ =.

Lemmal. 6CS=.
Later on the following statement will be frequently used.

Lemma 2. Let /- n ~n+m+p+q, gt m ~n+m+tp+gq, h: p - n+m+p+q
be arbitrary elements in Ry. Assume that (g({0,+1,,1,+0)+1,,,))70g holds
where g: m -~ n+p+q€R;. Then also (f, g, )16(f, g(1,+0,,+1,.,), B

Proof. First suppose that p=0 and let ¢=(0,+1,,1,+0)+1,. Then
(f, &)t ={at, (go)¥(a', 1,)) follows by (By), where a=f(1,+0,,(g0)',0,+1,). Put
a=f{1,+0,, £ 0,+1,). As (go)103, also aba and (f, g)'6(a", g(a', 1,)). How-
ever, (at, g(at, 1,%={f, g(1,+0,+1,)t follows by (B,) and (Bj).

If p=>0 then define fi=f(a+1,), gs=g(a+1,) and h,=h(a+1,) where
a=1,+(0,+1,,1,+0,). Then (g ({0n+1,1p,1,+0,;,)+1))10z holds by
(a+1) -0+ 1,4p5 1, +0,, ) +1)=0,+1,, 1,+0,)+1,,,. Thus, (f,h,g)"0
0{f1s h1, 81,4 ,+0,+1 )t by the previous case. From this the result follows by

(Bo): (f, & W)t = ax™"(f, g, )t =
=a(a X f, g W+ 1))t = alfi, i, g )10 f1, 1, §(), 4 p+ 0+ 1IN =
= (0!<f1, h, g(1n+p+0m+lq)>(a—1+1q))T = <f’ §(1,+0,+ ]p+q)’ h>7.

Let ©: [r]—[r] be any bijection. We shall denote by =,: 1—~2"€ T, the balanced
tree visualized in the following figure:

1)

AN

7.‘:t(2) nt(2)

NN
e N

nt(r) nr(r)
X1 X Xor—1  Xor

In the case that 7 is the identity mapping, the index t will be omitted in 7.

Lemma 3. For any f: | —-peTy there exists a (unique) base element ¢: 2"—p
with f07o.

Proof. This statement is well-known. In spite of this, for the sake of complete-
ness, a proof will be outlined here. We shall show a little bit more than it is stated
" by our lemma. Namely, we show that for any f: 1 —-p¢ T, and bijective 7: [r]—[r]
there is a base element p: 2"—p with 07 0.

‘2"-times
Af f=x,; (i€[p]) then put g=(n}, ..., ni). Then fO7 ¢ follows by applications
of (C;). We proceed by structural induction of f. Suppose that f=nr;f; f;, /107, 0:
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-and f207, 0, where i€[r] and a: [r]—[r] is any bijection with a(l)=i. Then, by
(C,), we obtain f07, 0" for a suitable g¢": 2"—p. However, 7,0 07,0 holds by (C,)
for a satisfactory choise of o.

Lemma 4. (f4+0,)'0 1,, holds for every f: n—n€R;.

Proof By (B,) it is enough to deal with the case p=0. If n=0 then the state-
ment is obviously valid by R;(0,p)={0,}. Assuming n=0 we have f=(f;,/s)
where f,=(1, +0,, Of, f;=0,+1,_))f. Thus, by (By), ft=(ht, (f20)th?), where
0=(0, 1+ 11, L1 +0% h=fi{ly, (fa0)®). As heR;(1,1), H10L holds by (C,).
Therefore, n f10 1. From this the result follows by (Bg).

Lemma 5. Given f: n—n+p€T,; there exists a g: n—p€T with ftog.

Proof. The statement is obvious if n=0. Now assume that n=0 and proceed
by induction on n. Define f1 (1,40,_))/, f2=0,_,+1))f. By (C,) and the induc-
tion hypnthem there exist f: 1—=n—1+p, fo: n—1-14+p with f10f, and
(f2({0,_y+11, 1, 1 +0)+ 1)) 0. Therefore, 100, +7,, (1,40, +1 T holds
by Lemma 2. By identity (B,),

O, +f1, LUL+0,_ + I = (A {Fe, O+ 1,0 (140, +1)), fo(1;+0, ,+1 ))T

Now let h=/,(f;,0,+1,) and apply identity (Bg): (A(l,+0,_,+1,))=0,_,+At.
As heTy(1, 14p) there is an element /: 1 —-p€ T, with hTOh Thus,

S100u+h, fo(1i 40, + 1)

is valid by Lemma2. Put g={/, J,(h,1,)). Then, by (B,), (By) and- (By),
©,+h, (1,40, + 1 )1=(0,+g)t=g. As g&€Tp(n, p), this proves Lemma 5.

Definition 1. Let f=(fi,...,f,): n—n+p¢ T, and let i,j€[n] be arbitrary.
We say that f; directly depends on f; if there is an occurrence of variable x; in f,,

, fiw)=x; holds for some we€N*. The dependency relation is the transmve
closure of dlrect dependency. A component f; is called coaccessible provided that
either there is an occurrence of a variable from {x,, ..., x,;,} in f; or there is
an integer j with f; depends on f; and f; is coaccessible.

Lemma 6. Suppose that /> n—-n+p¢€ Ts. Then thereis an element g: n—n-+peT;
which only contains coaccessible or undefined components, and such that ff0gf
holds.

Proof. Put f=(fy,....f,y and let f, ..., f. (I=i<..<i,=n) be all those
components of f which are not coaccessible. First suppose that i;=j holds for
each j€[m]. In this case there is an element a: m-mcT, with (1,+0,_.)/=
=a+0,_,4,- Thus, f10gt holds by Lemma 4 and Lemma 2, where

g = <-Lmn+p’ (0m+ ln—m)f>'
On the other hand, g only contains coaccessible or undefined components.
The general case, where i, ..., 4, are arbitrary, is reducible to the previous
one by (By).
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Definition 2. An element a: n>n+pecTy (n=1), is in normal form provided
that each of its components n’a has one of the following four forms for every i€[n]:

(@) ma=7e+0, where @: 2"—m is base, -

(i) wa = wQ+0 where w€Q and g: l-n is base,
(lll) 7[' -Lln+p:

Gv) #ta=0,+¢ i where g: 1-p is base.

Furthermore, a is reqmréd to satisfy all conditions (v), (vi), (vii) and (viii) as well:

(v) if nia is of type (i) then nia has to have one of the forms (i), (iii) or
(iv) for each j€o(J27)D,

(vi) if nta is of type (ii) then ne(')a is of type @),

(vii) nla is of type (i), - :

(viii) every component 7ja of type (ii) is coaccessrble

Lemma 7. For every f: l»pER, there is an Llement y: k—>k+p in normal ’
form such that fenk SUR

Proof. By . a simple modification of Theorem 2.5.1 in [5] we “obtain that there
is an element a: n—n+p¢ Ty -with. f=niat .and such that each of its components
nia (i€[n]) has one of the three forms (ii), (iii) or (w), or mia=a;+0, holds for
some a;€ Ty(1, n). Furthermore, by 1dent1ty (B,), we may assume-a to satisfy the
following modified version of (vr) if nia=we+0, for some wE€Q and ¢: l-n
then n2®a=n}, , is.valid for an integer j€[n]." Fmally, we may assume that na=
= Lin+p Since otherwise a can be replaced' by (a(l,+0,+1,), Lint14,) (cf. (Bw))

Let- iy, ..., in€[n} (i;<...<i,) be all those indices for which n¥a is in
Ta(l,n+p)— {nﬁi},, ., mpte).  First suppose that’ i;=j holds for each 3. Put

b,=(,4+0,_.)a, c'—-(O +1,_m)a. Then=a=<{b,, ¢) holds obviously. Observe that
bl—-E +0,_holds for some by: ‘m-n€Ty. Therefore, by Lemma 5 and (B,), there
exists by: m->n—meTy with b{0b,+0,. Thus, by Lemma 2,. {0, +b2+0,,,c)1‘0a
There is an element b,: m—»n—m+l€T,, with bz—b3(1 —m+ L). Put
by=bs{1,—m, ma=my. . Then {0, +b.+0,, c)*=(0;,+b,40,, c)! follows by (By) and
A= lyp4,- ON the other hand, by Lemma 3, we have

(0, +b4+op,c)fo<o +b5+0,, o)t

for some b;: m—~n— ~m whose each, component is of type g for a suitable base
element p: 2"~n—m. Next, by an appllcatron of Lemma 6,.we get an element
d: n-n+p whose each component is either coaccessible or undefined, and
0, +b5+0,, c)td? holds:- Tt follows from the proof of Lemma 6 that d satisfies
all conditions in Definition 2 except poss1bly (vii). Tf d does not satisfy (vii) then let
g=(Me+0,,0,+d) where ¢: 2"—n+1 Is defined by o(i)=2, i€[2']. Otherwise
put g=d. In both cases’g is in normal form and m,g'0f (cf. (By,) and Lemma 3).
The general case, i.e. where iy, ..., i, are arbitrary, is reducible to the special
one above (cf. (By)). A

Lemma 8. Let a: n—-n+pcTy and b: m- +m+pET2 be in normal form. Then
niat=nl bt if and only if n,,aT— 1bt.

Proof. Sufficiency is obvious. Conversely, let f=mnlat, g=nLbt" and suppose
that f=g. Define f: N*—o>2* by f(H=f(2) and j(wi)=f(w)f(i)-if weN* and



154 Z. Esik: On the weak equivalence of Elgot’s flow-chart schemata

i€[n]. As f=g and a, b are in normal form, f~Y(x)=g"1(x), ie. {w|f(w)=x}=
={w|g(w)=x;} holds for any i€[p]. Furthermore if weU(f~2(x))i€[p]) then
Jw)=g(w) where g is similarly defined with respect to g as f was defined with
respect to f. The above equalities are essentially known from [4] (cf. also [11], [12]).
Suppose that f>g. Then, as f~'(x;)=g~'(x;) holds for each i¢|p], there
is a string w€N* with f(w)#g(w) and both f(w) and g(w) are in Q or one of
them is undefined. Thus two cases arise. However, similar order of ideas yields
a contradiction in both cases. Therefore we assume that f(w)€ Q. By the last con-
dition in the definition of normal forms, there is a string veN* with
woe U(f~H(x)li€[p]). As f(w)s<g(w) also f(wu)#g(wu) This is a contradlctlon
Now we are ready to state our

Theorem. 0 = =.

Proof. 0C = is valid by Lemma |. Conversely, it is enough to show that
f=g implies fOg for arbitrary f, g€ Rs(1, p). But this is immediate by Lemma 7
and Lemma 8.

An equational characterization of the strong equivalence of Elgot’s flow-chart schemata
was given in [6). Here we present an equational characterization for the weak equivalence. An
extended abstract of this paper has been already appeared in [14].
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