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Infinite limits 
and R-recursive functions 

Jerzy Mycka* 

Abstract 
In this paper we use infinite limits to define R-recursive functions. We 

prove that the class of R-recursive functions is closed under this operation. 

Keywords: Theory of computation, Real recursive function. 

1 Introduction 
The theory of recursion had been originally formulated for enumerable domains 
[3, 9]. Later the extensions on the continuous domains were proposed (for example 
see [4]). During a few past years many authors have studied problems of recursion 
theory for reals [1, 2]. 

The new approach was given by Moore in [5]. He used not only continuous 
functions, but also continuous operators on real recursive functions. The set of R-
recursive functions defined by Moore is the subclass of real functions constructed 
as the smallest set containing 0,1 and closed under operations of composition, 
differential recursion and /^-recursion. 

Infinite limits are the natural operation on real functions, and can be viewed 
as a method to define new functions. It is mentioned in [5] that limits can be 
expressed in terms of /¿-operation, but without giving the way of this 'translation'. 
In this paper we give a proper way to define limits by /¿-recursion. 

This result can be useful for a few reasons. First, infinite limits are natural 
operations in calculus in contrast to the //-operation. Furthermore with infinite 
limits we can define a limit hierarchy and relate it to the /i-hierarchy. This would 
be a continuous analog of Shoenfield's theorem [8]. Infinite limits can also be 
useful to compare the /¿-hierarchy with the levels of Rubel's [7] Extended Analog 
Computer. 

2 Preliminaries 
This section summarizes some notions and results taken from [5], which are useful 
in this paper. Let us start with the precise definition of an R-recursive function. 
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Definition 2.1. A function h : Rm —> Rn is R-recursive if it can be generated from 
the constants 0 and 1 with the following operators: 

1. composition: h(x) = f{g(x)); 
2. differential recursion: h(x, 0) = f(x), dyh(x,y) = g(x,y,h(x,y)) 

(an equivalent formulation can be given by integrals: 
h{x, y) = f{x) + f0

y g(x, y', h(x, y'))dy'); 
3. [¿-recursion h(x) = p,yf(x,y) = inf{y : f{x,y) = 0}, where infimum chooses 

the number y with the smallest absolute value and for two y with the same 
absolute value the negative one. 

Several comments are needed to the above definition. A solution of a differential 
equation need not to be unique or can diverge. Hence, we assume that if h is defined 
by differential recursion then h is defined only where a finite and unique solution 
exists. This is why the set of i?-recursive functions includes also partial functions. 
For coherence with Moore's paper[5] we use the name of -R-recursive functions in 
the article, however we should remember that in reality we have partiality here 
(partial .R-recursive functions). 

The second problem arises with the operation of infimum. Let us observe that 
if an infinite number of zeros accumulate just above some positive y or just below 
some negative y then the infimum operation returns that y even if y itself is not a 
zero. 

The above defintion creates the class of R-recursive functions with some inter-
esting features. Let us cite a few results from [5]. 

Lemma 2.2. The functions —x,x -I- y,xy,x/y,ex,\nx, xy ,sinx, cosx and the pro-
jection functions In(xi, • • • ,xn) = Xi are R-recursive. 

The power of the system of R-recursive functions can be viewed from the fol-
lowing lemma, which is sufficient to solve the classical halting problem. 

f 1 x € S Lemma 2.3. The function xs such that Xs(^) = j q x g S ™ ^'recurs^ve for 

any partial N-recursive set S (S is partial N-recursive if S = f s (N) for f s '• N —t 
N, f s is some N-recursive function). 

It is possible to define for every R-recursive function / : Rn x R R the 
characteristic function r)yf for the set of x on which nyf is well-defined. Precisely 
this fact is stated by the below theorem: 

Theorem 2.4. If f(x, y) is R-recursive, then J]yf(x, y) is also R-recursive, where 

»/ ( . ,„ ) -{J **<*.»>-" 0 Vji/(x,s) jto 
The operator p, is a key operator in generating the R-recursive functions. This 

fact suggests creating a /¿-hierarchy, which is built with respect to the number of 
uses of fi in the definition of a given / . 
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Definition 2.5. For a given R-recursive expression s(x), let MXi(s) (the p-number 
with respect to Xi ) be defined as follows: 

MZ(0) = MI(1) = MX(-1) = 0, 

Mx(f(gi,g2, •••)) = max(MXj(/) + Mx(gj)), 
3 

Mx(h = f+ [V g(x,y',h)dy') = max(Mx(f),Mx(g),Mh(g)), 
Jo 

fy 

My(h — / + / g(x,y',h)dy') = max.(My,(g), Mh(g)), 
Jo 

Mx{nyf(x,y)) = max(Mx(f),My(f)) + 1, 

where x can by any x\,..., xn for x = (x\,..., xn). 
For an R-recursive function / , let M ( f ) = max, MXi (s) minimized over all 

expressions s that define / . Now we are ready to define //-hierarchy. 

Definition 2.6. The p-hierarchy is a family of Mj = {/ : M ( f ) < j}. 

Let us add that if / is in M j then rjyf is in Mj+2-

As it was mentioned we focus our interest on functions defined by the infinite 
limits. 

Definition 2.7. Let g : Rn x R —>• R, then we can say the function f : Rn R is 
defined by an infinite limit from g if: 

f(£\ _ f lim2/->oo g(x,y) limy^oo g{x, y) exists, 
\ undefined otherwise. 

3 Auxiliary results 
In this section we give a few results which will be useful in the proof of the main 
theorem. We start with a slight modification of the definition of R-recursive func-
tions. 

Lemma 3.1. Let us consider the set of functions generated from 0 ,1 , -1 by the 
operations 1,2 from the Definition 2.1 and by absolute fi-recursion Pyf{x,y) = 
în/{|y| : f(x,y) = 0}. Then this set of functions is equal to the set of all R-recursive 
functions. 

Proof. Because —1 can be simply defined in the set of R-recursive functions, it is 
sufficient to prove that in definitions operation /t can be replaced by and vice 
versa. 

As the first case we consider the method of replacing ¡iA by /¿. Let h(x) = 
Vyi{x ,y) . Let us set f'(x,y) = f(x,y)f(x,-y). Clearly h(x) = -fiyf'{x,y). 
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Because —x and multiplication are R-recursive, so h defined as above is R-recursive 
too. 

Now we must show that function h(x) = P.yf(x,y) can be defined by ¡J.A. 
Let us point out the fact that |z| = fiA (x — y). Then we will use f+{x,y) = 
Hx,\y\)J-{x,y) = f(x,-\y\) to define 

h+(x) = n*f+(x,y), h~{x) = ii*f-(x,y). 

It is simple to observe that h+ gives as the result the smallest nonnegative zero of 
/ and h~ the absolute value of the greatest nonpositive (the smallest with respect 
to absolute value) zero of / . 

We will choose as h(x) the proper value from h+(x),—h~(x). We can define 
K=(w,y) = S(w - y), where ¿(x) = 1 - fj,A (x2 + y2)(y - 1). Prom definition 
K-{w,y) is equal to 1 if w = y, 0 if w ^ y. Then the function Q(w) = 1 for x > 0, 
0 otherwise, can be defined as K=(w, |to|).-

We can conclude the proof by the following observation 

h(*\ - I Z n{X> - { h+(x) h+(x) < h-(x). 

Hence h(x) = -h~{x)e(h+(x) - h~{x)) + h+(x)( 1 r- Q(h+(x) - h~(x))) and since 
+ is defined without /x and all remaining functions in the last equation are defined 
only by fiA, so h(x) can be defined by instead of p. • 

It is interesting to define the //^-hierarchy of R-recursive functions as the analog 
to /¿-hierarchy. 

Defini t ion 3.2. For a given R-recursive expression s(x), let MA(s) (the 
number with respect to ) be defined as follows: 

MA( 0) = MA{ 1) = MA(-1) = o, • 

MA(f{gU92, •••)) = max(M*(f) + MA{9])), 
3 

M*(h = f+ g(x,y',h)dy') = m a x ( M A ( f ) , MA(g), MA(g)), 
Jo 

My(h = f + f 9(x,y',h)dy') = m a x ( M A ( g ) , MA(g)), 
Jo 

MA(nAf(x,y)) = m a x ( M A ( f ) , M A ( f ) ) + 1, 

where x can by any x\,..., xn for x = (xi,... ,xn). 

For an R-recursive function / , let M A ( f ) = max; MA (s) minimized over all 
expressions s that define / and MA = {/ : M A { f ) < j}. 

. Now we can add a corollary from the previous lemma. 
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Corollary 3.3. In the above lemma we use only one fi instead of \iA, when we 
change the definition of function with \iA by the definition with p. Hence if some 
function f is from MA then f € Mk • 

The reverse relation is more complicated. In the definition of h given by h(x) = 
-h~(x)Q(h+ (x) - h~(x)) + / i + ( i ) ( l - Q(h+(x) — h~(x))) the operation fiA is used 
3 times. So each function from Mj belongs to MAj. 

Lemma 3.4. Let g : Rn+1 —> R be an R-recursive function. Then there are R-
recursive functions G : /?n+1 R, S : R —>• R such that 

inf g(x,y) = S(pAG(x,w)). y 

Proof. We can distinguish three cases in the proof: 

1. (Vi, y)g(x, y) > 0. Then we can write 

y 

where 

inf g(x, y) = inf { H : G'(x, w) = 0}, 

0 {3y)g(x,y)-w = 0, 
G (x,w) | j otherwise 

The condition (3y)g(x, y) — w = 0 is equivalent to the fact that py(g(x, y) — w) 
is defined. But the last statement can easily be checked by the function rj. 
Finally we have 

G'(x,y) = 1-T)y(g(x,y) - w) and inf g{x,y) = pAG'(x,w), 
y 

so in this case S = I\,G = G'. 
2. (Vx,y)g(x ,y ) < 0. In this case we can observe that i n f y g ( x , y ) is a negative 

number and the infimum 'searches' in the direction of the smallest negative 
numbers, whereas gives us a positive result and its 'search' is oriented to 
zero. That is why we must use some transformation in a construction of the 
proper result. The simplest way to change 'the orientation' of the infimum is 
the expression • Let our expression be equal to 

otherwise. 

then G"(x, w) is zero iff ^ is a value of g(x, y) for some y. Hence an infimum 
on g is equal to: 

- 1 
in f № {H : G"(x,w) = 0} 

and (like in the previous step) we eliminate the quantifier: 
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We can write now that 

inf g(x,y) = S(V£G(X,W)), S(Z) = -L/z,G = G". y 

3. Now we are prepared to consider the general case, where g : Rn+1 R is 
an arbitrary function. Let us observe, that if there is one point y s u c h that 
9{x>Vo) < 0 then i n f y g ( x , y ) must be negative and if such point y¿" does not 
exist then the first case of our proof solves the problem. 
To check an existance of the point it is sufficient to use the condition 
riyK<(g(x,y),0) = 1 where K<(z,y) = 0 z <y. Then we can find y 
We will use the following method (we must remember that HA gives us the 
absolute value of the proper solution) 

«- = / ^yK<(9(x,y),0) g(x,f,AK<(g(x,y),0))<0, 
y° \ —fiyK<(g(x,y),0) otherwise. 

Then we can define the function: 

Q~(x v) = ( y K \ g(x,y0) otherwise. 

This function for a given x has the same infimum as g, but its values are 
always negative. 
As a summary of the previous considerations we give the conditional definition 
of q(x), where q(x) denotes the expression in f y g{x ,y ) : 

q(x) = < 

i n f ^ M : I - 7]y[g{x,y) - w) = 0} if (^y)g{x,y) > G, 
if (Vy)g(x,y) < 0, - l 

¡nMMil-Tfcf j^- i i^O} 
. , f. i, t -^ t i—rr otherwise. 

Let us add that the condition (Vy)g(x, y) > 0 is equivalent to the statement 
does not exist, but this last phrase can be expressed by r]yK<(g(x, y), 0) — 0. 
The similar translation of (Vy)g(x,y) < 0 is: J?yif<(0,g(i,2/)) = 0. 

It is obvious that such q(x) is R-recursive (inf№{|w| : . . .} can be replaced by HA)-
The final forms of functions S and G can be obtained from the above definition of 
q. • 

Remark 3.5. Let us observe that in the general case (the third point of the above 
proof) we used for the construction of the definition ofq the function TJ, infimum and 
y^ , which gives the number of used ¡iA operations equal to 5. This is the maximal 
number of p,A operations for all cases. Hence for-'g £ Mj we have q 6 Mj+5. 

We also need a similiar result, but with restricted infimum. 
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L e m m a 3.6. Let g : i ? n + 1 —» R be an R-recursive function. Then there are R-
recursive functions G : Rn+2 —> R, S : R—> R such that for all z £ R 

inf g{x,y) = S(n*G(x,w,z)). 

y€{z, oo) 

Proof. Let us consider the set S9
Z'X such that 

S«'* = {u; : (3y > z)g(x,y) = tu}. 
We will use the characteristic function of this set: xz'x(.w) = 0 ^^ w € 5f 
X9

z
,s(w) = 1 w £ S%'x. From the Lemma 3.4 we have Sg,Gg for a given g 

and the problem of unrestricted infimum. It is clear that 

inf g(x,y) = Sg(ni(\Gg(x,w)\ + | x * » | ) ) . 
3 / 6 ( 2 , O O ) 

Now we should prove only that xl'x(w) is a n R-recursive function. But Xz'x(w) 
can be written in the form 

Xl's(w) = 0 (3y)[(g(x,y) =w)A(y> z)}, 

Xa
z''M = 1 «=> mM*,v)*w)V(y<z)]. 

These last equations define X3
z'x(w) as 1 — i?y(|5(S,2/)| -1- K>(y, z)), which ends this 

proof. • 

R e m a r k 3.7. Because Xg
z
x{w) defined by means of rj and K>, so it uses 3 fiA 

operations but unrestricted infimum uses HA five times. Hence if g € Mj then the 
infy 6 ( 2 i 0 0 ) g{x,y) belongs to Mj+5. 

4 Main theorem 
In this section we prove that the class of R-recursive functions is closed under the 
operation of defininig functions by infinite limits. 

T h e o r e m 4.1. Let F : Rn+1 R be an R-recursive function. Let us define 
f : Rn —• R in the following way f(x) = lim^oo F(x,y). Then there exist such 
R-recursive functions G : i?n+1 R, S : R -> R that 

f(x) = S(^G(x,w)). 

Proof. Let us consider the function f(x) defined as above. The function f(x) is 
defined in the point x if there exist limits 

liminf F(x,y), l imsupF(x,i/) 

and they are equal to each other in this point. 
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Let us recall the definitions: 

liminf F(x,y) = sup inf F(x,y), limsup-F(i,7/) = inf sup F(x,y). 
2 V>z y->oo z y>z 

To check that the function / is defined in x first we must check the conditions: 
supz inf y > z F(x,y), inf2 supy > z F(x,y) are defined for x. So it will be helpful if we 
prove that there exist functions K%,KS such that 

Kit£\ = [ 1 SUPz infy>* F(x,y) exists, 
\ 0 otherwise. 

and Ks is analogously defined for inf2 supy > z F(x,y). 
It is easy to see that we can replace the expression ' supF ' by the expression 

'— inf(—F)' in the above equations. So we can apply Lemmas 3.4 and 3.6, which 
means, that there are R-recursive functions Ss ,GS ,S\G% such that 

sup inf F(x,y) = S'ipiG'ix^)), z V>z 

inf sup F(x,y) = Ss(fiiGs(x,w)). 2 y>z 

The left sides in the last two lines are defined iff there exist such wi,ws, that 
Gl(x,Wi) = Gs(x,ws) = 0. This condition can be checked by the R-recursive 
functions T]wGl(x,w),r]wGs(x,w). The above considerations imply that K%,KS 

exist and they are R-recursive. 
Now to end the proof it is sufficient to define: 

f(x) = 

\ undefined otherwise. 

This definition of / by R-recursive functions is in the obvious way equivalent to the 
definition by the operation of infinite limit. • 

Let us point out that in the above proof we use two operations of infimum for 
lim inf: the outer (unrestricted) infimum, which is obtained from the transformed 
supremum and the second - inner (restricted) infimum. We have the analogous 
construction for lim sup. Hence and from remarks below the Lemmas 3.4, 3.6 we 
can give the following result: 

Theorem 4.2. If F is a function from Mj then f defined as in the Theorem 4-1 
is in Mj+io-
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