On Armstrong Relations for Strong Dependencies

Vu Duc Thi* and Nguyen Hoang Son ${ }^{\dagger}$

Abstract

The strong dependency has been introduced and axiomatized in [2], [3], [4], [5]. The aim of this paper is to investigate on Armstrong relations for strong dependencies. We give a necessary and sufficient condition for an abitrary relation to be Armstrong relation of a given strong scheme. We also give an effective algorithm finding a relation r such that r is Armstrong relation of a given strong scheme $G=(U, S)$ (i.e. $S_{r}=S^{+}$, where S_{r} is a full family of strong dependencies of r, and S^{+}is a set of all strong dependencies that can be derived from S by the system of axioms). We estimate this algorithm. We show that the time complexity of this algorithm is polynomial in $|U|$ and $|S|$.

1 Introduction

Let us give some necessary definitions and results that are used in next section.
Definition 1. Let U be a nonempty finite set of attributes, $r=\left\{h_{1}, \ldots, h_{m}\right\} a$ relation over U, and $A, B \subseteq U$. We say that B strongly depends on A in r (denote $A \underset{r}{\stackrel{s}{\rightarrow}} B$) iff

$$
\left(\forall h_{i}, h_{j} \in r\right)\left((\exists a \in A)\left(h_{i}(a)=h_{j}(a) \Rightarrow(\forall b \in B)\left(h_{i}(b)=h_{j}(b)\right)\right)\right.
$$

Let $S_{r}=\{(A, B): A \underset{r}{\stackrel{s}{\rightarrow}} B\} . S_{r}$ is called a full family of strong dependencies of r. Where we write (A, B) or $A \rightarrow B$ for $A \underset{r}{\stackrel{s}{\rightarrow}} B$ when r, s are clear from the context.

Definition 2. A strong dependency (SD) over U is a statement of form $X \rightarrow Y$, where $X, Y \subseteq U$. The $S D X \rightarrow Y$ holds in a relation r if $A \underset{r}{s} B$. We also say that r satisfies the $S D A \rightarrow B$.

Definition 3. Let U be a set of attributes and $\mathcal{P}(U)$ its power set. Let $Y \subseteq$ $\mathcal{P}(U) \times \mathcal{P}(U)$. We say that Y is an s-family over U iff for all $A, B, C, D \subseteq U$ and $a \in U$

[^0](S1) $(\{a\},\{a\}) \in Y$,
(S2) $(A, B) \in Y,(B, C) \in Y, B \neq \emptyset \Rightarrow(A, C) \in Y$,
(S3) $(A, B) \in Y, C \subseteq A, D \subseteq B \Rightarrow(C, D) \in Y$,
(S4) $(A, B) \in Y,(C, D) \in Y \Rightarrow(A \cup C, B \cap D) \in Y$,
(S5) $(A, B) \in Y,(C, D) \in Y \Rightarrow(A \cap C, B \cup D) \in Y$.
It is easy to see that S_{r} is an s-family over U.
It is known [4] that if Y is an s - family over U, then there exists a relation r such that $Y=S_{r}$.

Definition 4. A strong scheme G is a pair (U, S), where U is a finite set of attributes, and S a set of $S D s$ over U.

Let S^{+}be a set of all SDs that can be derived from S by the rules in Definition 3.

It can be seen [4] that if $G=(U, S)$ is a strong scheme then there is a relation r over U such that $S_{r}=S^{+}$. Such a relation is called Armstrong relation of G.

Definition 5. Let K be a Sperner-system over U. We define the set of antikeys of K, denoted by K^{-1}, as follows:

$$
K^{-1}=\{A \subset U:(B \in K) \Rightarrow(B \nsubseteq A) \text { and }(A \subset C) \Rightarrow(\exists B \in K)(B \subseteq C)\}
$$

Definition 6. The mapping $F: \mathcal{P}(U) \longrightarrow \mathcal{P}(U)$ is called a strong operation over U if for every $a, b \in U$ and $A \in \mathcal{P}(U)$ the following properties hold:
(1) $a \in F(\{a\})$,
(2) $b \in F(\{a\})$ implies $F(\{b\}) \subseteq F(\{a\})$,
(3) $F(A)=\bigcap_{a \in A} F(\{a\})$.

Remark 7. It is clear that for arbitrary strong operation F
(1) $F(\emptyset)=U$,
(2) For all $A, B \in \mathcal{P}(U): F(A \cup B)=F(A) \cap F(B)$,
(3) If $A \subseteq B$ then $F(B) \subseteq F(A)$.

It can be seen that the set $\{F(\{a\}): a \in U\}$ determines the set $\{F(A): A \in$ $\mathcal{P}(U)\}$.

The following theorem shows that between s - families and strong operations there exists a one - to - one correspondence

Theorem 8. [7] Let S be a s-family over U. We define the mapping F_{S} as follows: $F_{S}(A)=\{a \in U:(A,\{a\}) \in S\}$. Then F_{S} is a strong operation over U. Conversely, if F is a strong operation over U then there is exactly one s - family S over U such that $F_{S}=F$, where $S=\{(A, B): B \subseteq F(A)\}$.

Definition 9. Let $G=(U, S)$ be a strong scheme over $U, A \subseteq U$. We set

$$
A^{+}=\left\{a \in U: A \rightarrow\{a\} \in S^{+}\right\}
$$

A^{+}is called the closure of A over G.
It is clear that $A \rightarrow B \in S^{+}$iff $B \subseteq A^{+}$.
Lemma 10. Let $G=(U, S)$ be a strong scheme over U. Suppose that $A=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{l}\right\}$ are subsets of U. Then $A \rightarrow B \in S^{+}$if and only if $\left\{a_{i}\right\} \rightarrow\left\{b_{j}\right\} \in S^{+}$for every $i=1, \ldots, k ; j=1, \ldots, l$.

Proof. By rules (S3), (S4) and (S5), the lemma is obvious.
Algorithm 11. [6] (Finding $\{a\}^{+}$)
Input: given a strong scheme $G=(U, S)$, where $S=\left\{A_{i} \rightarrow B_{i}: i=1, \ldots, m\right\}, a \in$ U.
Output: compute $\{a\}^{+}$.
Method: we compute $\{a\}^{+}$by induction.
Step 1. We set $X^{(0)}=\{a\}$.
Step $i+1$. If there is a $\mathrm{SD} A_{j} \rightarrow B_{j} \in S$ so that $A_{j} \cap X^{(i)} \neq \emptyset$ and $B_{j} \nsubseteq X^{(i)}$ then we set

$$
X^{(i+1)}=X^{(i)} \cup\left(\bigcup_{A_{j} \cap X^{(i)} \neq \emptyset} B_{j}\right)
$$

In the converse case we set $\{a\}^{+}=X^{(i)}$.
It is easy to see that there is a k such that $\{a\}=X^{(0)} \subseteq X^{(1)} \subseteq \cdots \subseteq X^{(k)}=$ $X^{(k+1)}=\cdots$ and we set

$$
\{a\}^{+}=X^{(k)}
$$

Proposition 12. [6] For each $a \in U$ Algorithm 11 computes $\{a\}^{+}$.
It can be seen that the complexity of Algorithm 11 is polynomial time in the $|U|,|S|$.

Proposition 13. [6] Let $G=(U, S)$ be a strong scheme over U, and $A \rightarrow B$ is a $S D$. Then there is a polynomial time algorithm deciding whether $A \rightarrow B \in S^{+}$.

2 Armstrong Relation for Strong Dependency

It is known [8] that there is an algorithm that finds a set of all antikeys from a given Sperner-system.
Algorithm 14. [8]
Input: a Sperner-system $K=\left\{B_{1}, \ldots, B_{m}\right\}$ over U.
Output: K^{-1}.

Method:
Step 1. We set $K_{1}=\left\{U-\{a\}: a \in B_{1}\right\}$. It is clear that $K_{1}=\left\{B_{1}\right\}^{-1}$.
Step $q+1(q<m)$. We suppose that $K_{q}=F_{q} \cup\left\{X_{1}, \ldots, X_{t_{q}}\right\}$, where $X_{1}, \ldots, X_{t_{q}}$ containing B_{q+1} and $F_{q}=\left\{A: A \in K_{q}, B_{q+1} \nsubseteq A\right\}$. For all $i\left(i=1, \ldots, t_{q}\right)$ we construct the antikeys of $\left\{B_{q+1}\right\}$ on X_{i} in an analogous way as K_{1}. Denote them by $A_{1}^{i}, \ldots, A_{r_{i}}^{i} \quad\left(i=1, \ldots, t_{q}\right)$. Let

$$
K_{q+1}=F_{q} \cup\left\{A_{p}^{i}: A \in F_{q} \Rightarrow A_{p}^{i} \not \subset A, 1 \leq i \leq t_{q}, 1 \leq p \leq r_{i}\right\}
$$

We set $K^{-1}=K_{m}$.
Theorem 15. [8] For each $q(1 \leq q \leq m), K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$, i.e. $K_{m}=K^{-1}$.
It can be seen that K and K^{-1} are uniquely determined by one another and the determination of K^{-1} based on our algorithm does not depend on the order of B_{1}, \ldots, B_{m}. Denote $K_{q}=F_{q} \cup\left\{X_{1}, \ldots, X_{t_{q}}\right\}$ and let $l_{q}(1 \leq q \leq m-1)$ be the number of elements of K_{q}.

Proposition 16. [8] The worst-case time complexity of our Algorithm 14 is

$$
\mathcal{O}\left(|U|^{2} \sum_{q=1}^{m-1} t_{q} u_{q}\right)
$$

where

$$
u_{q}= \begin{cases}l_{q}-t_{q} & \text { if } l_{q}>t_{q} \\ 1 & \text { if } l_{q}=t_{q}\end{cases}
$$

Note that $l_{q} \geq t_{q}$. Clearly, in each step of our algorithm K_{q} is a Spernersystem. In the cases for which $l_{q} \leq l_{m}(q=1, \ldots, m-1)$, it is easy to see that the time complexity of our algorithm is not greater than $\mathcal{O}\left(|U|^{2}|K|\left|K^{-1}\right|^{2}\right)$. Hence, in these cases Algorithm 14 finds K^{-1} in polynomial time in $|U|,|K|$ and $\left|K^{-1}\right|$. Obviously, if the number of elements of K is small, then Algorithm 14 is very effective. It only requires polynomial time in $|U|$.

Definition 17. Let $G=(U, S)$ be a strong scheme over U, and $a \in U$. We set

$$
K_{a}=\left\{A \subseteq U: A \rightarrow\{a\} \in S^{+}, \nexists B:\left(B \rightarrow\{a\} \in S^{+}\right)(B \subset A)\right\}
$$

K_{a} is called the family of minimal sets of the attribute a.
Clearly, $\{a\} \in K_{a}, U \notin K_{a}$ and K_{a} is a Sperner-system over U.
Proposition 18. Let $G=(U, S)$ be a strong scheme over $U, a \in U, K_{a}$ is a family of minimal sets of a and $n=|U|$. Then
(1) $K_{a}=\left\{\{b\}: b \in U,\{b\} \rightarrow\{a\} \in S^{+}\right\}$.
(2) $\forall A \in K_{a}:|A|=1$.
(3) $\left|K_{a}\right| \leq n$.
(4) $\left|K_{a}^{-1}\right|=1$.

Proof. (1) We define the mapping $F_{S}: \mathcal{P}(U) \longrightarrow \mathcal{P}(U)$ as follows:

$$
F_{S}(A)=\left\{a \in U: A \rightarrow\{a\} \in S^{+}\right\}
$$

By Theorem 8, it is clear that F_{S} is a strong operation over U. It is easy to see that $A^{+}=F_{S}(A)$. Consequently, by Definition 6 we have

$$
\begin{align*}
A^{+} & =\bigcap_{a \in A} F_{S}(\{a\}) \\
& =\bigcap_{a \in A}\left\{b \in U:\{a\} \rightarrow\{b\} \in S^{+}\right\} \tag{1}\\
& =\bigcap_{a \in A}\{a\}^{+}
\end{align*}
$$

By (1) we obtain $A^{+} \subseteq\{a\}^{+} \quad \forall a \in A$. From this and the definition of K_{a} we immediately get

$$
K_{a}=\left\{\{b\}: b \in U,\{b\} \rightarrow\{a\} \in S^{+}\right\}
$$

(2) It is obvious from (1).
(3) Because for each $A \in K_{a}:|A|=1$, we can be seen that $\left|K_{a}\right| \leq n$.
(4) By (2) and the definition of antikeys set, it is clear that $\left|K_{a}^{-1}\right|=1$.

The proposition is proved.
From this proposition we construct an algorithm finding a minimal set of the attribute a.

Algorithm 19. MSA

Input: a strong scheme $G=(U, S)$, and $a \in U$.
Output: $A \in K_{a}$.
Method:
$\operatorname{MSA}(G, a)$
BEGIN
Test:=true;
WHILE test AND there is an attribute $b \in U$ such that

$$
\{b\} \rightarrow\{a\} \in S^{+}
$$

DO BEGIN
$A:=\{b\} ;$
Test:=false
END
RETURN (A)
END.

Lemma 20. $A \in K_{a}$.
Proof. Because $\{a\} \in K_{a}$ and U is a finite set of attributes, the lemma is clear.
The following lemma is obvious
Lemma 21. The worst-case time complexity of MSA is $\mathcal{O}\left(|U|^{2}|S|\right)$.
Remark 22. By Lemma 10 we have $A \rightarrow B \in S^{+}$if and only if $\{a\} \rightarrow B \in S^{+}$ for every $a \in A$.

From this, we obtain the following lemma
Lemma 23. Let $G=(U, S)$ be a strong scheme, $a \in U, K_{a}$ be a family of minimal sets of $a, L \subseteq K_{a},\{a\} \in L$. Then $L \subset K_{a}$ if and only if there are $C \in L, A \rightarrow B \in$ S^{+}such that $\forall E \in L \Rightarrow E \nsubseteq A \cup(C-B)$.

Proof. Suppose that $L \subset K_{a}$. Hence, there exists a $D \in K_{a}-L$. By $\{a\} \in L$ and the definition of K_{a}, we have

$$
\begin{equation*}
D \rightarrow\{a\} \in S^{+} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a \notin D . \tag{3}
\end{equation*}
$$

If for every $\mathrm{SD} A \rightarrow B \in S$ implies $(A \cap D \neq \emptyset, B \subseteq D)$, or $A \cap D=\emptyset$, then $D^{+}=D$. Therefore, by (3) we have $D \rightarrow\{a\} \notin S^{+}$. Which contradicts (2). Hence, there exists a SD $A \rightarrow B \in S$ such that $A \subseteq D$ and $B \nsubseteq D$. From this and Remark 22 we have a C such that $C \in L, A \subseteq D$ and $C-B \subseteq D$. Clearly, $A \cup(C-B) \subseteq D$. Consequently, we obtain $E \nsubseteq A \cup(C-B)$ for every $E \in L$.

Conversely, assume that there are $C \in L, A \rightarrow B \in S^{+}$such that

$$
\begin{equation*}
E \nsubseteq A \cup(C-B) \tag{4}
\end{equation*}
$$

for every $E \in L$. By the definition of L we have $A \cup(C-B) \rightarrow\{a\} \in S^{+}$. Because $\{a\} \in L$, there is a D such that $D \in K_{a}, a \notin D$ and $D \subseteq A \cup(C-B)$. From (4) we obtain $E \nsubseteq D$ for all $E \in L$, i.e. $D \in K_{a}-L$, or $L \subset K_{a}$.

The lemma is proved.
From this lemma and MSA we construct the following algorithm by induction

Algorithm 24. FAMMSA

Input: a strong scheme $G=(U, S)$ and $a \in U$.
Output: K_{a}.
Method:
Step 1. Set $L(1)=E(1)=\{\{a\}\}$.

Step $i+1$. If there are C and $A \rightarrow B$ such that $C \in L(i), A \rightarrow B \in S, \forall E \in L(i) \Rightarrow$ $E \nsubseteq A \cup(C-B)$, then by MSA construct an $E(i+1)$, where $E(i+1) \subseteq A \cup(C-B)$ and $E(i+1) \in K_{a}$. We set

$$
L(i+1)=L(i) \cup E(i+1)
$$

In the converse case we set $K_{a}=L(i)$.
By Lemma 23 there exists a natural number n such that $K_{a}=L(n)$.
The following lemma is obvious
Lemma 25. The worst-case time complexity of FAMMSA is

$$
\mathcal{O}\left(|U|^{2}|S|\left|K_{a}\right|\left(1+|U|\left|K_{a}\right|\right)\right)
$$

By (3) in Proposition 18 we are easy to see that the time complexity of FAMMSA is polynomial in $|U|$ and $|S|$. Consequently, our algorithm is very effective.

It is obvious that if $S=\left\{\{a\} \rightarrow B_{i}: i=1, \ldots, m\right\}$ or for each SD $A \rightarrow B \in S^{+}$ implies $a \notin B$, then $K_{a}=\{\{a\}\}$.

Let $G=(U, S)$ be a strong scheme over U. Set

$$
\begin{aligned}
& \operatorname{MAX}\left(S^{+}, a\right)=\left\{A \subseteq U:\left(A \rightarrow\{a\} \notin S^{+}\right)\right. \\
& \quad \text { and }\left((A \subset B) \Rightarrow(\exists D \subset B)\left(D \rightarrow\{a\} \in S^{+}\right)\right\}
\end{aligned}
$$

It can be seen that

$$
\begin{equation*}
\operatorname{MAX}\left(S^{+}, a\right)=K_{a}^{-1} \quad \forall a \in U \tag{5}
\end{equation*}
$$

Denote $M A X\left(S^{+}\right)=\bigcup_{a \in U} M A X\left(S^{+}, a\right)$.
Lemma 26. If $U-\cup M A X\left(S^{+}\right) \neq \emptyset$ then

$$
\{c\} \rightarrow U \in S^{+}
$$

where for every $c \in U-\cup M A X\left(S^{+}\right)$.
Proof. Suppose that $c \in U-\cup M A X\left(S^{+}\right)$. Hence $c \notin \cup M A X\left(S^{+}\right)$. By (5) we have

$$
\{c\} \notin K_{a}^{-1} \quad \forall a \in U
$$

According to Proposition 18 and the definition of set of antikeys we have

$$
\{c\} \in K_{a} \quad \forall a \in U
$$

Consequently by (S5) in Definition 3 and the definition of K_{a} we immediately get

$$
\{c\} \rightarrow U \in S^{+}
$$

The lemma is proved.

Lemma 27. For every $b \in A, A \in K_{a}^{-1}:\{b\} \rightarrow\{c\} \notin S^{+}$, where $c \in U-A$.
Proof. Assume that there exists an $A \in K_{a}^{-1}$ and $b \in A$ such that $\{b\} \rightarrow\{c\} \in S^{+}$. Because $A \in K_{a}^{-1}$ and $c \in U-(A \cup\{a\})$, we have $\{c\} \in K_{a}$. Then by Proposition 18 we have

$$
\{c\} \rightarrow\{a\} \in S^{+}, \quad a \in U
$$

Hence, by (S2) in Definition 3 we obtain

$$
\{b\} \rightarrow\{a\} \in S^{+}
$$

Which contradicts the facts that $A \in K_{a}^{-1}$ and $b \in A$. Therefore, we have $\{b\} \rightarrow\{c\} \notin S^{+} \forall b \in A, A \in K_{a}^{-1}$ and $c \in U-(A \cup\{a\})$.

The lemma is proved.
Now we assume that $\operatorname{MAX}\left(S^{+}\right)=\left\{A_{1}, \ldots, A_{t}\right\}$. Then we defined the mapping Max : $U \longrightarrow \mathcal{P}(U)$ as follows:

$$
\operatorname{Max}(a)= \begin{cases}\bigcap_{a \in A_{i}} A_{i} & \text { if } \exists A_{i} \in M A X\left(S^{+}\right): a \in A_{i} \\ U & \text { otherwise }\end{cases}
$$

It is easy to see that $\forall a \in U: a \in \operatorname{Max}(a)$, and hence $\operatorname{Max}(a) \neq \emptyset$. On the other hand, we are easy to see that if $S=\left\{\left\{a_{1}\right\} \rightarrow U, \ldots,\left\{a_{n}\right\} \rightarrow U\right\}$ where $U=\left\{a_{1}, \ldots, a_{n}\right\}$ then

$$
\forall a_{i} \in U: \quad \operatorname{Max}\left(a_{i}\right)=U
$$

Lemma 28. If $\operatorname{Max}(a)=\{a\} \cup A, A \neq \emptyset$ and $a \notin A$ then $\{a\} \rightarrow A \in S^{+}$.
Proof. First we suppose that there is $b \in A$ such that $\{a\} \rightarrow\{b\} \notin S^{+}$. By Proposition 18 we get $\{a\} \notin K_{b}$. Assume that $K_{b}^{-1}=\{\{a\} \cup B\}$. It is clear that $\{b\} \in K_{b}$. Hence $b \notin \cup K_{b}^{-1}$, i.e. $b \notin B$. It can be seen that if $B \neq \emptyset$ then $A \subseteq B$. Thus we obtain $b \in B$. This is a contradiction. Therefore, $B=\emptyset$ holds. By the definition of $\operatorname{Max}(a)$ we obtain $\operatorname{Max}(a)=\{a\}$. Which conflicts with the fact that $\operatorname{Max}(a)=\{a\} \cup A, A \neq \emptyset$ and $a \notin A$. Consequently, we have

$$
\{a\} \rightarrow\{b\} \in S^{+} \quad \forall b \in A
$$

From this and according to (S5) in Definition 3 we immediately get

$$
\{a\} \rightarrow A \in S^{+}
$$

The Lemma is proved.
By Lemma 28 it is obvious that if $\operatorname{Max}(a)=U$ then $\{a\} \rightarrow U \in S^{+}$.
The following theorem gives a necessary and sufficient condition for an arbitrary relation to be Armstrong relation of a strong scheme.

Theorem 29. Let $G=(U, S)$ be a strong scheme, $r=\left\{h_{1}, \ldots, h_{m}\right\}$ a relation over U. Then a necessary and sufficient condition for r to be Armstrong relation of strong scheme G is

$$
\forall a \in U:\{a\}_{r}^{+}=\operatorname{Max}(a)
$$

where $\{a\}_{r}^{+}=\left\{b \in U:\{a\} \rightarrow\{b\} \in S_{r}\right\}$.
Proof. First we show that $\{a\}^{+}=\operatorname{Max}(a)$ for all $a \in U$. Denote $H=\left\{A_{i}: A_{i} \in\right.$ $M A X\left(S^{+}\right)$and $\left.a \in A_{i}\right\}$. It can be seen that if $H=\emptyset$ then according to Lemma 26 we get $\{a\} \rightarrow U \in S^{+}$.

Suppose that $H \neq \emptyset$. It is easy to see that if $H \subseteq \operatorname{MAX}\left(S^{+}\right)$holds then by Lemma 28 we have $\{a\} \rightarrow \operatorname{Max}(a) \in S^{+}$.

By Lemma 27, it is obvious that for any M such that $M \supset \operatorname{Max}(a)$ we have $\{a\} \rightarrow M \notin S^{+}$.

Consequently, according to the definition of $\{a\}^{+}$we have

$$
\begin{equation*}
\forall a \in U:\{a\}^{+}=\operatorname{Max}(a) \tag{6}
\end{equation*}
$$

Obviously, according to Theorem 8 we can see that $S_{r}=S^{+}$iff for every $a \in U:\{a\}^{+}=\{a\}_{r}^{+}$holds. Hence, if $S_{r}=S^{+}$holds then $\{a\}_{r}^{+}=\operatorname{Max}(a)$ for all $a \in U$.

Conversely, we suppose that $\{a\}_{r}^{+}=\operatorname{Max}(a)$ for all $a \in U$. Then by Theorem 8 and (6) we obtain $S_{r}=S^{+}$.

The theorem is proved.
Now we construct an algorithm that from a given strong scheme G finds a relation r such that r is Armstrong relation of G.

Algorithm 30.

Input: a strong scheme $G=(U, S)$.
Output: a relation r such that $S_{r}=S^{+}$.
Method:
Step 1. By FAMMSA compute K_{a} for each $a \in U$.
Step 2. By Algorithm 14 we compute K_{a}^{-1} for each $a \in U$.
Step 3. Set

$$
\operatorname{MAX}\left(S^{+}\right)=\bigcup_{a \in U} K_{a}^{-1}
$$

Step 4. Denote elements of $M A X\left(S^{+}\right)$by A_{1}, \ldots, A_{t}. We construct a relation $r=\left\{h_{0}, h_{1}, \ldots, h_{t}\right\}$ as follows

$$
\begin{aligned}
& \text { for all } a \in U, \quad h_{0}(a)=0, \quad \forall i=1, \ldots, t \\
& \qquad h_{i}(a)= \begin{cases}0 & \text { if } a \in A_{i} \\
i & \text { otherwise }\end{cases}
\end{aligned}
$$

By Theorem 29 we have r is an Armstrong relation of G, i.e. $S_{r}=S^{+}$.
The following example shows that for a given strong scheme G, Algorithm 30 can be applied to construct a relation r such that r is an Armstrong relation of G.

Example 31. A strong scheme $G=(U, S)$, where $U=\{a, b, c, d\}$ and $S=$ $\{\{a, b\} \rightarrow\{c\},\{b\} \rightarrow\{a, d\},\{d\} \rightarrow\{b\}\}$.

Then we have

$$
K_{a}=\{\{a\},\{b\},\{d\}\}, K_{b}=\{\{b\},\{d\}\}, K_{c}=\{\{a\},\{b\},\{c\},\{d\}\}, K_{d}=
$$ $\{\{b\},\{d\}\}$.

$$
K_{a}^{-1}=\{\{c\}\}, K_{b}^{-1}=\{\{a, c\}\}, K_{c}^{-1}=\emptyset, K_{d}^{-1}=\{\{a, c\}\}
$$

$$
\operatorname{MAX}\left(S^{+}\right)=\{\{a, c\},\{c\}\}
$$

Consequently

$$
r=\begin{array}{llll}
a & b & c & d \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
2 & 2 & 0 & 2
\end{array}
$$

It is obvious that $S_{r}=S^{+}$.

Algorithm 32. [8]

Input: a Sperner-system $K_{a_{i}}=\left\{B_{1}, \ldots, B_{m_{i}}\right\}$ over U.
Output: $K_{a_{i}}{ }^{-1}$.
Method:
Step 1. We set $K_{i_{1}}=\left\{U-\{a\}: a \in B_{1}\right\}$. It is clear that $K_{i_{1}}=\left\{B_{1}\right\}^{-1}$.
Step $q+1\left(q<m_{i}\right)$. We suppose that $K_{i_{q}}=F_{i_{q}} \cup\left\{X_{1}, \ldots, X_{t_{i q}}\right\}$, where $X_{1}, \ldots, X_{t_{i_{q}}}$ containing B_{q+1} and $F_{i_{q}}=\left\{A: A \in K_{i_{q}}, B_{q+1} \nsubseteq A\right\}$. For all j $\left(j=1, \ldots, t_{i_{q}}\right)$ we construct the antikeys of $\left\{B_{q+1}\right\}$ on X_{j} in an analogous way as $K_{i_{1}}$. Denote them by $A_{1}^{j}, \ldots, A_{r_{i}}^{j} \quad\left(j=1, \ldots, t_{i_{q}}\right)$. Let

$$
K_{i_{q+1}}=F_{i_{q}} \cup\left\{A_{p}^{j}: A \in F_{i_{q}} \Rightarrow A_{p}^{j} \not \subset A, 1 \leq j \leq t_{i_{q}}, 1 \leq p \leq r_{j}\right\}
$$

We set $K_{a_{i}}^{-1}=K_{i_{m}}$.
Denote $K_{i_{q}}=F_{i_{q}} \cup\left\{X_{1}, \ldots, X_{t_{i_{q}}}\right\}$ and $l_{i_{q}}\left(1 \leq q \leq m_{i}-1\right)$ be the number of elements of $K_{i_{q}}$.

It is easy to see that the time complexity of Algorithm 30 is the time complexity of step 1 and step 2. By Proposition 16 and Lemma 25, the following proposition is clear.

Proposition 33. The worst-case time complexity of Algorithm 30 is

$$
\mathcal{O}\left(n^{2} \sum_{i=1}^{n}\left(\sum_{q=1}^{m_{i}-1} t_{i_{q}} u_{i_{q}}+|S| m_{i}\left(1+n m_{i}\right)\right)\right)
$$

where

$$
\begin{aligned}
& U=\left\{a_{1}, \ldots, a_{n}\right\}, m_{i}=\left|K_{a_{i}}\right|, \\
& u_{i_{q}}= \begin{cases}l_{i_{q}}-t_{i_{q}} & \text { if } l_{i_{q}}>t_{i_{q}} \\
1 & \text { if } l_{i_{q}}=t_{i_{q}}\end{cases}
\end{aligned}
$$

In the cases for which $l_{i_{q}} \leq l_{m_{i}}\left(\forall i, \forall q: 1 \leq q \leq m_{i}\right)$, it is easy to see that the time complexity of our algorithm is

$$
\mathcal{O}\left(n^{2} \sum_{i=1}^{n}\left|K_{a_{i}}\right|\left(|S|+n\left|K_{a_{i}}\right||S|+\left|K_{a_{i}}^{-1}\right|^{2}\right)\right)
$$

By (3) and (4) in Proposition 18 we are easy to see that the time complexity of Algorithm 30 is polynomial in $|U|$ and $|S|$. Consequently, our algorithm is very effective.

References

[1] Armstrong W. W., Dependency structure of database relationship, Information Processing 74, North-Holland Pub. Co. , (1974) 580-583.
[2] Czédli G., Dependencies in the relational model of data (Hungarian), Alkalmaz Mat. Lapok 6 (1980), 131-143.
[3] Czédli G., On dependencies in the relational model of data, EIK 17 (1981), 103-112.
[4] Demetrovics J.,Logical and structural investigation of relation datamodel, MTA SZTAKI Tanulm-ányok 114 (1980), 1-97 (in Hungarian).
[5] Demetrovics J., Gyepesi G., On the functional dependency and generalizations of it. Acta Cybernetica Hungary 3 (1983), 295-305.
[6] Demetrovics J.,Thi V. D., Armstrong relations, functional dependencies and strong dependencies, Computers and Artificial Intelligence 14 (1995), 279-298.
[7] Thi V. D., Strong dependencies and s-semilattices, Acta Cybernetica 8 (1987), 195-202.
[8] Thi V. D., Minimal keys and Antikeys, Acta Cybernetica 7 (1986), 361-371.
[9] Thi V. D., Son N. H., Some problems related to keys and the Boyce-Codd normal form, Acta Cybernetica 16, 3 (2004), 473-483.

[^0]: *Institute of Information Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
 ${ }^{\dagger}$ Department of Mathematics, College of Sciences, Hue University, Vietnam

