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Some Properties of H-functions

Ivan Mirchev* - Borislav- Yurukov*

1 Introduction

Some basic results in the theory of separable and c-separable sets were obtained
in [1]-[7]. In this paper some problems concerning with separable and c—separable
sets for k—valued functions are considered.

We investingate the properties of k-valued functions when some of their vari-
ables are replaced with constants. The investigations of properties of H-functions
are connected with separability and c—separability of functions.

2 Definitions and Notations

Definition 1 [1] A function f(z1,...,z,) on A(|A| > 2) depends essentially on the
variable z;, 1 < i < n if there exist n — 1 constants c1,...,¢ci—1, Cit+1,...,Ccn such
that the unary function f(ci,...,¢i—1,Z, Cit1,...,Cn) takes on at least two different
values.

Ess(f) denotes the set of all variables which f depends essentially on.

Fn denotes the set of all functions which depend essentially exactly on n vari-
ables.

Definition 2 [1] A function f and the functions obtained from f by replacing some
of its variables with constants are called subfunctions of f (g——f denotes that g
is a subfunction of f).

Definition 3 [4] The variable z;, 1 < ¢ < n, n > 1 is a H-variable for a function
f € F, if for any two tuples of constants differing only in the i ** component, the
function has different values.

Definition 4 [4] The function f is a H—function if all its essential variables are
H-—variables.

H}( denotes the set of all k—valued H-functions from F,. Htl-( denotes the set
n
of all k—valued H-functions.
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3 Basic Results

The following assertion is obvious.

Statement 1 A function f € F,,, n > 2 is a H-function if and only if all of its
subfunctions from Fy, 1 < k <n are H-functions too.

Theorem 1 Let p > 3 be a prime number and let f € F,, n > 2, be a non-linear
p-valued function. If there ezists f,, fi—<f, |Ess(f1)| = 1 which as polynomial
mod p is of degree p— 1 then f ¢ HF .

Proof. By Statement 1 it is sufficient to prove that every polynomial
) filzr) =ap+ @12+ ...+ ap,—12°”"  (mod p), ap-1 #0

cannot take on all values from the set {0,1,...,p — 1}. Consider the polynomial

9(z) = amz + az_a:2 + o+ ap1z””t (mod p), ap-; # 0.

Let us assume that
g(i)=b;, i=1,2,..,p—1, by #bj when i # jand b; # 0, if i # 0.
The determinant of the system
ari+axi? + .. +ap1iP =0, i=1,2,..,p—1

is

1 12 R (e
2 22 gr—1 :
A= 3 32 3r-1 =12..(p-1).W(,2,...,p-1).

-1 (p-12 . (-1

Using the facts that
Wier,...,ce) = H (¢i —c¢j)

k22521

and (p-1)!+1=0 (modp), wehave A #D.

Consequently the system has only one solution. As we know a,_; = éfg—‘, where

1 12 172 b
2 92 .. gp-2 by
Ap_l = 3 32 3r—2 b3

-1 (p-12 .. @-1P by,
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But
1 12 ... 1P7? py
2 922 . o2 p,
Ap_l =3 3 .. 32 bs |, where

Sl S2 Sp——2 S
Sk=1"+2"+_  +(p-1% k=12,.,(p-2),

S=b1+b2+...+bp_1=1+2+3+...+(p-—1)=51.

The numbers 1,2, ...,p— 1 are solutions of the equation z7~"! —1 =0 (mod p).
Consequently for the elementary symmetric polynomials 71,79, ..., 7p—g 0f 1,2, .., p—
1 we have

1 =T2=..=Tp-2= 0.

On the other hand from Newton’s formulas
Sp —T1.5k-1 + Tz.Sk;g —.... + (—1)k_17‘k_1.51 + (—1)k.k‘7'k =0,

when k <p—-1. .

If £k < p—1, then Sy = 0. Consequently A,_; = 0 implies ap—y = 0. This
contradicts the condition ap_; # 0.

Therefore the values of the polynomials g{z) and fi(z) cannot form a whole
system modulo p. This completes the proof. o
Remarks:

1. If p = 2, then according to Lemma 4.2 [3], Theorem 4.1 [3] and Lemma 4.10
(3] it follows that f € H7_if and only if f is a linear function.

2. When p = 3 this theorem was proved by K. Chimev in [4] and now was
improved (by Mirchev and Drenski) for p > 3, where p ~ a prime number.

3. It is obvious that if f € L, then f € H }’ (L, denotes the set of all linear p—
valued functions). The converse statement is not valid and this fact is evident
from the following example. ¢

Example 1 Let f(z1,72) = 2§ + 73 (mod 5). For the function f, f € H}, but
f ¢ Ls (Here 23 = z;.2;.3;, 1 =1,2). -

Now we will consider some results which give us good possibilities to construct
catalogues of H-functions modulo 3.

Definition 5 We will say that f(zi,...,z,) and g(z1,...,z,) are distinguishable
everywhere if for each tuple of constants ¢, ..., ¢, the relation .

flery..yen) # gle, ..., cn) holds.
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We denote by f <> g that f and g are distinguishable everywhere.

T=1

. 1, ,
- { 3 130

If f(zy, .y Tn), 7 > 2, is a k—valued function then it is obvious that ¥p(1 < p <
n)

flzy,.. E ],(:z:p (1) Tp=1,% Tpt1s -, Tn)-
=0

I fl(.'L‘l,...,fL‘n_l) = f(:l?l,...,.'b'n_l,O),

fk(ml: --';xn—l) = f(xll "':xn—lak - 1):
then

f(xlr--’xﬂ Z]t(zn f1+1(m17' azn 1)

=0

Theorem 2 (Theorem 1 [6]) f € H fos
f1<>f]for11—1 Lk, 1A

> 2, if and only if f; € H}‘n_l and

According to this result each function f € H ? can be derived from f1, fa, fs,
where for each 1 <i < 3,1<j <3 and i'#j the relations -

fi€ H} _,| and f; <> f; hold.

We denote by f = (fi1, fz, f3) the fact thit f € H} is derived from fi, f2, f3 €
HY . - :
fn-1

Lemma 1 Let f = (f1,f2,f3) 9 = (g1,92,93) and f g G H3 . Then f <> g if
~and only if fi <> g1, fo <> g2 and f3 <> g3-

Proof. ) : ‘
”? =" Let f <> g. Then f(zy,...,2n—1,0) <> g(z4,..., xn_l,O) ie. L <> q1.
Analogously fa <> g; and fz <> gs. .

" & Let fi <> gi, i = 1,2,3. Let us suppose that there exist ¢y, ..., ¢, so that
f(Cl,...,Cn) —g(cl) Cn) .
~ If ¢, = 0, then we obtain fi(c,...,caz1) = g1(c1, ..., ca—1) which contradicts
the condition f; <> ¢;. :

If ¢, =1 or ¢, = 2 we obtain a contradiction with fo <> gy or f3<>g3. O

Theorem 3 If f € H3 , n > 2 then there exist g and h, g <> h and g, h € Hf ,
such that f <> ¢ and f <> h.
Proof.

Let f=(fi,f2,f3); 9= (f2,f3,f1); and h={(fs, f1,f2)
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Since fi, f2, f3 are pairwise distinguishable everywhere then according to
Lemma 1, f,g and h are pairwise distinguishable everywhere too. By Theorem
2 we have ’ .

gEH;’ andhEH?. ' a

Theorem 4 If f € H3 then there ezist only two functzons g, h € H3 , such that
f,g and h are pairwise dzstmgmshable everywhere.
Proof. We will prove the theorem by mductlon on the number of the va,rlables
The case n = 1 is trivial. :
Let us assume that for functions from Fn_l the statement is true. :
Let now f € H 3". By Theorem 3, it- is sufficient to prove that there exist only
two functions g and h.
Let :
f = (f17f2;f3)’ th}reefi _<> f] When i 75 .71

g = (91,92,93), where g; <> g; when i # j;
h= (R, hs, hs), where h; <> h; when'i # j;

g,hEH3 , g<> 7 h<> f, g<>hand fi,g;, by EHf , 1<, 7<3.

Since f,g and h are pairwise distinguishable everywhere then according to
Lemma 1, f1, 1 and h; are distinguishable everywhere too.

By the induction hypothesis on f; there exist only two functions which are
distinguishable everywhere from f;. Therefore {g1,h1} = {f2, f3}

Similarly we get:

{g2,h2} = {fl,fs},{ga,h3}={f1,fz}- ’ (1)
Withoutloss of generality we can assume that
g1=frand by = f5. (2)

If we suppose hp = fs, then from h; = f3 we obtain h; = hg, which contradicts
the condition hy <> hy. Therefore from (1) we obtain

g2 = fz and hy = f;. | (3)

If we assume g3 = fo, then from g = f; we obtain g; = g3, which contradicts
the condition ¢g; <> g3. Therefore from (1)

g3 = f1 and h3 = fs. (4)
Consequently g and h are exactly determined by f. o O

Theorem 5 If f,g,h€ H} ,g#h, f <>g and f <> h then g <> h.
Proof. We will prove the theorem by induction on the number of the variables.
Let n = 1. Then: =

f(O) = a1, .f(l) = a2; f(2) = a3; g(O) = alla g(l) = al25 9(2) = a’.{h
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h(0) = af, h(1) = a3, h(2) = aj, i. e.
f = (a1 a2 a3), where a; # a; when i # j;

g = (a) a3 a3), where a; # o} when i # j;

h = (ai a3 a3), where af # o} when i # j.

Let us assume that g <> h doesn’t hold. Without loss of generality we may
assume that o} = a}. Then {az, a3} = {a},a%}.

If we suppose that a, = a3 then we get aj = af. Therefore g = h which is a
contradiction.

Let us now suppose that ay = ay and a} = a}, i.e., that

9 = (aj a3 a3) and h = (a; a3 ay).
But a2 ¢ {a},a3} and a3 ¢ {a},ay} therefore a; = a3. This contradicts the condi-
tion f € H} .
So, if n =1 the statement is true.
Let us assume that the statement is true for all functions from F,_,. We will

prove the statement for the functions from Fy,, n > 2.
Let

f=1(f1, f2, f3), where fi <> f; when i # j;
9 = (91,92,93), where g; <> g; when i # j;
h = (h1,ho, h3), where h; <> h; when i # j

and fi,gi,hi € H} | (1 <4,5 <3). Asweknow f <>g, f <> handg# h.
Consequently g1 # h; or gs # hg or g3 # hs.

Whitout loss of generality we can assume that g; # h;.
From the conditions of the Theorem we obtain f; <> ¢; and f; <> h;. But
fi,91,h € H?ﬂ_l. From this fact and our inductive supposition it follows that

g1 <> hy. ' (5)
. Since fi1, f2, f3 and f1, g1, h; are pairwise distinguishable everywhere it follows
from Theorem 4 that
{f2) f3} = {gl: hl}
Let us assume now that
g1 =frand by = f3.

Since g1, 92, 93 and fi, f2, f3 are pairwise distinguishable everywhere and g; = f»
it follows from Theorem 4 that

{92,93} = {f, fa}-

Similarly as above, we have

{h2,h3} = {f1, fo}.
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If we suppose that go = hy or go = hs then we obtain

92 € {f1, fs} N {f1, fo} = {/}.

Therefore g = f1, g3 = fs, which contradicts gz <> f3.
If we suppose that g3 = hs = fi then we have hy = f5, which contradicts
he <> fa. Consequently g3 = ha = f1, g2 = f3, hs = fo which implies

g2 <> hp and g3 <> hs. (6)
From Lemma 1, (5) and (6) it follows that g <> h. _ ]

Finally we note, that some algorithms, computer programs and catalogues for
H-functions are given in [3].
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