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Functional Equations, Constraints, Definability of

Function Classes, and Functions of Boolean

Variables∗
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Abstract

The paper deals with classes of functions of several variables defined on an
arbitrary set A and taking values in a possibly different set B. Definability
of function classes by functional equations is shown to be equivalent to defin-
ability by relational constraints, generalizing a fact established by Pippenger
in the case A = B = {0, 1}.

Conditions for a class of functions to be definable by constraints of a
particular type are given in terms of stability under certain functional com-
positions. This leads to a correspondence between functional equations with
particular algebraic syntax and relational constraints with certain invariance
properties with respect to clones of operations on a given set.

When A = {0, 1} and B is a commutative ring, such B-valued functions
of n variables are represented by multilinear polynomials in n indetermi-
nates in B[X1, . . . , Xn]. Functional equations are given to describe classes of
field-valued functions of a specified bounded degree. Classes of Boolean and
pseudo-Boolean functions are covered as particular cases.

Keywords: Function classes, class composition, stability, functional equa-
tions, relational constraints, function class definability, ring-valued functions,
multilinear polynomial representations, linear equations, field-valued func-
tions of Boolean variables, Boolean functions, pseudo-Boolean functions.

1 Introduction and Basic Definitions

For arbitrary sets B and C, by a C-valued function on B we mean a map

f : Bn → C
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where n ≥ 1 is called the arity of f . The essential arity of an n-ary C-valued
function f : Bn → C is defined as the cardinality of the set of indices

I = {1 ≤ i ≤ n : there are a1, . . . ai−1, ai, bi, ai+1, . . . , an with ai 6= bi and

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, bi, ai+1, . . . , an)}.

For each i ∈ I, we say that the ith variable of f is essential. Note that the essential
arity of f is zero if and only if f is constant. If B = C, then a C-valued function
on B is called an operation on B. Operations on the two-element set B = {0, 1}
are usually refered to as Boolean functions.

For any maps g1, . . . , gn : D → B, where D is any set and f : Bn → C,
the composition f(g1, . . . , gn) is defined as the map from D to C given by
f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a)), for every a ∈ D.

Let A, B and C be arbitrary non-empty sets, I a class (i.e. set) of C-valued
functions on B (of various arities), and J a class of B-valued functions on A (of
various arities). The class composition IJ is defined as the set

IJ = {f(g1, . . . , gn) | n, m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.

If I is a singleton, I = {f}, then we write fJ for {f}J . We note that this
construction underlies the various notions of subfunction and minor appearing e.g.
in [13, 12, 15, 3, 8, 4].

Consider arbitrary non-empty sets A, B, and C, and let I be a class of C-valued
functions on B and J a class of B-valued functions on A. We say that I is stable
under right composition with J if IJ ⊆ I. Similarly, we say that J is stable under
left composition with I if IJ ⊆ J . Note that a clone on an arbitrary set A is
simply a class C of A-valued functions on A that contains all projections, and is
stable under (left or right) composition with itself, i.e. CC ⊆ C (or equivalently,
CC = C).

Consider arbitrary non-empty sets A and B. A functional equation (for B-
valued function on A) is a formal expression

h1(f(g1(v1, . . . ,vp)), . . . , f(gm(v1, . . . ,vp))) =

= h2(f(g
′
1(v1, . . . ,vp)), . . . , f(g

′
t(v1, . . . ,vp))) (1)

where m, t, p ≥ 1, h1 : Bm → C, h2 : Bt → C, each gi and g′j is a map Ap → A, the
v1, . . . ,vp are p distinct symbols called vector variables, and f is a distinct symbol
called function symbol.

For n ≥ 1, we denote by n the set n = {1, . . . , n}, so that an n-vector (n-tuple)
v in An is a map v : n → A. In this way, if g is an p-ary operation on A and
v1, . . . , vp are n-vectors in An, then g(v1, . . . , vp) denotes the n-vector

(g(v1, . . . , vp)(1), . . . , g(v1, . . . , vp)(n)) ∈ An.

For an n-ary B-valued function on A, f : An → B, we say that f satisfies the
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equation (1) if, for all v1, . . . , vp ∈ An, we have

h1(f(g1(v1, . . . , vp)), . . . , f(gm(v1, . . . , vp))) =

= h2(f(g′1(v1, . . . , vp)), . . . , f(g′t(v1, . . . , vp))). (2)

A class (i.e. set) K of B-valued functions on A is said to be defined, or definable, by
a set E of functional equations, if K is the class of all those functions which satisfy
every member of E .

To illustrate, let A = B = {0, 1}, m = 2, t = 1, p = 2, and let g1 be the
projection function (x, y) 7→ x, g2 the conjunction (x, y) 7→ xy, h1 = g2, and h2

the identity x 7→ x. The functional equation (1) so specified defines the clone (Post
class) of monotone Boolean functions. In a more free style of notation, this equation
can be displayed as

f(v1)f(v1v2) = f(v1v2).

When the specific context is well understood, we shall present functional equations
in such more informal manner.

Useful functional properties have often been advantangeously expressed by func-
tional equations. Classical examples include the linearity of F-valued functions on
a field F, as well as monotonicity and convexity properties traditionally expressed
by functional inequalities which are obviously equivalent to functional equations in
max-plus language. More contemporary examples include the submodular prop-
erty of real-valued functions {0, 1}n −→ R, and Post classes (clones) of Boolean
functions traditionally characterized by relations. Many strong consequences of
submodularity, such as the Hall-Rado theorems, follow directly from the charac-
terizing submodular inequality which is essentially a max-plus functional equation
(see Welsh [14]). For Boolean functions, equations were systematically studied in
[3] and, in a variant form, by Pogosyan [9]. Also, in [5] equations were shown to
provide a measure of complexity, essentially in terms of the syntax of the functional
equations used to define Post classes.

2 Definability of Function Classes by Functional

Equations and Relational Constraints

An m-ary relation on A is a subset R of Am, and thus the relation R can be viewed
as a class (set) of unary maps from m to A. A function f : An → A is said to
preserve R, and R is said to be invariant under f , if fR ⊆ R, where fR is the class
composition {f}R as explained above. An m-ary A-to-B constraint (or simply,
m-ary constraint, when the underlying sets are understood from the context) is
a couple (R, S) where R ⊆ Am and S ⊆ Bm. The relations R and S are called
the antecedent and consequent, respectively, of the relational constraint (Pippenger
[8]). A B-valued function on A, f : An −→ B, n ≥ 1, is said to satisfy an m-ary
A-to-B constraint (R, S) if fR ⊆ S. A class K of B-valued functions on A is said
to be defined, or definable, by a set T of A-to-B constraints, if K is the class of all
those functions which satisfy every constraint in T .
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As an example, the already mentioned clone of monotone Boolean functions
can be equivalently defined by the single constraint (≤,≤), where ≤ denotes the
less-or-equal relation on {0, 1}.

In [8], Pippenger has shown that in the Boolean case, i.e. when A = B = {0, 1},
definability of a function class by functional equations is equivalent to definability
by relational constraints. The following theorem is not restricted to the Boolean
case, and not even contingent on the finiteness of the underlying sets.

Theorem 1. Let A be an arbitrary non-empty set, and B any set with at least two
elements. For any class K of B-valued functions on A, the following are equivalent:

(i) K is definable by some set of functional equations;

(ii) K is definable by some set of relational constraints.

Proof. To prove that (i) ⇒ (ii), it is enough to show that for every functional
equation (1) there is a relational constraint (R, S), such that the B-valued functions
on A satisfying the equation are exactly the same as those satisfying the constraint.
Indeed, we can define the constraint (R, S) by

R = {(g1(a), . . . , gm(a), g′1(a), . . . , g′t(a)) : a ∈ Ap},

S = {(b1, . . . , bm, b′1, . . . , b
′
t) ∈ Bm+t : h1(b1, . . . , bm) = h2(b

′
1, . . . , b

′
t)}.

Conversely, let us show that (ii) ⇒ (i). Let T be a set of constraints, and
let K be the class of B-valued functions on A defined by T . Consider the set
T ′ of constraints obtained from T by removing all those constraints with empty
antecedent. Clearly, T and T ′ define the same class K of B-valued functions on
A. Therefore, the proof will be complete if we can show that for every constraint
(R, S) with R 6= ∅ there is a functional equation (1) satisfied by exactly the same
functions as those satisfying (R, S).

Let m be the arity of (R, S). The construction of the equation (1) is based on
the following facts.

Fact 1. Given a non-empty relation R ⊆ Am, there is a p ≥ 1 and a map g : Ap →
Am, such that the range of g is R.

Fact 2. Given a relation S ⊆ Bm, there exist maps h1, h2 : Bm → B, such that

S = {b ∈ Bm : h1(b) = h2(b)}.

Using these functions g, h1 and h2, the equation (1) can be defined as follows:
the integer m is the arity of (R, S), t = m, and p is the arity of g : Ap → Am. For
1 ≤ i ≤ m = t, let gi = g′i be the ith component of g, i.e. we have

g(a) = (g1(a), . . . , gm(a))

for all a ∈ Ap. The maps h1, h2 in (1) are given by Fact 2.

It is not difficult to see that both Fact 2 and Theorem 1 itself would fail if we
allowed B to be a singleton. However, the implication (i) ⇒ (ii) in Theorem 1
would continue to hold.
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3 Definability of Function Classes by Invariant

Constraints

The question of definability of Boolean function classes by constraints (R, S), where
R, S ⊆ {0, 1}n are of a special algebraic kind, was considered in [1]. Specifically, the
relations R and S were required to be affine subspaces of the vector space {0, 1}n

over the two-element field GF(2). A subset of {0, 1}n is an affine subspace if and
only if it is closed under the triple sum operation u + v + w, i.e. if and only if it is
invariant under the clone L01 of constant-preserving linear Boolean functions - that
is, functions which are the sum of an odd number of variables. (See e.g. Godement
[6].) Also it is well known that the non-empty affine subspaces can be described
as ranges of affine maps, and that affine hyperplanes can be described as kernels
of affine forms, i.e. as sets on which a given form agrees with the null form. As
shown in [1], this accounts for the definability of certain function classes by linear
equations.

In this section we consider general notions of closure for the antecedent R and
the consequent S of a constraint (R, S), and we address the question of definability
of classes of B-valued functions on a set A by such invariant constraints, without
any restriction on the underlying sets A and B.

Associativity Lemma. Consider arbitrary non-empty sets A, B, C and E, and
let I be a class of E-valued functions on C, J a class of C-valued functions on B,
and K a class of B-valued functions on A. The following hold:

(i) (IJ )K ⊆ I(JK);

(ii) If J is stable under right composition with the clone of projections on B, then
(IJ )K = I(JK).

Proof. The inclusion (i) is a direct consequence of the definition of function class
composition. Property (ii) asserts that the converse inclusion also holds if J is
stable under right composition with projections. A typical function in I(JK) is of
the form

f(g1(h11, . . . , h1m1
), . . . , gn(hn1, . . . , hnmn

))

where f is in I, the gi’s are in J , and the hij ’s are in K. By taking appropriate
functions g′1, . . . , g

′
n obtained from g1, . . . , gn by addition of inessential variables

and permutation of variables, the function above can be expressed as

f(g′1(h11, . . . , h1m1
, . . . , hn1, . . . , hnmn

), . . . , g′n(h11, . . . , h1m1
, . . . , hn1, . . . , hnmn

))

which is easily seen to be in (IJ )K .

Note that statement (ii) of the Associativity Lemma applies, in particular, if J
is any clone on C = B.

Let F be a set of B-valued functions on A. If P is the clone of all projections on
A, then FP = F expresses closure under taking minors as in [8], or closure under
simple variable substitutions in the terminology of [2].
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For a class F of A-valued functions on A, an m-ary relation R on A is said to
be F -invariant if FR ⊆ R. In other words, R is F -invariant if every member of F
preserves R. If two classes of functions F and G generate the same clone, then the
F -invariant relations are the same as the G-invariant relations. (See Pöschel [10]
and [11].) Observe that we always have R ⊆ FR if F contains the projections, but
we can have R ⊆ FR even if F contains no projections. (Take the Boolean triple
sum x1 + x2 + x3 as the only member of F .)

For a clone C, the intersection of m-ary C-invariant relations is always C-invariant
and it is easy to see that, for an m-ary relation R, the smallest C-invariant relation
containing R in Am is CR, and it is said to be generated by R. (See [10] and [11],
where Pöschel denotes CR by ΓC(R).)

Let C1 and C2 be clones on arbitrary non-empty sets A and B, respectively. If
R is C1-invariant and S is C2-invariant, we say that (R, S) is a (C1, C2)-constraint.
The following result generalizes Lemma 1 in [1]:

Lemma 2. Consider arbitrary non-empty sets A and B. Let f be a B-valued
function on A, and let C be a clone on A. If every function in fC satisfies an
A-to-B constraint (R, S), then f satisfies (CR, S).

Proof. The assumption means that (fC)R ⊆ S. By the Associativity Lemma,
(fC)R = f(CR), and thus f(CR) ⊆ S.

A class K of B-valued functions on A is said to be locally closed if for every
B-valued function f on A the following holds: if every finite restriction of f (i.e
restriction to a finite subset) coincides with a finite restriction of some member of
K, then f belongs to K.

Theorem 3. Consider arbitrary non-empty sets A and B and let C1 and C2 be
clones on A and B, respectively. For any class K of B-valued functions on A, the
following conditions are equivalent:

(i) K is locally closed and it is stable both under right composition with C1 and
under left composition with C2;

(ii) K is definable by some set of (C1, C2)-constraints.

Proof. To show that (ii) ⇒ (i), assume that K is definable by some set T of
(C1, C2)-constraints. For every (R, S) in T , we have KR ⊆ S. Since R is C1-
invariant, KR = K(C1R). By the Associativity Lemma, K(C1R) = (KC1)R, and
therefore (KC1)R = KR ⊆ S. Since this is true for every (R, S) in T we must have
KC1 ⊆ K.

For every (R, S) in T , we have KR ⊆ S, and therefore C2(KR) ⊆ C2S. By
the Associativity Lemma, (C2K)R ⊆ C2(KR) ⊆ C2S, and C2S = S because S is
C2-invariant. Thus (C2K)R ⊆ S for every (R, S) in T , and we must have C2K ⊆ K.

To see that K is locally closed, consider f 6∈ K, say of arity n ≥ 1, and let
(R, S) be an m-ary (C1, C2)-constraint that is satisfied by every function g in K
but not satisfied by f . Hence for some a1, . . . , an in R, f(a1, . . . , an) 6∈ S but
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g(a1, . . . , an) ∈ S, for every n-ary function g in K. Thus the restriction of f to the
finite set {(a1(i), . . . , an(i)) : i ∈ m} does not coincide with that of any member of
K.

To prove (i) ⇒ (ii), we show that for every function g not in K, there is a
(C1, C2)-constraint (R, S) which is satisfied by every member of K but not satisfied
by g. The class K will then be definable by the set T of those (C1, C2)-constraints
that are satisfied by all members of K.

Note that K is a fortiori stable under right composition with the clone containing
all projections, that is, K is closed under simple variable substitutions. We may
assume that K is non-empty. Suppose that g is an n-ary B-valued function on A

which is not in K. Since K is locally closed, there is a finite restriction gF of g to
a finite subset F ⊆ An such that gF disagrees with every function in K restricted
to F . Suppose that F has size m, and let a1, . . . , an be m-tuples in Am, such that
F = {(a1(i), . . . , an(i)) : i ∈ m}. Define R0 to be the set {a1, . . . , an}, and let
S = {f(a1, . . . , an) : f ∈ K, f n-ary}. Clearly, (R0, S) is not satisfied by g, and
it is not difficult to see that every member of K satisfies (R0, S). As K is stable
under left composition with C2, it follows that S is C2-invariant. Let R be the
C1-invariant relation generated by R0, i.e. R = C1R0. By Lemma 2, the constraint
(R, S) constitutes indeed the desired separating (C1, C2)-constraint.

This generalizes the characterizations of closed classes of functions given by
Pippenger in [8] as well as in [1] and [2] by considering arbitrary underlying sets,
possible infinite, and more general closure conditions. In the finite case, we obtain as
special cases of Theorem 3 the characterizations given in Theorem 2.1 and Theorem
3.2 in [8], by taking C1 = C2 = P , and C1 = U and C2 = P , respectively, where
U is a clone containing only functions having at most one essential variable, and
P is the clone of all projections. Taking A = B = {0, 1} and C1 = C2 = L01, we
obtain the characterization of classes of Boolean functions definable by sets of affine
constraints given in [1]. For arbitrary non-empty underlying sets, Theorem 1 in [2]
corresponds to the particular case C1 = C2 = P . In this case, from Theorem 1 and
Theorem 3 we conclude the following:

Corollary 4. Consider arbitrary non-empty sets A and B. The equationally de-
finable classes of B-valued functions on A are exactly those locally closed classes
that are stable under right composition with the clone of projections on A.

In certain cases, given a (C1, C2)-constraint (R, S), R ⊆ Am, S ⊆ Bm, the
construction of a functional equation given in the proof of Theorem 1 in the previous
section can be refined to yield a functional equation with special algebraic syntax.
To do this, one may seek to use, instead of arbitrary functions as given by Fact 1 and
Fact 2 in the proof of Theorem 1, functions g1, . . . , gm, h1, h2 of a particular kind
still satisfying the conditions of these Facts. For example, in [1], the functions were
chosen to be affine maps, based on the range-and-kernel theory of linear algebra.
Another application of this strategy will be given in Section 4.

Also, in certain cases, given a functional equation (1) with a special algebraic
syntax, if the functions g1, . . . , gm, g′1, . . . , g

′
t, h1, h2 appearing in the equation have
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particular structure-preserving properties, then it may be possible to conclude that
the construction of the constraint (R, S), as given in the first part of the proof
of Theorem 1, yields relations R and S invariant under certain clones C1 and C2.
Thus the affine functions appearing in the ”linear” functional equations defined in
[1] were used to construct affine constraints. The same principle, together with
Theorem 3, will be used in Section 4 to show that certain natural function classes
cannot be defined by a particular type of functional equations.

4 Functions of Boolean Variables Valued in a Ring

In this section we consider functions {0, 1}n → B, where B is a commutative ring.
We view {0, 1} as endowed with the two-element field structure, {0, 1} = GF(2),
as well as with the lattice structure where 0 < 1. If B is also {0, 1} = GF(2),
then these B-valued functions are called Boolean functions. If B is the field R

of real numbers, then the functions under consideration are called pseudo-Boolean
functions, which provide an algebraic representation for set functions P(E) → R

for finite E (see e.g. [4] for a recent reference).
Every Boolean function {0, 1}n → {0, 1} is well known to be representable by a

unique multilinear polynomial in n indeterminates over GF(2), i.e. a polynomial
which is linear in each of its indeterminates, called its Zhegalkin polynomial, Reed-
Muller polynomial or ring-sum expansion. Also, pseudo-Boolean functions can be
uniquely represented by multilinear polynomials in n indeterminates over R (see
Hammer and Rudeanu [7]).

Consider any commutative ring B with null and identity elements 0B and 1B,
respectively. For a polynomial p ∈ B[X1, . . . , Xn] in n indeterminates, and an n-
tuple (a1, . . . , an) ∈ {0, 1}n, for each ai let aB

i denote 0B or 1B according to whether
ai is 0 or 1, and denote the evaluation p(aB

1 , . . . , aB
n ) simply by p(a1, . . . , an). The

B-valued function on {0, 1} given by

(a1, . . . , an) 7→ p(a1, . . . , an)

is said to be represented by p. By a method similar to that used by Hammer
and Rudeanu [7] in the case B = R, we show in the next theorem the existence
of a unique multilinear polynomial representation for any B-valued function on
{0, 1}, for any commutative ring B with identity. This unifies the Zhegalkin and
pseudo-Boolean polynomial representations.

Theorem 5. Consider any commutative ring B with identity. For any n ≥ 1,
every B-valued function f on {0, 1}, f : {0, 1}n → B, is represented by a unique
multilinear polynomial p ∈ B[X1, . . . , Xn].

Proof. The existence of representation is proved by induction on essential arity. For
essential arity 0, i.e. for constant functions, representation by constant polynomials
is obvious. For a function f : {0, 1}n → B with essential arity m > 0, assuming the
claim proved for lesser essential arities, and taking any index i such that the ith
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variable of f is essential, let f0 and f1 be the n-ary B-valued functions given by

f0(a1, . . . , an) = f(a1, . . . ai−1, 0, ai+1, . . . , an)
f1(a1, . . . , an) = f(a1, . . . ai−1, 1, ai+1, . . . , an).

We have

f(a1, . . . , an) = (1 − aB
i )f0(a1, . . . , an) + aB

i f1(a1, . . . , an)

and both f0 and f1 have essential arity less than m. By the induction hypothesis, f0

and f1 are represented by polynomials p0 and p1, respectively. Thus f is represented
by the polynomial

p = (1 − Xi)p0 + Xip1

and if p had any powers of indeterminates Xk
j with k > 1, by replacing each such

occurrence by Xj we would obtain a multilinear polynomial representing f .
Uniqueness is proved by contradiction. Suppose that f had two distinct multi-

linear polynomial representations p and q. Then the multilinear polynomial p − q

would represent the constant zero function. Let J be a set of indices of smallest
possible size, such that the monomial c

∏
j∈J Xj occurs in p − q with coefficient

c 6= 0B: such a J must exist if p − q is not the zero polynomial. But then the
evaluation of p − q at (a1, . . . , an), where aj = 1B if j ∈ J and aj = 0B otherwise,
would be c 6= 0B, contradicting the fact that p − q represents the constant zero
function. Thus p − q must be the null polynomial, i.e. p = q.

Let f be a B-valued function on {0, 1}, f : {0, 1}n → B, where B is a com-
mutative ring with identity. The degree of f is the smallest non-negative integer d

such that for every J ⊆ {1, . . . , n} of size | J |> d the coefficient of
∏

j∈J Xj in the
multilinear polynomial representation of f is zero. Thus the functions of degree 0
are precisely the constants (including the constant zero function).

Theorem 6. If B is any field of characteristic 2, and k ≥ 1, then the class of
B-valued functions on {0, 1} having degree less than k is defined by the following
functional equation (with vector variables v1, . . . ,vk):

∑

I⊆{1,...,k}

f(
∑

i∈I

vi) = 0 (3)

In (3) the inner summations refer to addition of vectors over the two-element
field GF(2) = {0, 1}, while the outer summation refers to addition in the field B.
For I = ∅, the empty sum

∑
i∈I

vi represents the constant zero.

Proof. First we prove that (3) is satisfied by every B-valued function on {0, 1}
having degree less than k. From the form of the equation (3), it is easy to see
that the class of functions satisfying (3) is closed under linear combinations with
coefficients in B. Therefore, it is sufficient to prove that, for n ≥ 1, every n-ary B-
valued function f on {0, 1} represented by a product of less than k indeterminates,
i.e. of the form

∏
j∈J Xj, | J |< k, J ⊆ {1, . . . , n}, satisfies (3) .
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Let v1, . . . , vk be any n-vectors in {0, 1}n. Let wJ be the characteristic vector
of J in {0, 1}n, i.e. wJ = (a1, . . . , an), where aj = 1 if j ∈ J , and aj = 0 otherwise.
For every I ⊆ {1, . . . , k}, consider the vector wJ · (

∑
i∈I vi) in {0, 1}n, where the

product · is defined componentwise. Observe that there are 2k possible choices for
I, yet due to the size of | J |< k, there at most 2k−1 distinct vectors of the form
wJ · (

∑
i∈I vi) in {0, 1}n. Therefore, there are distinct subsets I1, I2 of {1, . . . , k},

such that

wJ · (
∑

i∈I1

vi) = wJ · (
∑

i∈I2

vi)

and for the symmetric difference D of I1 and I2, we have

wJ · (
∑

i∈D

vi) = 0

The 2k subsets of {1, . . . , k}, are matched into pairs {I, I + D}, where I + D is the
symmetric difference of I and D, and because f is represented by

∏
j∈J Xj, by the

definition of wJ it follows that for each such pair we have

f(
∑

i∈I

vi) = f(wJ · (
∑

i∈I

vi)) = f(wJ · (
∑

i∈I+D

vi)) = f(
∑

i∈I+D

vi)

Therefore, due to the fact that the underlying field B has characteristic 2, the terms
in the equation cancel pairwise.

Conversely, suppose now that the n-ary function f is represented by a polyno-
mial of degree greater than or equal to k. We show that f does not satisfy the
equation (3).

Let g be the B-valued function on {0, 1} represented by the sum of those mono-
mials in the polynomial representation of f which have degree less than k. By the
first part of the proof, g satisfies (3). Working towards a contradiction, suppose
that f satisfies (3). Given the form of equation (3), this is the case if and only
if the n-ary function h = f + g, represented by the sum of all monomials in the
polynomial representation of f having degree greater than or equal to k, satisfies
(3).

Let J be an inclusionwise minimal subset of {1, . . . , n}, such that the monomial
c
∏

j∈J Xj appears in the polynomial representation of h with coefficient c 6= 0B.
Note that | J |≥ k. We claim that if f (or equivalently, h) satisfies (3), then the
function hk represented by the monomial c

∏
j∈k

Xj where k = {1, . . . , k}, also
satisfies equation (3).

Observe that, by the construction in the proof of Theorem 1, equation (3) is
equivalent to a constraint (R, S) whose antecedent R is the range of a linear map
with codomain GF(2)m, i.e. R is a subspace of the vector space GF(2)m over
GF(2). Thus by Theorem 3 it follows that the class K of functions satisfying (3)
is stable under right composition with the clone L0 of 0-preserving linear Boolean
functions. In particular, K is closed under permutation and identification of vari-
ables, as well as under fixing variables to 0. It is not difficult to see that hk can be
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obtained from h by a combination of these operations. In other words, if h satisfies
the equation (3), then hk also satisfies the equation.

Now, let v1, . . . , vk be the unit n-vectors e1, . . . , ek in {0, 1}n. We have

∑

I⊆k

hk(
∑

i∈I

vi) = hk(
∑

i∈k

vi) = c 6= 0

which shows that hk does not satisfy the equation (3), and yields the desired con-
tradiction.

In [1] it was shown that, for any positive integer k, the class of Boolean functions
whose Zhegalkin polynomial has degree less than k, can be defined by ”linear”
equations. Theorem 6 above explicitly gives such an equation for every k ≥ 1.
For k = 1, the equation (3) can be rewritten as f(v) = f(0), and for k = 2, as
f(v + w) = f(v) + f(w) + f(0).

If B is a field and A = {0, 1} = GF(2), then a functional equation (1) is
called linear if the functions g1, . . . , gm, g′1, . . . , g

′
t are all affine maps from the p-

dimensional vector space GF(2)p to GF(2), and h1, h2 are affine maps from the
B-vector spaces Bm and Bt, respectively, to the scalar field B. (Recall that a
function Fn → F , where F is any field, is affine if and only if it is of the form
(a1, . . . , an) 7→ c1a1 + . . . cnan + c, for fixed scalars c1, . . . , cn, c in F .) Obviously,
the functional equation (3) in Theorem 6 is linear. Our next result shows that the
requirement on the characteristic of the underlying field is indeed essential.

Theorem 7. For any field B of characteristic different from 2, and any k ≥ 2, the
class of B-valued functions on {0, 1} having degree less than k is not definable by
any set of linear functional equations.

Proof. As in the proof Theorem 6, if there would be a k ≥ 2 such that the class
K of B-valued functions on {0, 1} having degree less than k is definable by some
set of linear functional equations, then, using the construction given in the proof of
Theorem 1, we would conclude that the class in question is definable by some set
of constraints whose antecedents are affine subspaces of vector spaces over GF(2).
These affine subspaces would be closed under the triple sum u+v+w, i.e. invariant
under the clone L01 of constant-preserving linear Boolean functions. By Theorem 3,
this would imply that K is stable under right composition with the clone L01. We
show that this is not the case.

Consider the (k − 1)-ary function f represented by the monomial X1 . . . Xk−1.
Let τ be the (k + 1)-ary Boolean function in L01 given by

(a1, . . . , ak+1) 7→ ak−1 + ak + ak+1

Note that the B-valued function τB defined on {0, 1} which is valued 1B on exactly
those vectors (a1, . . . , ak+1) for which τ(a1, . . . , ak+1) = 1 and valued 0B otherwise,
is represented by the polynomial

Xk−1 + Xk + Xk+1 − 2Xk−1Xk − 2XkXk+1 − 2Xk−1Xk+1 + 4Xk−1XkXk+1



72 Miguel Couceiro and Stephan Foldes

where + and − are to be interpreted in B. Thus, the composition f(f1, . . . , fk−1),
where fk−1 = τ and fi is the (k + 1)-ary ith projection function

(a1, . . . , ak+1) 7→ ai

for k = 1, . . . , k − 2, is represented by the polynomial in k + 1 indeterminates

X1 . . .Xk−2(Xk−1 + Xk + Xk+1−

− 2Xk−1Xk − 2XkXk+1 − 2Xk−1Xk+1 + 4Xk−1XkXk+1)

where + and − are to be interpreted in B. From the fact that B has characteristic
different from 2, it follows that this polynomial has degree greater than k.

Note that for k = 1, the class of functions of degree less that k, i.e. the class of
constants, is defined by the linear expression f(v) = f(0). In fact, from Theorem 7
above it follows that, if B is any field of characteristic different from 2, then the
set of constants is the only linearly definable class of B-valued functions on {0, 1}
of bounded degree. However, Corollary 4 guarantees the existence of equational
characterizations of these classes, because bounded degree classes are stable un-
der right composition with the minimal clone P containing only projections. The
following generalization of Corollary 3.3 in [4] provides an equation characterizing
classes of bounded degree functions of Boolean variables, and whose codomain is
any commutative ring with identity.

Theorem 8. If B is any commutative ring with identity, and k ≥ 1, then the class
of B-valued functions on {0, 1} having degree less than k is defined by the following
functional equation (with vector variables v1, . . . ,vk):

f(
∧

i∈k

vi) +
∑

I⊆k

I 6=∅

(−1)|I|f(
∨

j∈I

∧

i∈k\{j}

vi) = 0 (4)

where k = {1, . . . , k}.

In (4) the summation refers to addition in the commutative ring B. Equation
(4) was obtained in [4] as a combination of two opposite inequalities in the ordered
real field B = R. Inequalities are not available in general in a commutative ring,
in particular in finite fields. However, the following direct proof, based on the
principles used in establishing the functional inequality in Theorem 3.1 in [4], can
still be used in the arbitrary commutative ring context.

Proof. First we show that every B-valued function on {0, 1} of degree less than
k satisfies equation (4). As in the proof of Theorem 6, it is enough to show that
every monomial of degree less than k satisfies equation (4), because every linear
combination (with coefficients in B) of functions satisfying (4), also satisfies the
equation.

Let f be an n-ary B-valued function on {0, 1} represented by
∏

j∈J Xj , | J |< k,

J ⊆ {1, . . . , n}. Let wJ be the characteristic vector of J in {0, 1}n. Let v1, . . . , vk
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be any n-vectors in {0, 1}n, and let u denote their conjunction
∧

i∈k
vi. For every

j ∈ k = {1, . . . , k}, let

uj =
∧

i∈k\{j}

vi

and let the vector z(I) be defined by

z(I) = wJ · (
∨

j∈I

uj) for ∅ 6= I ⊆ k, and z(∅) = wJ · u

where the product · is defined componentwise. From the fact that k >| J |, it
follows that there is an l ∈ k such that

wJ · u = wJ · ul

Fix such an index l. It is not difficult to see that, for every I ⊆ k, we have

f(
∨

j∈I

uj) = f(z(I)) and z(I) = z(I + {l})

and thus the terms in the sum

f(
∧

i∈k

vi) +
∑

I⊆k

I 6=∅

(−1)|I|f(
∨

j∈I

uj)

cancel pairwise, i.e. the sum is zero, which shows that f satisfies (4).
In order to complete the proof of Theorem 8, we need to show that if f is an

n-ary function of degree greater than or equal to k, then equation (4) is not satisfied
by f . Let g and h be the n-ary functions represented by the sum of monomials, in
the polynomial representation of f , having degree less than k and greater than or
equal to k, respectively. As in the proof of Theorem 6, f satisfies equation (4) if
and only if h satisfies the equation. We prove that h does not satisfy (4).

Let J be an inclusionwise minimal subset of n = {1, . . . , n}, such that the
monomial c

∏
j∈J Xj appears in the polynomial representation of h, with coefficient

c 6= 0B. Note that | J |≥ k. Let J0 be any subset of J of size k. For every j ∈ J0,
consider the n-vectors yj = (a1, . . . , an), where aj = 0, ai = 0 if i 6∈ J , and ai = 1
if i ∈ J \ {j}. Let v1, . . . , vk be defined as the vectors yj, j ∈ J0, in any order. Let
u =

∧
i∈k

vi, and for each j ∈ k, let

uj =
∧

i∈k\{j}

vi

Observe that for I ⊆ k, all monomials in the polynomial representation of h are
evaluated to zero on ∨

j∈I

uj
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except in the case I = k, where the only monomial which has non-zero value is
c
∏

j∈J Xj, because the n-vector

∨

j∈k

uj = (a1, . . . , an)

is given by at = 1 if t ∈ J , and at = 0 otherwise. Therefore, we have

h(
∧

i∈k

vi) +
∑

I⊆k

I 6=∅

(−1)|I|h(
∨

j∈I

uj) = (−1)kh(
∨

j∈k

uj) = (−1)kc 6= 0

which shows that h, and thus f , does not satisfy equation (4).

Theorem 8 provides in particular an alternative equational characterization of
classes of Boolean functions whose Zhegalkin polynomials have degree bounded by
a positive integer k.
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