Free submonoids and minimal ω -generators of R^{ω}

Igor Litovsky*

Abstract

Let A be an alphabet and let R be a language in A^+ . An ω -generator of R^{ω} is a language G such that $G^{\omega} = R^{\omega}$. The language $\operatorname{Stab}(R^{\omega}) = \{u \in A^* : uR^{\omega} \subseteq R^{\omega}\}$ is a submonoid of A^* . We give results concerning the ω generators for the case when $\operatorname{Stab}(R^{\omega})$ is a free submonoid which are not available in the general case. In particular, we prove that every ω -generator of R^{ω} contains at least one minimal ω -generator of R^{ω} . Furthermore these minimal ω -generators are codes. We also characterize the ω -languages having only finite languages as minimal ω -generators. Finally, we characterize the ω - languages ω -generated by finite prefix codes.

1 Introduction

Let A be an alphabet. Given a language R in A^* , the star operation provides a language, denoted by R^* , which is the smallest submonoid of A^* containing R. Conversely with each submonoid M of A^* , we can associate the family of languages G satisfying $G^* = M$, such languages are called *-generators of M. To obtain the most compact possible representation of M, one can seek the smallest *-generator of M if any with respect to inclusion. It is well known that, if M is submonoid of A^* , then the star root of M, that is the language $(M \setminus \{\varepsilon\}) \setminus (M \setminus \{\varepsilon\})(M \setminus \{\varepsilon\}))$ is the smallest *-generator of M [Br].

Here we consider the ω -power operation which for each language R in A^+ , gives the language R^{ω} of infinite words $u_1 \ldots u_n \ldots$ where every u_n is a word in R. Conversely, with each language R^{ω} , we can associate a family of languages G satisfying $G^{\omega} = R^{\omega}$. Such languages are called ω - generators of R^{ω} . Note that for any ω - generator G of R^{ω} , the language $(G^2 \setminus G)$ is an ω -generator of R^{ω} , too. Hence the set of ω -generators does not have a minimum, therefore we consider its minimal elements. The question about the existence of minimal ω -generators remains to be solved in the general case. Here we approach the problem in a particular case in the following way. Each word u in A^* defines a left translation on A^{ω} . Given an ω -language L, the language Stab(L), already introduced in [St80], of words which stabilize L is a submonoid of A^* . For the case when $L = R^{\omega}$ and Stab(L) is a

^{*}Laboratoire Bordelais de Recherche en Informatique, Univesité de Bordeaux I, Unité associé au C. N. R. S. n° 1304. Mailing address: 351, cours de la libération, F-33405 Talence Cedex FRANCE

free submonoid, we show that $Stab(R^{\omega})$ is of interest for the study of minimal ω generators of R^{ω} . Previously other properties of the ω -languages whose stabilizer is free have been proved in [St80]. We establish here results which, for the general case, either do not hold (we propose counter-examples) or are not yet proved. The main result (Theorem 7) states that each ω - generator of R^{ω} contains at least one minimal ω -generator. Furthermore these minimal ω - generators are codes. Next we are interested in the finite, if any, minimal ω -generators of R^{ω} . By [LaTi] such ω languages R^{ω} are closed sets with respect to the usual topology on A^{ω} . This makes us study the minimal ω -generators of closed ω -languages. We prove that they are right-complete sets (Theorem 9). Concerning the finite minimal ω -generators of $R^{\tilde{\omega}}$, it is proved in [LaTi] and [Li] that one can decide, given a regular language R, whether $R^{\omega} = F^{\omega}$ for some finite set F. We also characterize the properties of all minimal ω -generators being finite languages (Theorem 15) and of only one ω generator having the smallest possible cardinality (Theorem 17). Finally we show that the case of finite prefix codes is especially easy: some finite prefix code ω generates R^{ω} if and only if some finite prefix code \div -generates the stabilizer of R^{ω} and R^{ω} is a closed ω -language (Theorem 18). Unfortunately this result cannot be generalized for a larger class of codes.

Section 2 contains definitions and notation used in the following. In Section 3 we deal with the minimal ω -generators. The finite minimal ω -generators are the topic of Sections 4 and 5. Finally the finite prefix codes as ω -generators are investigated in the last section.

2 Preliminaries

Let A be a finite alphabet. We denote by A^* and A^{ω} the set of all finite words, and the set of all infinite words, respectively. Infinite words are called ω -words and subsets of A^* and A^{ω} are called languages and ω -languages, respectively. We denote by ε the empty word and by A^+ the language $A^* \setminus \{\varepsilon\}$. The concatenation is as usual extended to A^{ω} .

Let X be a language in A^* and let Y be a language or an ω -language. $X^{-1}Y$ stands for the language $\{v \in A^* \cup A^\omega : xv \in Y \text{ for some } x \in X\}$. X^* stands for the smallest submonoid of A^* with respect to inclusion, containing X and we denote by $\operatorname{Root}(X^*)$ the language $(X^* \setminus \{\varepsilon\}) \setminus (X^* \setminus \{\varepsilon\})(X^* \setminus \{\varepsilon\}))$. Let u be a word and let v be word or an ω -word. The word u is a prefix of v

Let u be a word and let v be word or an ω -word. The word u is a prefix of v if and only if $v \in u(A^* \cup A^{\omega})$. Given a language X, $\operatorname{Pref}(X)$ is the language $\underset{x \in X}{\cup}$ Pref (x).

Let u, v be two words. The word u is a suffix of v if and only if $v \in A^*u$. Given a language X, Suff(X) is the language $\bigcup_{x \in X} \text{Suff}(x)$.

Let C be a language in A^* . C is a code if and only if each word has at most one factorization over C. A submonoid of A^* is free if and only if its root is a code [BePe]. C is an iff-code [St86] if and only if each ω -word has at most one ω -factorization over C that is the equality $u_1 \ldots u_n \ldots = v_1 \ldots v_n \ldots$ where $u_n, v_n \in C$, implies that $u_n = v_n$ for all n > 0. C is a prefix code if and only if $CA^+ \cap C = \emptyset$. Note that every prefix code is an iff-code and every iff-code is a code. The converses do not hold [St86].

Let P be a subset of any monoid \dot{M} , P is a right-complete set in M if and only if for each u in M, there exists v in M such that uv belongs to P^* [BePe].

Let X be a language in A^* , the adherence Adh(X) of X ([LinSt], [BoNi]) is the ω -language { $w \in A^{\omega}$: Pref(w) \subseteq Pref(X)}. Recall that Adh(X) is a closed set with respect to the usual topology on A^{ω} . Moreover L is a closed ω -language if and only if L = Adh(Pref(L)).

Free submonoids and minimal ω -generators of R^{ω}

Let R be a language in A^+ . R^{ω} is the ω - power of R, that is, the ω -language $\{u_x \ldots u_n \ldots : u_n \in R\}$. We denote by $[R]_{\omega}$ the family $\{G \subseteq A^+ : G^{\omega} = R^{\omega}\}$. $G \in [R]_{\omega}$ is called an ω -generator of R^{ω} . The ω -language R^{ω} is said to be finitely ω -generated [LaTi] if and only if $R^{\omega} = F^{\omega}$ for some finite language F.

The stabilizer $\operatorname{Stab}(L)$ of an ω -language L is the language $\{u \in A^* : uL \subseteq L\}$ [St80].

3 Minimal ω -generators in the case when $\operatorname{stab}(R^{\omega})$ is a free submonoid

This work about the minimal ω -generators of R^{ω} is based on the stabilizer of R^{ω} . Recall first the following lemma.

Lemma 1 [St80] [LiTi] Let L be a language. Then Stab(L) is a submonoid of A^* . Furthermore, in the case when $L = R^{\omega}$, $Stab(R^{\omega})$ contains every ω -generator of R^{ω} .

Lemma 2 Let R be a language. Then $R^{\omega} = (R \setminus R(Stab(R^{\omega}) \setminus \{\varepsilon\}))^{\omega}$.

Proof. Denote $R \setminus R(Stab(R^{\omega}) \setminus \{\varepsilon\})$ by G. The ω -language G^{ω} is contained in R^{ω} , since G is contained in R. Moreover, we have $R \subseteq (G \cup GStab(R^{\omega}))$ and thus $R^{\omega} \subseteq (G \cup GStab(R^{\omega}))R^{\omega}$. Now by definition of $Stab(R^{\omega})$, it follows that $R^{\omega} \subseteq GR^{\omega}$ and finally $R^{\omega} \subseteq G^{\omega}$.

We now state a result concerning the subsets of free submonoids.

Lemma 3 Let M be a free submonoid in A^* and G be a subset of M. Then the language $G \setminus G(M \setminus \{\varepsilon\})$ is a code.

Proof. Denote $G \setminus G(M \setminus \{\epsilon\})$ by G'. Let u be a word in G'^* and assume that $u \in g_1G'^* \cap g_2G'^*$ where g_1 and $g_2 \in G'$ and g_1 is a prefix of g_2 . As $G' \subseteq M$, u has only one factorization in Root(M). Thus g_2 belongs to g_1M . Since $g_2 \in G', g_2$ is equal to g_1 .

In view of the above lemmas, we deduce:

Proposition 4 Let R be a language such that $Stab(R^{\omega})$ is a free submonoid in A^* . For each ω -generator G of R^{ω} , the language $G \setminus G(Stab(R^{\omega}) \setminus \{\varepsilon\})$ is a code ω -generating R^{ω} .

We now give a characterization of codes which uses ω -words [LiSt].

Proposition 5 Let C be a language in A^+ . C is a code if and only if for each word u in C^+ , the w-word u^{ω} has a single ω -factorization over C.

Proof. Assume that C is not a code. It follows that some u in C^+ has two different factorisations over C and hence u^{ω} has two different ω -factorisations over C. Assume now that for some u in C^+ , u^{ω} has two different ω -factorisations over C. That is, $u^{\omega} = v_1 \dots v_n \dots$ where each $v_n \in C$ and the unique factorisation of u in C^+ does not start with v_1 . There exist four integers i, j, k and m such that $v_1 \dots v_k = u^i u'$ and $v_1 \dots v_m = u^{i+j} u'$ where u' is a prefix of u. It follows that

D

 $u^{i+j}u'$ has two different factorizations over $C(v_1 \ldots v_m \text{ and } u^j v_1 \ldots v_k)$, that is C is not a code.

So we can deduce a basic result for this paper.

Corollary 6 Let C be a code in A^+ . Then C is a minimal ω -generator of C^{ω} .

Proof. Suppose we have a code C which is not a minimal ω -generator of C^{ω} . Then $(C \setminus \{v\})^{\omega} = C^{\omega}$ for some word $v \in C$. Hence $v^{\omega} \in (C \setminus \{v\})^{\omega}$ what implies that v^{ω} has two ω -factorizations over C. This contradicts the fact that C is a code.

Hence the initial question about the existence of minimal ω -generators is answered.

Theorem 7 Let R be a language such that $Stab(^{\omega})$ is a free submonoid in A^* . Eaxh ω -generator G of R^{ω} contains at least one minimal ω -generaotr of R^{ω} . Furthermore, the code $G \setminus G(Stab(R^{\omega}) \setminus \{\epsilon\})$ is one of these.

Without assuming that $\operatorname{Stab}(\mathbb{R}^{\omega})$ is free, the language $\mathbb{R} \setminus \mathbb{R}(\operatorname{Stab}(\mathbb{R}^{\omega}) \setminus \{\varepsilon\})$ is genrally not a minimal ω -generator of \mathbb{R}^{ω} , as shown by the following example.

Example 1 Let R be the language $\{\varepsilon, b\}\{a\}\{b\}^*$. Here $Stab(R^{\omega}) = R^*$. but $R \setminus R(Stab(R^{\omega}) \setminus \{\varepsilon\}) = R$ which is not a minimal ω -generator of R^{ω} , since ab R^{ω} is contained in $\{a, ab^2\}R^{\omega}$, which implies $(R \setminus \{ab\})^{\omega} = R^{\omega}$.

We have actually proved that whenever $\operatorname{Stab}(R^{\omega})$ is a free submonoid, then the minimal ω -generators of R^{ω} are exactly the codes ω -generating R^{ω} . However codes can ω -generate R^{ω} without $\operatorname{Stab}(R^{\omega})$ being a free busmonoid, as shown below.

Example 2 Let R be the language $\{aa, aaa, b\}$. Here $Stab(R^{\omega}) = R^*$ which is not a free submonoid. However the language $\{aa, aaab, b\}$ is a code ω -generating R^{ω} .

4 The finite minimal ω -generators of R^{ω}

We have seen (Lemma 1) that $\operatorname{Stab}(R^{\omega})$ contains every ω -generator of R^{ω} , but it is not necessarily an ω -generator of R^{ω} . As a counterexample consider $R = a^*b$ where $\operatorname{Stab}(R^{\omega}) = \{a, b\}^*$. However if R^{ω} is a closed subset of A^{ω} , we have the following result.

Lemma 8 [LiTi]. Let R be a language such that R^{ω} is a closed subset in A^{ω} . Then $Stab(R^{\omega})$ is the greatest ω -generator of R^{ω} .

Now, in the case when R^{ω} is closed, we can link the notion of ω -generator of R^{ω} and the one of right-complete set in $\operatorname{Stab}(R^{\omega})$.

Theorem 9 Let R and G be two langauges such that R^{ω} as well as G^{ω} are closed ω -languages. Then the following two conditions are equivalent.

(i) G is an ω -generator of R^{ω}

(ii) G is a right-complete set in $Stab(R^{\omega})$.

п

Proof. Suppose G is an ω -generator of R. Les us recall [BePe] that G is a rightcomplete set in a submonoid M if and only if for each word u in M, there exists v in M satisfying $uv \in G^*$. Let u be a word in $\operatorname{Stab}(R^{\omega})$, we can write $u^{\omega} = g_1 \ldots g_n \ldots$ where each $g_n \in G$. Hence there exist two integers k, m and a prefix u' of u such that $k < m, u^k u'$ and $u^m u'$ belong to G^+ . Moreover $u^m u' = u(u^{m-k-1}(u^k u'))$, thus uv belongs to G^+ where $v = u^{m-k-1}(u^k u')$ belongs to $\operatorname{Stab}(R^{\omega})$.

Conversely, if G is a right-complete set in $\operatorname{Stab}(R^{\omega}), G^+ \subseteq \operatorname{Stab}(R^{\omega})$ and $\operatorname{Pref}(\operatorname{Stab}(R^{\omega})) \subseteq \operatorname{Pref}(G^+)$. Hence $\operatorname{Pref}(\operatorname{Stab}(R^{\omega})) = \operatorname{Pref}(G^+)$. Moreover, $\operatorname{Pref}(\operatorname{Stab}(R^{\omega})) = \operatorname{Pref}(R^{\omega}) = \operatorname{Pref}(R^+)$. Now as G^{ω} and R^{ω} are closed ω languages, $G^{\omega} = \operatorname{Adh}(\operatorname{Pref}(G^{\omega}))$ and $R^{\omega} = \operatorname{Adh}(\operatorname{Pref}(R^{\omega}))$. It follows that $G^{\omega} = R^{\omega}$.

Corollary 10 Let R be a language such that R^{ω} is a closed ω -language and $Stab(R^{\omega})$ is a free submonoid. Let G be a language such that G^{ω} is a closed ω -language. Then the following conditions are equivalent.

(i) G is a minimal ω -generator of R^{ω}

(ii) G is a right-complete code in $Stab(R^{\omega})$.

According to [LaTi], we know that if F is a finite language, F^{ω} is a closed ω -language. Then as a consequence of the above result we can characterize the finite minimal ω -generators of R^{ω} without using the ω -power.

Corollary 11 Let R be a language such that R^{ω} is a closed ω -language and $Stab(R^{\omega})$ is a free submonid. Then G is a finite minimal ω -generator of R^{ω} if and only if G is a finite right-complete code in $Stab(R^{\omega})$.

Remark. We cannot remove the assumption of R^{ω} being a closed ω -language. For example, with $R = a^*b$, $\operatorname{Stab}(R^{\omega})$ is the language $\{a, b\}^*$ and $\{a, b\}$ is a right-complete code in $\operatorname{Stab}(R^{\omega})$ but it is not an ω -generator or R^{ω} .

In [LaTi] and [Li] characterizations are given for R^{ω} being finitely ω -generated. In our current case we have the following characterization which does not hold in the general case [LaTi].

Theorem 12 Let R be a language such that R^{ω} is a closed ω -language and $Stab(R^{\omega})$ is a free submonid. R^{ω} is finitely ω -generated if and only if $Root(Stab(R^{\omega}))$ is a finite language.

Proof. Assume that $\operatorname{Root}(\operatorname{Stab}(R^{\omega}))$ is an ifinite language and that G is a finite ω -generator of R^{ω} . As G is right-complete in $\operatorname{Stab}(R^{\omega})$, there exists a word $g \in G$ such that the set $E = \{u \in \operatorname{Root}(\operatorname{Stab}(R^{\omega})) : \exists v \in \operatorname{Stab}(R^{\omega}) \text{ with } uv \in gG^*\}$ is infinite. Since $G \subseteq \operatorname{Stab}(R^{\omega}), g = g_1 \dots g_k$ where each $g_i \in \operatorname{Root}(\operatorname{Stab}(R^{\omega}))$. Now since E is infinite, there exists $u_1 \in E$ such that $u_1 \neq g_1$. Then $u_1 \operatorname{Stab}(R^{\omega}) \cap g_1$ Stab $R^{\omega} \neq \emptyset$ given a contradiction.

However in the case when R^{ω} is finitely gnerated, some ω -generators could be infinite codes, as shown below.

Example 3 Let R be the language $\{a^2, ba, ba^2\}$. Here $StabR^{\omega} = R^*$ and $\{a^2, ba\} \cup ba^2\{a^2\}^*\{ba, ba^2\}$ is an infinite code ω -generating R^{ω} .

That leads to propose conditions for all minimal ω -generators of R^{ω} to be finite ones.

Lemma 13 Let R be a language such that R^{ω} is a closed ω -language. If $Root(Stab(R^{\omega}))$ is a finite ifl-code then all minimal ω -generators of R^{ω} are finite ifl-codes.

Proof. Denote Root(Stab(R^{ω})) by C. Assume that G is an infinite minimal ω generator of R^{ω} . As C is a finite language, there exists a sequence (s_n) of C^{*}
satisfying $s_0 = \varepsilon$ and for every integer $n, s_{n+1} = s_n r_{n+1}$ with $r_{n+1} \in C$ and $s_n C^+ \cap G$ is an infinite language. Moreover by Theorem 7, $G \cap GC^+ = \emptyset$. Hence
for every integer n, s_n does not belong to G. As the ω -word $r_1 \ldots r_n \ldots$ belongs to C^{ω} , it is equal to $g_1 \ldots g_n \ldots$ where each $g_n \in G$. As C is an iff-code. There exist $g \neq g'$ in G such that $gG^{\omega} \cap g'G^{\omega} \neq \emptyset$. Without loss of generality we may assume
that g is a prefix of g'. Since C is an iff-code, $g' \in gG^+$, this is a contradiciton with $G \cap GC^+ = \emptyset$.

The following lemma displays an important difference between regular codes and regular iff-codes.

Lemma 14 Let C be a regular code. If C is not an ifl-code then there exists an infinite code ω -generating C^{ω} .

Proof. C being not an iff-code, there exist words $\alpha, \beta \in C$ such that $\alpha \neq \beta$ and $\alpha C^{\omega} \cap \beta C^{\omega} \neq \emptyset$. Since C is regular, we deduce that $uv^{\omega} = u'v'^{\omega}$ for some $u \neq u'$ such that $u \in \alpha C^{i-1}, u' \in \beta C^{i-1}, v \in C^i$ and $v' \in C^i$. Moreover the language $uv^*(C^i \setminus \{v\}) \cup (C^i \setminus \{v\})$ is an infinite ω -generator of R^{ω} , which is a code since C^i is a code.

Noting that a finite language is a regular language and according to Lemmas 13 and 14, we state.

Theorem 15 Let R be a language such that $Stab(R^{\omega})$ is a free submonoid. All minimal ω -generators of R^{ω} are finite languages if and only if R^{ω} is a closed ω -language and $Root(Stab(R^{\omega}))$ is a finite iff-code.

Remark. As shown by the following example, we cannot remove the assumption that $\operatorname{Stab}(R^{\omega})$ is a free subonoid.

Example 4 Let R be the language $\{\varepsilon, b\}\{a, ab\}^*$. R is not a code, $Stab(R^{\omega}) = R^*$ and $Root(Stab(R^{\omega})) = R$. However, by using the fact that $Pref(R^+)\cap Suff(R^+) = R^* \cup \{b\}$, we can prove that all minimal ω -generators of R^{ω} are finite languages.

As a consequence of Theorem 15, we characterize the minimal ω -generators of the whole language A^{ω} .

Corollary 16 Let A be a finite alphabet. A language G is a minimal ω -enerator of A^{ω} if and only if G is a finite maximal prefix code in A^* .

5 Uniqueness of the ω -generator of smallest cardinality

When R^{ω} is finitely ω -generated, there is obviously a smallest integer that can be the cardinality of some ω -generator of R^{ω} . But several ω -generators can have that integer for cardinality. For example, consider $R = \{aa, aaa, b\}$ where $\{aa, aaab, b\}$ is also an ω -generator of smallest cardinality. Here we seek languages R^{ω} such that only one ω - generator is of smallest cardinality.

Theorem 17 Let R be a language such that R^{ω} is a closed ω -language and $Stab(R^{\omega})$ is a free submonoid. Then the following conditions are equivalent. (i) $Root(Stab(R^{\omega}))$ is the single ω -generator of smallest cardinality for R^{ω} (ii) $2 \leq Card(Root(Stab(R^{\omega}))) < \infty$.

Proof. Denote Root(Stab(R^{ω})) by C. If Card(C) = 1, then of course there are infinitely many ω -generators of cardinality 1. If C is infinite, then in view of Theorem 12, R^{ω} is not finitely ω - generated and all ω -generators are infinite languages.

Conversely, suppose $G \neq C$ is an ω -generator of smallest cardinality for \mathbb{R}^{ω} . Let g = cu be a word of G factorised by $c \in C$ and $u \in C^+$ (g exits since $G \neq C$). The language $(G \setminus \{g\}) \cup \{c\}$ is an ω -generator of smallest cardinality for \mathbb{R}^{ω} . Step by step we obtain an ω -generator such as $(C \setminus \{c\}) \cup \{cu\}$ where $c \in C$ and $u \in C^+$. By factorizing u in c'u', we can easily verify that $(C \setminus \{c\}) \cup \{cc'\}$ is an ω -generator of \mathbb{R}^{ω} . Hence $(C \setminus \{c\}) C \cup \{cc'\}$ is an ω -generator of \mathbb{R}^{ω} , properly contained in C^2 : a contradiction since C^2 is a code and consequently C^2 is a minimal ω -generator of \mathbb{R}^{ω} .

n.

6 Case of finite prefix codes

In Section 3 we have seen that the language $Stab(R^{\omega})$ does not allow us to characterize the languages $R^{\omega} \omega$ -generated by a code. However for the finite prefix codes we have the following result.

Theorem 18 Let R be a language. Then the following conditions as equivalent. (i) $R^{\omega} = P^{\omega}$ for some finite prefix code P.

(ii) R^{ω} is a closed ω -language and $Stab(R^{\omega}) = P^*$ for some finite prefix code P.

Proof. If R^{ω} is a closed ω - language and $\operatorname{Stab}(R^{\omega}) = P^*$ for some finite prefix code P, then $R^{\omega} = P^{\omega}$.

Conversely, let P be a finite prefix code such that $P^{\omega} = R^{\omega}$.

First $(*)^{-1}$ Stab $(R^{\omega}) =$ Stab (R^{ω}) . Indeed, let $uv \in$ Stab (R^{ω}) where $u \in P^*$. As $uvP^* \subseteq \operatorname{Pref}(P^{\omega})$, for each z in P^* , there exists y in A^* such that $uvzy \in P^*$. P being a prefix code, $(P^*)^{-1}P^* = P^*$, hence $vzy \in P^* >$, that is $v \in$ Stab (R^{ω}) .

Secondly $(\operatorname{Stab}(R^{\omega}))^{-1}$ $\operatorname{Stab}(R^{\omega}) \subseteq \operatorname{Stab}(R^{\omega})$. Indeed, assume that $z \in (\operatorname{Stab}(R^{\omega}))^{-1}$ $(\operatorname{Stab}(R^{\omega}))$. Then $\operatorname{Stab}(R^{\omega}) \cap (\operatorname{Stab}(R^{\omega}))z^{-1} \neq \emptyset$. Let u be a word in $\operatorname{Stab}(R^{\omega}) \cap (\operatorname{Stab}(R^{\omega}))z^{-1}$ such that no any suffix of u is in $\operatorname{Stab}(R^{\omega}) \cap (\operatorname{Stab}(R^{\omega}))z^{-1}$. As $u^{\omega} \in P^{\omega}$, there exist two words u_1, u_2 in A^* such that $u = u_1 u_2$ and $u^i u_1 \in P^+$ and $u^{i+j} u_1 \in P^+$. Hence u_2 , which is equal to $(u^i u_1)^{-1}u^{i+1}$, belongs to $\operatorname{Stab}(R^{\omega})$ according to the first point. Ditto u_2z belongs to $\operatorname{Stab}(R^{\omega})$, hence $u_2 \in \operatorname{Stab}(R^{\omega}) \cap (\operatorname{Stab}(R^{\omega}))z^{-1}$. It follows $u_2 = u$, next $u^i \in P^+$. Moreover $u^i z \in \operatorname{Stab}(R^{\omega})$, hence $z \in \operatorname{Stab}(\mathbb{R}^{\omega})$. Finally $(\operatorname{Pref}(\operatorname{Stab}(\mathbb{R}^{\omega}))^* = \operatorname{Stab}(\mathbb{R}^{\omega})$. Indeed, let $u \in \operatorname{Stab}(\mathbb{R}^{\omega})$ and step by step we obtain $\operatorname{Stab}(\mathbb{R}^{\omega}) \subseteq (\operatorname{Pref}(\operatorname{Stab}(\mathbb{R}^{\omega}))^+$. This finishes the proof.

Finite prefix codes are particular finite ifl-codes. But R^{ω} cvan be ω -generated by a finite ifl-code without $\operatorname{Stab}(R^{\omega})$ being a free submonoid, as shown below.

Example 5 Let R be the language $\{\varepsilon, b\}\{a, ab^2\}^*$. R is a finite ifl-code, hence R^{ω} is a closed o is a closed ω -language. However $Stab(R^{\omega}) = \{\varepsilon, b\}\{a, ab, ab^2\}^*$ and $Root(Stab(R^{\omega})) = \{\varepsilon, b\}\{a, ab, ab^2\}$ which is not a code.

When R^{ω} is ω -generated by an infinite prefix code, R^{ω} is never a closed ω -language and Stab (R^{ω}) is not necessarily an infinite prefix code.

Example 6 Let R be the language *b. R is an infinite prefix code, $Stab(R^{\omega}) = \{a, b\}^*$ which has $\{aa, b\}$ for root.

Acknowledgments. The author is very deeply indebted to two referees for thorough reading of the first version of the manuscirpt. Their comments have resulted in a signifiant improvement in the exposition of the results.

References

- [BePe] J. Berstel and D. Perrin, Theory of codes; Academic Press (1985).
- [BoNi] L. Boasson and M. Nivat, Adherences of languages; Journal of Computer and System Sciences, 20 (1980) 285-309.
- [Bu] J.R. Buchi, On decision method in restricted second-order arithmetics; Proc. Congr. Logic, Method. and Philos. Sci. (Stanford Univ. Press, 1962) 1-11.
- [Br] J.A. Brzozowski, Roots of Star Events; J. ACM 14 (1967)3, 466-477.
- [Do] Do Long Van, Sur les ensembles gènèrateurs minimaux des sous-monoides de A[∞]; C.R. Acad. Sc. Paris; t. 300, Sèries I, n° 13, 1985.
- [Ei] S. Eilenberg, Automata, Languages and Machines; Vol. A (Academic Press, New York, 1974).
- [La] L.H. Landweber, Decision problems for ω -automata, Math. Syst. Theory 3 (1969) 376-384.
- [LaTi] M. Latteux and E. Timmerman, Finitely generated ω-languages; Information Processing Letters 23 (1986) 171-175.
- [LinSt] R. Lindner and L. Staiger, Algebraische Codierungstheorie-Theorei der sequentiellen Codierungen; Akademie-Verlag; Berlin 1977.
- [Li] I. Litovsky, Rank of rational finitely generated ω -language; Proceedings of FCT'89, Lecture Notes in Computer Science 380, 308-317.
- [LiSt] I. Litovsky and L. Staiger, A characterization of codes via the ω -power, (submitted paper).
- [LiTi] I. Litovsky and E. Timmerman, On generators of rational ω -power languages; Theoretical Computer Science 53 (1987) 187-200.
- [Ma] R. MacNaughton, Testing and generating infinite sequences by a finite automaton; Information and Control 9 (1966) 521-530.
- [St80] L. Staiger, A Note on Connected w-languages; EIK 16 (1980) 5/6, 245-251.

Free submonoids and minimal ω -generators of R^{ω}

- [St83] L. Staiger, Finite-state ω -languages; Journal of Computer and System Sciences, 27 (1983) 434-448.
- [St86] L. Staiger, On infinitary finite length codes; Theoretical Informatics and Applications, vol. 20, n° 4 (1986) 486-494.

(Received December 18, 1990)