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Counting Distinct Squares in Partial Words∗

F. Blanchet-Sadri†, Robert Mercaş‡, and Geoffrey Scott§

Abstract

A well known result of Fraenkel and Simpson states that the number
of distinct squares in a word of length n is bounded by 2n since at each
position there are at most two distinct squares whose last occurrence start. In
this paper, we investigate the problem of counting distinct squares in partial
words, or sequences over a finite alphabet that may have some “do not know”
symbols or “holes” (a (full) word is just a partial word without holes). A
square in a partial word over a given alphabet has the form uu

′ where u
′ is

compatible with u, and consequently, such square is compatible with a number
of full words over the alphabet that are squares. We consider the number of
distinct full squares compatible with factors in a partial word with h holes
of length n over a k-letter alphabet, and show that this number increases
polynomially with respect to k in contrast with full words, and give bounds
in a number of cases. For partial words with one hole, it turns out that
there may be more than two squares that have their last occurrence starting
at the same position. We prove that if such is the case, then the hole is in
the shortest square. We also construct a partial word with one hole over a
k-letter alphabet that has more than k squares whose last occurrence start
at position zero.

Keywords: combinatorics on words, partial words, squares

1 Introduction

Computing repetitions such as squares in sequences or strings of symbols from a
finite alphabet is profoundly connected to numerous fields such as biology, computer
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science, and mathematics [8]. The stimulus for recent works on repetitions in strings
is the study of biological sequences such as DNA that play a central role in molecular
biology. In addition to its sheer quantity, repetitive DNA is striking for the variety
of repetitions it contains, for the various proposed mechanisms explaining the origin
and maintenance of repetitions, and for the biological functions that some of the
repetitions may play. The literature has generally considered problems in which
a period u of a repetition is invariant. It has been required that occurrences of u
match each other exactly. In some applications however, such as DNA sequence
analysis, it becomes interesting to relax this condition and to recognize u′ as an
occurrence of u if u′ is compatible with u.

A well known result of Fraenkel and Simpson [3] states that the number of
distinct squares in a word of length n is bounded by 2n since at each position
there are at most two distinct squares whose last occurrence start. In [6], Ilie
improves this bound to 2n − Θ(log n). Based on numerical evidence, it has been
conjectured that this number is actually less than n. In this paper, we investigate
the problem of counting distinct squares in partial words, or sequences over a finite
alphabet that may contain some “do not know” symbols or “holes.” In Section 2,
after making some remarks about the maximum number of distinct full squares
compatible with factors of a partial word, we give some lower bounds for that
number. These bounds are related to the length of the word, the alphabet size this
word is defined on, and the number of holes it contains. In Section 3, we show that
for partial words with one hole, there may be more than two squares that have
their last occurrence starting at the same position. We prove that if such is the
case, then the hole is in the shortest square. There, we also construct for k ≥ 2, a
partial word with one hole over a k-letter alphabet that has more than k squares
whose last occurrence start at position 0. Finally in Section 4, we provide some
conclusions and suggestions for future work.

We end this section by reviewing basic concepts on partial words. Fixing a
nonempty finite set of letters or an alphabet A, a partial word u of length |u| = n
over A is a partial function u : {0, . . . , n−1} → A. For 0 ≤ i < n, if u(i) is defined,
then i belongs to the domain of u, denoted by i ∈ D(u), otherwise i belongs to the
set of holes of u, denoted by i ∈ H(u). The unique word of length 0, denoted by
ε, is called the empty word. For convenience, we will refer to a partial word over A
as a word over the enlarged alphabet A⋄ = A∪ {⋄}, where ⋄ 6∈ A represents a hole.
The set of all words (respectively, partial words) over A of finite length is denoted
by A∗ (respectively, A∗

⋄).
The partial word u is contained in the partial word v, denoted by u ⊂ v,

provided that |u| = |v|, all elements in D(u) are in D(v), and for all i ∈ D(u) we
have that u(i) = v(i). As a weaker notion, u and v are compatible, denoted by
u ↑ v, provided that there exists a partial word w such that u ⊂ w and v ⊂ w. An
equivalent formulation of compatibility is that |u| = |v| and for all i ∈ D(u)∩D(v)
we have that u(i) = v(i). We denote by u ∨ v the least upper bound of u and v,
that is, for every partial word w such that u ⊂ w and v ⊂ w, we have (u ∨ v) ⊂ w.
If u 6 ↑ v, then we adopt the convention that u ∨ v = ε. The following rules are
useful for computing with partial words: (1) Multiplication: If u ↑ v and x ↑ y,
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then ux ↑ vy; (2) Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y; and
(3) Weakening: If u ↑ v and w ⊂ u, then w ↑ v.

A partial word u is primitive if there exists no word v such that u ⊂ vn with
n ≥ 2. If u is a nonempty partial word, then there exist a primitive word v and a
positive integer n such that u ⊂ vn. Uniqueness holds for full words but not for
partial words as seen with u = ⋄a where u ⊂ a2 and u ⊂ ba for distinct letters a, b.
For partial words u, v, w, if w = uv, then u is a prefix of w, denoted by u ≤ w, and
if v 6= ε, then u is a proper prefix of w, denoted by u < w. If w = xuy, then u is a
factor of w. If u = u1u2 for some nonempty compatible partial words u1 and u2,
then u is called a square. Whenever we refer to a square u1u2 it will imply that
u1 ↑ u2.

2 Counting distinct squares: A first approach

In a full word, every factor of length 2n contains at most one square factor ww
with |w| = n. In a square partial word w0w1 where w0 ↑ w1, we call the word
v = w0 ∨ w1 the general form of the square. For example, the general form of
the square ab⋄⋄c⋄a⋄d⋄⋄⋄ is abd⋄c⋄. We observe that in partial words, a square
w0w1 may be compatible with more than one distinct full square of length 2|w0|.
For example, the word aa⋄aa⋄ over the alphabet {a, b, c} is compatible with three
distinct full squares of length 6: (aaa)2, (aab)2 and (aac)2. It is easy to see that if
aa⋄aa⋄ is a word over an alphabet of size k, then it is compatible with exactly k
squares of length 6. Whenever we talk about a full square compatible with a general
form, we refer to a square that has the first half compatible with the general form.
In general, if w = a0a1 . . . a2m−1 is a partial word over a k-letter alphabet A, and w
is a square, then w is compatible with exactly k‖H(v)‖ squared full words of length
m, where v = a0a1 . . . am−1 ∨ amam+1 . . . a2m−1.

At this point, we see that the study of distinct squares in partial words is
quite different from the study of distinct squares in full words. In the case of full
words, there exists an upper bound for the number of distinct squares in a word
of length n, no matter what the alphabet size is. The same statement is certainly
untrue for partial words. For example, the number of distinct nonempty full squares
compatible with ⋄⋄ is equal to k, where k is the alphabet size.

Let w be a partial word over a k-letter alphabet A. We will denote by fk(w)
the number of distinct nonempty full squares over A compatible with factors of w,
and by gh,k(n) the maximum of the fk(w)’s where w ranges over all partial words
of length n with h holes, over alphabet A. Note that the number of all distinct
full square nonempty words compatible with factors of ⋄n, where n is a positive
integer, over A, is equal to the number of all distinct full nonempty words of length
i ≤

⌊

n
2

⌋

over A. Using this remark,

gn,k(n) =

⌊n

2
⌋

∑

i=1

ki =
k (k⌊

n

2 ⌋ − 1)

k − 1
(1)
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Note that if n is odd, then gn−1,k(n − 1) = gn,k(n) and gn−1,k(n) = gn,k(n).
The first equality follows directly from (1). For the second equality, note that the
number of distinct nonempty full squares compatible with factors of ⋄n−1a over
the k-letter alphabet A where a ∈ A is at least gn−1,k(n − 1) = gn,k(n) (those
compatible with factors of ⋄n−1). Thus, gn−1,k(n) ≥ gn,k(n). Since the function
gh,k(n) is clearly monotonically increasing with respect to h, k, and n, it follows
that gn−1,k(n) ≤ gn,k(n). Thus, gn−1,k(n) = gn,k(n).

As we have seen earlier with the word ⋄⋄, the number of distinct nonempty full
squares compatible with factors of a partial word may be unbounded if we allow the
alphabet size to grow arbitrarily large. However, we can often write this number as
a function of the alphabet size. The following proposition shows that this number
is indeed a polynomial in the alphabet size.

Proposition 1. Let w be a partial word of length n over a k-letter alphabet, and

let S1 be the set of general forms of all factors of w that are squares. Let Sm be

the set of all partial words v that can be written as v = u0 ∨ u1 ∨ · · · ∨ um−1, where

ui ∈ S1 for all 0 ≤ i < m and ui 6= uj for all i < j < m. Then the number of full

distinct squares compatible with factors of w is given by

⌊n

2
⌋

∑

m=1

((−1)m−1
∑

s∈Sm

k‖H(s)‖) (2)

Proof. For a set X of partial words, denote by X̂ the set of all full words compatible
with elements of X . The number of full distinct square words compatible with
factors of w is given by ‖Ŝ1‖. By the principle of inclusion-exclusion,

Ŝ1 =

⌊n

2
⌋

∑

m=1

((−1)m−1
∑

s∈Sm

‖ ˆ{s}‖)

Since ‖ ˆ{s}‖ = k‖H(s)‖, the proof is complete.

To generalize the study of counting distinct squares in words to partial words,
we are interested in the limit behaviour of gh,k(n) as k increases. However, as we
have seen with the word w = ⋄⋄, the value limk→∞ fk(w) may be infinity. Fol-
lowing Proposition 1, if we treat k as an unknown variable, the number of distinct
nonempty full squares compatible with factors in any partial word is a polynomial
with respect to k. If we consider all such polynomials corresponding to words of
length n containing h holes, the maximal such polynomial would describe this lim-
iting behavior. Given a finite length n, there exist only finitely many partial words
of length n up to an isomorphism between letters. Therefore, a lower bound for
gh,k(n) can be given using the leading term of this well defined maximal polynomial,
mh,k(n).

The next results give bounds on the leading term in mh,k(n). We begin by
defining a free hole of a square. Let w be a partial word over an alphabet A that
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contains a factor v that is a square. A hole in v is called a free hole of v if the square
v is preserved even after we replace the hole with any letter of A. For example,
consider the partial word w = ab⋄a⋄⋄ over the alphabet {a, b, c}. The underlined
hole is a free hole of the squares ab⋄a⋄⋄ and ⋄⋄, but not of ⋄a⋄⋄. It is easy to see
that the number of free holes of a square factor is exactly twice the number of holes
in the general form of that square. Two free holes in positions i and j in a square

v are aligned if i = j + |v|
2 or j = i + |v|

2 and v(i) = v(j) = ⋄.

Note that the degree of mh,k(n) is ⌊h
2 ⌋. To see this, let w be a word of length n

with h holes over a k-letter alphabet. Clearly, any factor of w that is a square has
at most ⌊h

2 ⌋ holes in its general form. Thus, by (2) there can be no term of mh,k(n)

with k raised to a power higher than ⌊h
2 ⌋. Also note that the word w = ⋄han−h

achieves this bound. The following technical lemma will assist us in proving results
about the coefficients of mh,k(n).

Lemma 1. Let l be a positive integer, let w be a partial word of length n, and

let 0 ≤ p1 ≤ p2 < n. Then there are at most ⌊n−2(p2−p1+1)
3 ⌋ + 1 factors v =

w(i)w(i + 1) . . . w(i + 2l − 1) of length 2l in w such that i ≤ p1 and i + l > p2.

Proof. Assume that there exist ⌊n−2(p2−p1+1)
3 ⌋ + 2 such factors of length 2l in w.

Since all of these factors have the same length, no two of them may start at the

same position. Therefore, p1 ≥ ⌊n−2(p2−p1+1)
3 ⌋ + 1. In particular, one of these

factors must start at a position no later than p1 − (⌊n−2(p2−p1+1)
3 ⌋+ 1). This gives

us that l > ((p2 − p1) + ⌊n−2(p2−p1+1)
3 ⌋+ 1) from the condition that i+ l > p2. For

any factor v = w(i)w(i + 1) . . . w(i + 2l − 1) of length 2l in w, we know that the

length of w must exceed 2l + i. Since there exist ⌊n−2(p2−p1+1)
3 ⌋ + 2 such factors,

at least one must start at a position i satisfying i ≥ ⌊n−2(p2−p1+1)
3 ⌋+1. Therefore,

we obtain the contradiction

n ≥ 2(p2 − p1 + ⌊
n − 2(p2 − p1 + 1)

3
⌋ + 2) + ⌊

n − 2(p2 − p1 + 1)

3
⌋ + 1

n ≥ 3⌊
n− 2(p2 − p1 + 1)

3
⌋ + 2(p2 − p1 + 1) + 3

n ≥ n − 2(p2 − p1 + 1) − 2 + 2(p2 − p1 + 1) + 3

Intuitively, the above lemma states that for any l > 0, there can be at most

⌊n−2(p2−p1+1)
3 ⌋+1 factors of length 2l that use the letters w(p1)w(p1 +1) . . . w(p2)

in their first half. We will use this lemma to find upper bounds for the leading term
of mh,k(n).

Theorem 1. The leading term in m2h,k(n) is (⌊n−2h
3 ⌋ + 1)kh.

Proof. The degree of m2h,k(n) being h, it only remains to show that the coefficient
of kh in m2h,k(n) is equal to ⌊n−2h

3 ⌋ + 1. We will give a lower bound of this



470 F. Blanchet-Sadri, Robert Mercaş, and Geoffrey Scott

coefficient by constructing a word with the given leading term. Consider any word
w of length n containing 2h holes and the factor

a⌊n−2h

3
⌋⋄ha⌊n−2h

3
⌋⋄ha⌊n−2h

3
⌋

The following is an exhaustive list of general forms of factors of w that are squares
containing 2h free holes:

aaa . . . aa⋄⋄ . . . ⋄⋄
aaa . . . a⋄⋄⋄ . . . ⋄a

...
a⋄⋄ . . . ⋄⋄aa . . . aa
⋄⋄⋄ . . . ⋄aaa . . . aa

These ⌊n−2h
3 ⌋ + 1 partial words are pairwise compatible, but for any words v1, v2

in the above list, ‖H(v1 ∨ v2)‖ < h. Therefore, by (2) we see that the coefficient of
kh in m2h,k(n) will be at least ⌊n−2h

3 ⌋ + 1.
Note that the coefficient of kh corresponding to a word w is equal to the number

of distinct factors in w, that are squares with 2h free holes. Let

w = w0⋄0w1⋄1w2⋄2 . . . ⋄2h−1w2h

where wi ∈ A∗ for all 0 ≤ i ≤ 2h and ⋄i = ⋄ for all 0 ≤ i < 2h . Note that all factors
of w with 2h free holes that are squares must have the same length (because in a
square the free hole ⋄0 is aligned with ⋄h, the length of all such square factors will
be twice the distance between ⋄0 and ⋄h). We observe that all factors of w that are
squares containing 2h free holes must contain the first h holes of w in their first half.
Therefore, every such factor contains ⋄0w1⋄1 . . . ⋄h−1 in its first half. The length of
⋄0w1⋄1 . . . ⋄h−1 is at least h, so by Lemma 1, there exist at most ⌊n−2h

3 ⌋ + 1 such
factors.

Proposition 2. The leading term in m2h+1,k(n) is at least (2⌊n−2h
3 ⌋ + 1)kh.

Proof. The degree of m2h+1,k(n) being h, it only remains to show that the coefficient
of kh in m2h+1,k(n) is at least 2⌊n−2h

3 ⌋ + 1. Consider any word w of length n
containing 2h + 1 holes and the factor

a⌊n−2h

3
⌋⋄ha⌊n−2h

3
⌋−1⋄h+1a⌊n−2h

3
⌋

The following is an exhaustive list of general forms of factors of w that are squares
containing 2h free holes:

a⌊n−2h

3
⌋−1a⋄h−1⋄ a⌊n−2h

3
⌋−2a⋄h−1⋄

a⌊n−2h

3
⌋−1⋄⋄h−1a a⌊n−2h

3
⌋−2⋄⋄h−1a

...
...

a⋄h−1⋄a⌊n−2h

3
⌋−1 ⋄h−1⋄aa⌊n−2h

3
⌋−2

⋄h−1⋄a⌊n−2h

3
⌋−1a
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There are ⌊n−2h
3 ⌋ + 1 words in the left column and ⌊n−2h

3 ⌋ words in the right
column. It is easy to check that if we select two compatible words v1, v2 from the
above list of (2⌊n−2h

3 ⌋+ 1) partial words, ‖H(v1 ∨ v2)‖ < h. Using (2) we get that

the coefficient of kh in m2h+1,k(n) will be at least 2⌊n−2h
3 ⌋ + 1.

Proposition 3. The leading term in m2h+1,k(n) is at most (2⌊n−2h
3 ⌋ + 3)kh for

h > 1.

Proof. Let w be a word of length n containing 2h + 1 holes for some h > 1. Then
w is of the form w0⋄0w1⋄1w2⋄2 . . . ⋄2hw2h+1 where ⋄i = ⋄ for all i. We need to
count the number of distinct factors of w that are squares containing 2h free holes.
Let S denote the set of all such factors in w. Note that for every s ∈ S, there
exists a hole in w that is not a free hole of s. Let Sj denote the set of all s ∈ S
having the property that ⋄j is not a free hole of s. Clearly, we have the partition
S = ∪0≤j≤2hSj .

First, assume that there exists j /∈ {0, h, 2h} such that Sj 6= ∅. Then wj⋄jwj+1 ↑
wk for some j 6= k. If there exists an i distinct from j such that Si 6= ∅, then in
one of the squares of Si, the hole ⋄j is aligned with ⋄k−1 or ⋄k. In these cases,
we get that |wj+1| ≥ |wk| or |wj | ≥ |wk| respectively. Both cases contradict with
wj⋄jwj+1 ↑ wk. Thus, Si = ∅ for all i 6= j. Hence, we can replace wj⋄wj+1 in
w with wk and preserve all squares. The resulting word has only 2h holes. From
Theorem 1,

‖S‖ ≤ ⌊
n − 2h

3
⌋ + 1

Next, let us consider the case where Sj = ∅ for every j /∈ {0, h, 2h}. Note
that all squares in S0 have length equal to the distance between ⋄1 and ⋄h+1 in w,
since these two holes are aligned in each square of S0. Using the same argument,
all squares in S2h have length equal to the distance between ⋄1 and ⋄h+1 in w.
Therefore, the length of squares in S0 is equal to the length of the squares in
S2h. Note that all squares in S0 and S2h contain the factor ⋄1w2⋄2 . . . ⋄h−1 in
their first half. The length of this common factor is at least h − 1. By Lemma 1,

‖S0 ∪ S2h‖ ≤ ⌊n−2(h−1)
3 ⌋ + 1 = ⌊n−2h+5

3 ⌋. Since all squares in Sh have the same
length and contain the factor ⋄0w1⋄1 . . . ⋄h−1, it follows from Lemma 1 that ‖Sh‖ ≤
⌊n−2h

3 ⌋ + 1. Therefore,

‖S‖ ≤ ⌊
n − 2h

3
⌋ + 1 + ⌊

n − 2h + 5

3
⌋ ≤ 2⌊

n − 2h

3
⌋ + 3

The upper bound for ‖S‖ reached in the second case is always greater than or equal
to the upper bound reached in the first case. Therefore,

‖S‖ ≤ 2⌊
n− 2h

3
⌋ + 3
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Proposition 4. The leading term in m3,k(n) is at most 3n
4 k.

Proof. Let w = w0⋄w1⋄w2⋄w3 be a partial word of length n with three holes. We
wish to count the number of possible factors of w that are squares containing two
free holes. Let S1 be all such factors wherein the first hole of w is not free. Define
S2 and S3 similarly. We wish to find the size of S = ∪1≤i≤3Si. The types of factors
in S1, S2, and S3 are illustrated below (the first half of each factor is written above
the second half to show the alignment of the holes):

S1 (w0⋄w1)
′′ ⋄ w′

2

w′′
2 ⋄ w′

3

S2 w′′
0 ⋄ (w1⋄w2)

′

(w1⋄w2)
′′ ⋄ w′

3

S3 w′′
0 ⋄ w′

1

w′′
1 ⋄ (w2⋄w3)

′

where v′ and v′′ denote a prefix and suffix of a word v respectively. Because all
factors in S1 have the second and third holes of w aligned, all factors in S1 have
the same length. Therefore, each factor in S1 ends at a different position of ⋄w3.
Also, the first element of the second half of each factor in S1 occurs at a different
position of w2⋄. Therefore, ‖S1‖ ≤ |w3| + 1 and ‖S1‖ ≤ |w2| + 1. We can use
similar reasoning to arrive at the following relations:

‖S1‖ ≤ |w2| + 1 ‖S2‖ ≤ |w0| + 1 ‖S3‖ ≤ |w0| + 1

‖S1‖ ≤ |w3| + 1 ‖S2‖ ≤ |w3| + 1 ‖S3‖ ≤ |w1| + 1

Because ‖S‖ = ‖S1‖ + ‖S2‖ + ‖S3‖ and n = |w0| + |w1| + |w2| + |w3| + 3, we
determine that

‖S‖ ≤ |w2| + 1 + |w3| + 1 + |w1| + 1 = n − |w0|

‖S‖ ≤ |w2| + 1 + |w3| + 1 + |w0| + 1 = n − |w1|

‖S‖ ≤ |w3| + 1 + |w0| + 1 + |w1| + 1 = n − |w2|

‖S‖ ≤ |w2| + 1 + |w0| + 1 + |w1| + 1 = n − |w3|

Therefore,

‖S‖ ≤ n − max{|w0|, |w1|, |w2|, |w3|} ≤ n − ⌈
n − 3

4
⌉ ≤

3n

4

As we show next, we can improve the bound for the case when there are only
two holes present in the word.
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Proposition 5. If n ≡ 2 mod 6, then

m2,k(n) −
n + 1

3
k ≥

n − 2

2

Proof. Using Theorem 1 and the fact that n ≡ 2 mod 6, the leading term in m2,k(n)
is n+1

3 k. Therefore, m2,k(n)− n+1
3 k is the constant term of the polynomial m2,k(n).

It suffices to construct a partial word w with two holes over a k-letter alphabet A
with |w| = n ≡ 2 mod 6 such that w contains n+1

3 k+ n−2
2 distinct squares. Consider

the word
w = (ab)l⋄(ab)l⋄(ab)l

of length n over A, such that a, b are distinct letters of A with l = n−2
6 . The

following is an exhaustive list of general forms of factors of w that are squares:

(ab)l⋄, b(ab)l−1⋄a, . . . , ⋄(ab)l

ab, (ab)2, . . . , (ab)⌊
l

2
⌋

ba, (ba)2, . . . , (ba)⌈
l

2
⌉

(ab)0a, (ab)1a, . . . , (ab)l−1a
(ba)0b, (ba)1b, . . . , (ba)l−1b

Figure 1 illustrates these squares for n = 32. These general forms are pairwise
incompatible. Thus, there are a total of

(2l + 1)k + ⌊
l

2
⌋ + ⌈

l

2
⌉ + l + l = (

n − 2

3
+ 1)k + 3l =

n + 1

3
k +

n − 2

2

distinct full words that are squares compatible with factors of w.

Figure 1: Squares in (ab)5⋄(ab)5⋄(ab)5

3 Counting distinct squares: A second approach

At each position in a full word there are at most two distinct squares whose last
occurrence starts, and thus the number of distinct squares in a word of length n is
bounded by 2n as stated in the following theorem.
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Theorem 2. [4] Any full word of length n has at most 2n distinct squares.

A short proof of Theorem 2 is given in [5]. It follows from the unique decom-
position of words into primitive ones, and synchronization (a word w is primitive
if and only if in ww there exist exactly two factors equal to w, namely the prefix
and the suffix).

We now consider the one-hole case which behaves very differently from the zero-
hole case. We will also count each square at the position where its last occurrence
starts. If the last occurrence of a square in a partial word starts at position i, then
it is a square at position i. In the case of partial words with one hole, there may be
more than two squares that have their last occurrence starting at the same position.
Such is the case with a⋄aababaab that has three squares at position 0: a⋄aa, a⋄aaba
and a⋄aababaab. We will prove that if there are more than two squares at some
position, then the hole is in the shortest square. We will also construct for k ≥ 2,
a partial word with one hole over a k-letter alphabet that has more than k squares
at position 0. But first, we recall some results that will be useful for our purposes.

Lemma 2. [1] Let x, y ∈ A∗
⋄ be such that xy has at most one hole. If xy ↑ yx, then

there exist z ∈ A∗ and integers m, n such that x ⊂ zm and y ⊂ zn.

Lemma 3. [6] Let w ∈ A∗. If w = z1z2z3 = z2z3z4 = z3z4z5 for some zi ∈ A∗\{ε},
then there exist x ∈ A∗ primitive and integers p, q and r, 1 ≤ p ≤ r < q, such that

x = x′x′′ for some x′ ∈ A∗ and x′′ ∈ A∗\{ε}, and z1 = xp, z2 = xq−r, z3 = xr−px′,

z4 = x′′xp−1x′, and z5 = x′′xq−r−1x′.

Theorem 3. If a partial word with one hole has at least three distinct squares at

the same position, then the hole is in the shortest square.

Proof. Let uu′, vv′ and ww′ be the three shortest squares whose last occurrence
start at the same position, and assume that |w| < |v| < |u|. It is impossible for
these three squares to be all full (otherwise the subword u2, a full word, would have
three squares starting at its position 0).

For a contradiction, let us assume that ww′ is full (here w = w′). If w2 ≤ u,
then the prefix of length |w2| of u′ is a later occurrence of a square compatible with
w2. And so we must have v < u < w2. If the hole is in u′ but not in v′, then
v = v′, and by replacing the hole with the corresponding letter in u, we obtain
the full word u2 that has three distinct squares at position 0, a contradiction. If
the hole is in v′, then set w2 = uz3, u = vz2 and v = wz1. We get w = z1z2z3,
v = z1z2z3z1 and u = z1z2z3z1z2. Let w2 and w3 be the prefixes of length |w| of
v′ and u′ respectively. Since z2z3 is a prefix of both v and v′, let z4 be such that
w, w2 ⊂ z2z3z4. Note that |z4| = |z1|. Two cases occur.

Case 1. The hole is in the suffix of length |v| − |w| of v′.

In this case, let z5 be such that w = z3z4z5. Note that |z5| = |z2|. Here
w = z1z2z3 = z2z3z4 = z3z4z5 and by Lemma 3, there exist x ∈ A∗ primitive and
integers p, q and r, 1 ≤ p ≤ r < q, such that x = x′x′′ for some x′ ∈ A∗, x′′ ∈
A∗\{ε}, and z1 = xp, z2 = xq−r , z3 = xr−px′, z4 = x′′xp−1x′, and z5 = x′′xq−r−1x′.



Counting Distinct Squares in Partial Words 475

We have w = z1z2z3 = xqx′, v = wz1 = xqx′xp and u = vz2 = xqx′xpxq−r. If
x′ = ε, then a later occurrence of a square compatible with w2 exists, and so we
assume that x′ 6= ε. Since the hole is in the suffix of length |v| − |w| of v′, the hole
is in the suffix of length |xp| of v′. We can write v′ = xqx′xsx1x2x

p−s−1 where
0 ≤ s < p, |x1| = |x′| and |x2| = |x′′|, and where the hole is in x1 or x2. Since u ↑ u′,
we have z1z2z3z1z2 ↑ z3z4x

sx1x2x
p−s−1 . . ., or xqx′xpxq−r ↑ xrx′xsx1x2x

p−s−1 . . ..
The fact that r < q implies that xq−rx′xpxq−r ↑ x′xsx1x2x

p−s−1 . . .. If s >
0, then x′x′′x′ = x′x′x′′ and x′′x′ = x′x′′, and the latter being an equation of
commutativity implies that a word y exists such that x′ = ym and x′′ = yn for
some integers m, n. In this case, there is obviously a later occurrence of a square
compatible with w2. If s = 0, then xq−rx′xpxq−r ↑ x′x1x2x

p−1 . . .. Since q > r,
by looking at the prefixes of length |xx′| we get x′x′′x′ ↑ x′x1x2 and deduce x′′x′ ↑
x1x2.

If the hole is in x1, then x2 = x′′ and x′′x′ ↑ x1x
′′. By weakening, we get

x′′x1 ↑ x1x
′′, an equation of commutativity that satisfies the conditions of Lemma 2

since x′′x1 has only one hole. Similarly as above, a word y exists such that x1 ⊂ ym

and x′′ = yn for some integers m, n. Set x1 = yty′ym−t−1 where 0 ≤ t < m and y′

is the factor that contains the hole. Since x1 ⊂ x′, we deduce that x′ = yty′′ym−t−1

for some y′′. The compatibility x′′x′ ↑ x1x
′′ implies ynyty′′ym−t−1 ↑ yty′ym−t−1yn

and by simplification yny′′ ↑ y′yn. Since x′′ 6= ε, we have n > 0 and obtain y′′ = y.
We get x′ = ym, and there is obviously a later occurrence of a square compatible
with w2. We argue similarly in the case where the hole is in x2.

Case 2. The hole is not in the suffix of length |v| − |w| of v′.

In this case, set w = z2z3z4 and w2 = z2z3z
′
4 and the hole is in z′4. Also, set

w = z3z
′′
4 z5 and w3 = z3z

′
4z5 where both z′4 ⊂ z4 and z′4 ⊂ z′′4 , and |z5| = |z2|. We

treat the case where z′′4 6= z4 and leave the case where z′′4 = z4 to the reader.

If z′′4 6= z4, then put z1 = xp where x is primitive and p is a positive integer.
Since z1z2z3 = z2z3z4 and the equation z1(z1z2z3) = (z1z2z3)z4 is one of conjugacy,
we can write z4 = x′′xp−1x′, where x = x′x′′ with x′′ nonempty, and z1z2z3 = xqx′

for some q ≥ p. Since z1z2z3 = xqx′ and z1 = xp, we have z2z3 = xq−px′. Say
z2 = xty′ where t ≥ 0, and y′ is a prefix of x with y′ 6= x. Set x = y′y′′ with y′′

nonempty. If y′ = ε, we have z2 = xt and z3 = xq−p−tx′ and in this case z′′4 = z4,
a contradiction. This can be seen by using the equality z2z3z4 = z3z

′′
4 z5. And so

y′ 6= ε. Since z′4 has the length of z1, write z′4 = (x′′x′)sx2x1(x
′′x′)p−s−1 where

0 ≤ s < p, |x1| = |x′|, |x2| = |x′′|, and where the hole is in x1 or x2. There are
three cases to consider: (2.1) t < q − p− 1; (2.2) t = q − p− 1; and (2.3) t = q − p.
We prove the second one, and leave the other two to the reader.

For (2.2), z2 = xty′ and z3 = y′′x′. Since z1z2z3 = z3z
′′
4 z5, we have xqx′ =

y′′x′ . . .. We consider the case where |x′| ≥ |y′| and then the case where |x′| < |y′|.
If |x′| ≥ |y′| or y′ is a prefix of x′, then since q = p + t + 1 > 0, the prefixes of
length |x| are y′y′′ and y′′y′ respectively and again, the equality y′y′′ = y′′y′ holds,
and as above leads to a contradiction. If |x′| < |y′| or x′ is a prefix of y′, then since
z1z2z3 ↑ z3z

′
4z5, we have xqx′ ↑ y′′x′(x′′x′)sx2x1(x

′′x′)p−s−1 . . ..



476 F. Blanchet-Sadri, Robert Mercaş, and Geoffrey Scott

If s > 0, then the fact that the prefixes of length |x| are compatible implies that
y′y′′ = y′′y′. If s = 0 and the hole is in x1, then x2 = x′′ and y′′x′x′′ = y′′x = y′′y′y′′

is a prefix of z3z
′
4z5 in which case y′y′′ = y′′y′ as above. If s = 0 and the hole is

in x2, then x1 = x′ and set y′ = x′y for some y 6= ε. Here, x′′ = yy′′, and put
x2 = y1y2 where y1 ⊂ y and y2 ⊂ y′′. We get xqx′ ↑ y′′x′x2x1(x

′′x′)p−1 . . . =
y′′x′y1y2x

′(x′′x′)p−1 . . ..

If the hole is in y2, then y1 = y and y′′x′y1 = y′′x′y = y′′y′ is a prefix of
z3z

′
4z5 and the result again follows since y′y′′ = y′′y′. If the hole is in y1, then

y′y′′ ↑ y′′x′y1 or x′yy′′ ↑ y′′x′y1, and by weakening (x′y1)y
′′ ↑ y′′(x′y1). The

latter being an equation of commutativity, by Lemma 2, we get that x′y1 ⊂ zm

and y′′ = zn for some word z and positive integers m, n. Set x′y1 = zkz′zm−k−1

where 0 ≤ k < m and z′ is the factor that contains the hole. Since x′y1 ⊂ x′y,
we deduce that x′y = zkz′′zm−k−1 for some z′′. The compatibility x′yy′′ ↑ y′′x′y1

implies zkz′′zm−k−1zn ↑ znzkz′zm−k−1. By simplification we obtain z′′zn ↑ znz′,
and since n > 0 we get z′′ = z, and thus y′ = x′y = zm. The result follows since
x = y′y′′ = zm+n with m + n > 1.

Proposition 6. For k ≥ 2, there exists a partial word with one hole over a k-letter

alphabet that has more than k squares at position 0.

Proof. Let Σ = {a1, a2, . . .} be an infinite ordered set. We build a sequence of
partial words with one hole, (DSi)i≥2, where DSi contains i + 1 squares with
their last occurrence starting at position 0. In order to do this, we build an
intermediary sequence of partial words with one hole (DS′

i)i≥2 and denote by
DS′

i(a), the word DS′
i in which the hole has been replaced by the letter a. Let

DS2 = a1⋄a1a1a2a1a2a1a1a2, and for i ≥ 3,

DS′
i−1 = DSi−1ai−1

DSi = DS′
i−1DS′

i−1(ai)

In other words, DSi consists of the concatenation of DSi−1 with the last letter of
the smallest alphabet used for creating DSi−1, concatenated again with the same
factor in which the hole has been replaced by a letter not present in the word so
far. For example,

DS′
2 = a1⋄a1a1a2a1a2a1a1a2a2

DS3 = a1⋄a1a1a2a1a2a1a1a2a2a1a3a1a1a2a1a2a1a1a2a2

the latter having three squares other than itself at position 0: a1⋄a1a1a2a1a2a1a1a2,
a1⋄a1a1 and a1⋄a1a1a2a1. For k ≥ 2, DSk, a partial word with one hole over a
k-letter alphabet, has k+1 squares. This is due to the fact that all previous squares
cannot reappear later in the word because of the newly introduced letter.
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4 Conclusion

Although the computations done so far show that the actual bound for the one-
hole partial words give us at most n distinct squares in any word of length n, the
results obtained here using the approach of Fraenkel and Simpson make the bound
directly dependable on the size of the alphabet. From our point of view, finding a
dependency between the maximum number of squares starting at one position and
the length of the word might be a solution. Solving this problem, at least partially,
could also give a new perspective to the study of maximum distinct squares within
a full word.

Note as well that for arbitrarily large alphabets of size k, we get an upper bound
for all words containing h holes and having length n

gh,k(n) ≤ mh,k(n) + k⌊h

2
⌋

This is due to the fact that the leading term is always maximal in mh,k, hence
adding one to its coefficient we get an upper bound.
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