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Classes of Tree Languages and DR Tree Languages

Given by Classes of Semigroups

Ferenc Gécseg∗

Abstract

In the first section of the paper we give general conditions under which
a class of recognizable tree languages with a given property can be defined
by a class of monoids or semigroups defining the class of string languages
having the same property. In the second part similar questions are studied
for classes of (DR) tree languages recognized by deterministic root-to-frontier
tree recognizers.

Keywords: recognizable tree languages, DR recognizable tree languages,
syntactic semigroups, syntactic monoids

1 Introduction

In [3] we characterized the class of recognizable monotone string languages and that
of recognizable monotone tree languages by means of syntactic monoids. It turned
out that both classes can be defined by the class M of monoids whose right unit
submonoids are closed under divisors, i.e. a recognizable string or tree language
is monotone if and only if its syntactic monoid is in M. This was the observation
which motivated the writing of paper [1], where such characterizations from more
general classes of string languages have been lifted to classes of (frontier-to-root)
tree languages.

In [4] we obtained results for the classes of definite and nilpotent deterministic
root-to-frontier (DR) tree languages similar to those in [3]. The aim of this paper
is to strengthen the main result of [1], on one hand, and to give general conditions
under which a class of DR tree languages with a given property can be defined
by a class of monoids or semigroups defining the class of string languages having
the same property, on the other hand. The proofs are based on the observation
that the syntactic monoids (syntactic semigroups) of recognizable tree languages
and the syntactic path monoids (syntactic path semigroups) of DR tree languages
can be given as subdirect products of the syntactic monoids (syntactic semigroups)
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of suitable recognizable string languages. We shall show for the classes of DR-
monotone, DR-nilpotent and DR-definite tree languages that they satisfy these
conditions.

It should be noted that the classes of tree languages considered in this paper
are not necessarily varieties. For readers interested in varieties of recognizable tree
languages, we refer to the fundamental papers [11] and [13].

2 Notions and Notation

Sets of operational symbols will be denoted by Σ. If Σ is finite and nonvoid, then it
is called a ranked alphabet. For the subset of Σ consisting of all m-ary operational
symbols from Σ we shall use the notation Σm (m ≥ 0). By a Σ-algebra we mean
a pair A = (A, {σA|σ ∈ Σ}), where σA is an m-ary operation on A if σ ∈ Σm.
If there will be no danger of confusion then we omit the superscript A in σA and
simply write A = (A,Σ). Finally, all algebras considered in this paper will be finite,
i.e. A is finite and Σ is a ranked alphabet.

Take a Σ-algebra A = (A,Σ), a σ ∈ Σm (m > 0), an i (1 ≤ i ≤ m) and
a1, . . . , ai−1, ai+1, . . . , am ∈ A. Then σ(a1, . . . , ai−1, x, ai+1, . . . , am) is an elemen-

tary translation symbol of A. The set of all elementary translation symbols of A
will be denoted by ETS(A). In the sequel elementary translation symbols will
be considered as unary operational symbols. Moreover, ETalg(A) will denote the
unary algebra (A,ETS(A)) with

σ(a1, . . . , ai−1, x, ai+1, . . . , am)ETalg(A)(a) =

σA(a1, . . . , ai−1, a, ai+1, . . . , am)

(σ(a1, . . . , ai−1, x, ai+1, . . . , am) ∈ ETS(A), a ∈ A).

Let X be a set of variables. The set TΣ(X) of ΣX-trees (or Σ-trees over X) is
defined as follows:

(i) X ⊆ TΣ(X),

(ii) σ(p1, . . . , pm) ∈ TΣ(X) if m ≥ 0, σ ∈ Σm and p1, . . . , pm ∈ TΣ(X), and

(iii) every ΣX-tree can be obtained by applying the rules (i) and (ii) a finite
number of times.

In the sequel X will stand for the countable set {x1, x2, . . .}, and for every
n ≥ 0, Xn will denote the subset {x1, . . . , xn} of X . A subset of TΣ(Xn) is called
a ΣXn-language. If Σ or Xn is not specified then we speak of a tree language.

Take a Σ-algebra A = (A,Σ) and a tree p ∈ TΣ(Xn). Let us define the mapping
pA : An → A in the following way: for any a = (a1, . . . , an) ∈ An,

(i) if p = xi ∈ Xn, then pA(a) = ai,

(ii) if p = σ(p1, . . . , pm) (σ ∈ Σm, p1, . . . , pm ∈ TΣ(Xn)), then

pA(a) = σA(pA1 (a), . . . , p
A
m(a)).
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If there is no danger of confusion, then we omit A in pA.
A ΣXn-recognizer is a system A = (A, a, A′), where

(i) A = (A,Σ) is an algebra,

(ii) a = (a(1), . . . , a(n)) (a(1), . . . , a(n) ∈ A) is the initial vector,

(iii) A′ ⊆ A is the set of final states.

If n = 1, then we usually write a(1) for (a(1)). Moreover, it is said that A is
connected if {p(a) | p ∈ TΣ(Xn)} = A.

If Σ and Xn are not specified then we speak of a tree recognizer. Furthermore,
if Σ = Σ1 and n = 1, then A is a finite state recognizer, shortly recognizer. If we
are dealing with recognizers, then (unary) trees are sometimes written as words:
for a tree σ1(. . . (σk(x1)) . . .) we may write σk . . . σ1.

The tree language T (A) recognized by the ΣXn-recognizer A = (A, a, A′) is
given by

T (A) = {p ∈ TΣ(Xn) | p(a) ∈ A′}.

The class of recognizable tree languages will be denoted by Treelang, and
Lang is its subclass consisting of all tree languages recognizable by finite state
recognizers.

Let Prop be a property of recognizable tree languages. The best way is to define
Prop as a subclass of Treelang. If K is a subclass of Treelang, then Prop(K)
will denote the class of all tree languages which are simultaneously in Prop and
K.

If not otherwise specified, A will be the ΣXn-recognizer (A, a, A′). Here A is a
Σ-algebra (A,Σ), a = (a(1), . . . , a(n)) and A′ ⊆ A. Consider a ΣXn-recognizer A.
For each x ∈ Xn ∪Σ0, define the finite state ETS(A)-recognizer Ax = (Ax, ax, A

′
x)

in the following way:

(1) ax =

{

a(i), if x = xi (1 ≤ i ≤ n),
σA, if x = σ ∈ Σ0.

(2) Ax = {pETalg(A)(ax) | p ∈ TETS(A)(X1)}.

(3) Ax = (Ax,ETS(A)) is a subalgebra of ETalg(A).

(4) A′
x = Ax ∩ A′.

These Ax are called translation recognizers of A.
Let T̂Σ(Xn) denote the set of all Σ-trees overXn∪{∗} (∗ 6∈ Xn) in which ∗ occurs

exactly once. Elements in T̂Σ(Xn) are special trees of Thomas [14] and Heuter [9].
Let us define the product q·p of q ∈ TΣ(Xn)∪T̂Σ(Xn) and p ∈ T̂Σ(Xn) by q·p = p(q).
(Here and in the sequel, for any p ∈ T̂Σ(Xn) and q ∈ TΣ(Xn) ∪ T̂Σ(Xn), p(q) is
obtained by replacing the occurrence of ∗ in p by q (p(q) = p(∗ ← q)).) Obviously,
under this multiplication T̂Σ(Xn) is a monoid with the identity element ∗.
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Let T ⊆ TΣ(Xn) be a tree language. Define the binary relation µT on T̂Σ(Xn)
in the following way: for any p, q ∈ T̂Σ(Xn),

p ≡ q(µT )⇐⇒

(∀p′, p′′ ∈ T̂Σ(Xn), x ∈ Xn ∪ Σ0)((p
′ · p · p′′)(x) ∈ T ⇐⇒ (p′ · q · p′′)(x) ∈ T ).

This µT is a congruence of the monoid T̂Σ(Xn), which is called the syntactic con-

gruence of T . Moreover, the quotient monoid T̂Σ(Xn)/µT is the syntactic monoid

of T , which will be denoted by Syntm(T ).
The restriction of µT to T̂Σ(Xn) \ {∗} will be denoted by the same µT . The

quotient semigroup T̂Σ(Xn)\{∗}/µT is the syntactic semigroup of T . The syntactic
semigroup of T will be denoted by Synts(T ).

We say that a property Prop of recognizable tree languages can be defined by

a class M of monoids, if for all T ∈ Treelang, T ∈ Prop ⇐⇒ Syntm(T ) ∈ M.
Similarly, a property Prop of recognizable tree languages can be defined by a class

S of semigroups, if for all T ∈ Treelang, T ∈ Prop ⇐⇒ Synts(T ) ∈ S. For any
ΣXn-recognizer A and p ∈ T̂Σ(Xn), let p(a) stand for p(x1 ← a(1), . . . , xn ← a(n))
and p(a)(a) for p(a)(∗ ← a) (a ∈ A), i.e. p(a)(a) is obtained from p by replacing
the occurrences of xi by a(i) and that of ∗ by a.

Let Y be an ordinary alphabet, Y ∗ the free semigroup generated by Y and
L ⊆ Y ∗ a language over Y . Furthermore, let µL be the binary relation on Y ∗ given
by u ≡ v(µL) (u, v ∈ Y ∗) iff for any u′, u′′ ∈ Y ∗ the equivalence u′uu′′ ∈ L ⇐⇒
u′vu′′ ∈ L holds. As it is well known, µL is a congruence relation on the free monoid
Y ∗, and the quotient monoid Y ∗/µL is called the syntactic monoid of L. Let the
same µL denote the restriction of µL to the semigroup Y + = Y ∗ \ {e}, where e
is the empty word. The quotient semigroup Y +/µL is the syntactic semigroup of
L. It is obvious, if finite state recognizers are taken as special tree recognizers,
then the above two definitions of syntactic monoids coincide. The same is true for
syntactic semigroups.

For notions and notation not defined in this paper, see [6] and [7].

3 Tree languages

Let A be an arbitrary connected ΣXn-recognizer. Define the mapping
ǫA : T̂Σ(Xn)→ TETS(A)(∗) in the following way:

1) ǫA(∗) = ∗.

2) If p = σ(p1, . . . , pi−1, pi, pi+1, . . . , pm) (σ ∈ Σm, pj ∈ TΣ(Xn), j ∈ {1, . . . , i−

1, i+ 1, . . . ,m}, pi ∈ T̂Σ(Xn)), then

ǫA(p) = σ(pA1 (a), . . . , p
A
i−1(a), ǫA(pi), p

A
i+1(a), . . . , p

A
m(a)).

Since A is connected, ǫA is an onto mapping. If there is no danger of confusion
we shall omit A in ǫA.
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Let T ⊆ TΣ(Xn) be a tree language. For each x ∈ Xn ∪ Σ0, define the binary
relation µT,x on T̂Σ(Xn) in the following way: for any p, q ∈ T̂Σ(Xn),

p ≡ q(µT,x)⇐⇒

(∀p′, p′′ ∈ T̂Σ(Xn))((p
′ · p · p′′)(x) ∈ T ⇐⇒ (p′ · q · p′′)(x) ∈ T ).

Clearly, these relations µT,x are congruences of the monoid T̂Σ(Xn).
By the definitions of the syntactic monoid and the syntactic semigroup of a

ΣXn-language T we obviously have the following two results.

Lemma 1. The syntactic monoid Syntm(T) is isomorphic to a subdirect product

of the monoids T̂Σ(Xn)/µT,x, x ∈ Xn ∪ Σ0. ♦

Lemma 2. The syntactic semigroup Synts(T) is isomorphic to a subdirect product

of the semigroups T̂Σ(Xn) \ {∗}/µT,x, x ∈ Xn ∪ Σ0, where the restriction of µT,x

to T̂Σ(Xn) \ {∗} is denoted by the same µT,x. ♦

We now show

Lemma 3. Let A be an arbitrary connected ΣXn-recognizer. Then for all x ∈
Xn ∪ Σ0,

T̂Σ(Xn)/µT,x
∼= Syntm(T(Ax)).

Proof. It is obvious that for any two p, q ∈ T̂Σ(Xn) we have ǫ(p · q) = ǫ(p) · ǫ(q).
We show that for all p, q ∈ T̂Σ(Xn),

p ≡ q(µT,x)⇐⇒ ǫ(p) ≡ ǫ(q)(µT (Ax)).

Remember that ǫ is an onto mapping since A is connected. Thus,

p ≡ q(µT,x)
m

(∀r, s ∈ T̂Σ(Xn))((r · p · s)(x) ∈ T ⇐⇒ (r · q · s)(x) ∈ T )
m

(∀r, s ∈ T̂Σ(Xn))((r · p · s)(a)(ax) ∈ A′ ⇐⇒ (r · q · s)(a)(ax) ∈ A′)
m

(∀r, s ∈ T̂Σ(Xn))(ǫ(r · p · s)(ax) ∈ A′
x ⇐⇒ ǫ(r · q · s)(ax) ∈ A′

x)
m

(∀r, s ∈ T̂Σ(Xn))((ǫ(r) · ǫ(p) · ǫ(s)) ∈ A′
x ⇐⇒ (ǫ(r) · ǫ(q) · ǫ(s)) ∈ A′

x)
m

ǫ(p) ≡ ǫ(q)(µT (Ax)).

Therefore, p/µT,x → ǫ(p)/µT (Ax) (p ∈ T̂Σ(Xn)) is an isomorphic mapping of

T̂Σ(Xn)/µT,x onto Syntm(T(Ax)). ♦

The following lemma can be proved in a similar way.
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Lemma 4. Let A be an arbitrary connected ΣXn-recognizer. Then for all x ∈
Xn ∪ Σ0,

T̂Σ(Xn) \ {∗}/µT,x
∼= Synts(T(Ax)).

♦

Let S be a class of semigroups. We say that S is closed under subdirect products,

if all subdirect products of semigroups from S with finitely many factors are in S.
Moreover, S is closed under subdirect factors, if whenever a subdirect product of
two semigroups is in S, then both of them are in S.

In this paper all classes of semigroups will contain only finite semigrouups.
We are now ready to state and prove

Theorem 1. Let Prop be a property of recognizable tree languages. Assume that

the following conditions are satisfied:

(1) For every ΣXn-language T there exists a connected ΣXn-recognizer A with

T (A) = T such that

T ∈ Prop⇐⇒ (∀x ∈ Xn ∪ Σ0)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be defined by M.

Proof. Assume that the conditions of our theorem are satisfied.
First take a T ∈ Treelang with Syntm(T ) ∈ M, and let A be a connected

ΣXn-recognizer such that T = T (A) satisfies (1). By Lemma 1 and 3, Syntm(T )
is isomorphic to a subdirect product of the monoids Syntm(T (Ax)) (x ∈ Xn ∪Σ0).
From this, by (3), we obtain that Syntm(T (Ax)) ∈M, and thus, by (2), T (Ax) ∈
Prop(Lang) for all x ∈ Xn ∪Σ0, which, by (1), implies that T = T (A) ∈ Prop.

Conversely, assume that T ∈ Prop, and let A be a connected tree recognizer
with T = T (A) satisfying (1). Then, for each x ∈ Xn∪Σ0, T (Ax) ∈ Prop(Lang).
Thus, by (2), Syntm(T (Ax)) ∈ M. Again, by Lemma 1 and 3, Syntm(T ) is iso-
morphic to a subdirect product of Syntm(T (Ax)) (x ∈ Xn∪Σ0). Moreover, by (3),
M is closed under subdirect products. Therefore, Synt(T ) ∈M. ♦

The next theorem can be proved in a similar way.

Theorem 2. Let Prop be a property of recognizable tree languages. Assume that

the following conditions are satisfied:

(1) For every ΣXn-language T there exists a connected ΣXn-recognizer A with

T (A) = T such that

T ∈ Prop⇐⇒ (∀x ∈ Xn ∪ Σ0)(T (Ax) ∈ Prop(Lang)).
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(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be defined by S. ♦

In [1] we proved

Theorem 3. Let Prop be a property of recognizable tree languages. Assume that

the following conditions are satisfied.

(1) For all minimal tree recognizers A,

T (A) ∈ Prop⇐⇒ (∀x ∈ Xn ∪Σ0)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be defined by M. ♦

It is easy to show that the previous theorem is true for properties defined by
semigroups:

Theorem 4. Let Prop be a property of recognizable tree languages. Assume that

the following conditions are satisfied.

(1) For all minimal tree recognizers A,

T (A) ∈ Prop⇐⇒ (∀x ∈ Xn ∪Σ0)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be defined by S. ♦

We shall need

Lemma 5. If A and B are equivalent connected ΣXn-recognizers then for all

x ∈ Xn ∪ Σ0, Syntm(T (Ax)) ∼= Syntm(T (Bx)).

Proof. For a p ∈ T̂Σ(Xn) set p = ǫA(p) and p = ǫB(p). Let p, q ∈ T̂Σ(Xn) and
x ∈ Xn be arbitrary. We have

(∀r, s ∈ T̂Σ(Xn))(((r · p · s)(x))A(a) ∈ A′ ⇔ ((r · q · s)(x))A(a) ∈ A′)
T (A)=T (B)
⇐⇒

(∀r, s ∈ T̂Σ(Xn))(((r · p · s)(x))B(b) ∈ B′ ⇔ ((r · q · s)(x))B(b) ∈ B′)
m

(∀r, s ∈ T̂Σ(Xn))r · p · s
Ax(ax) ∈ A′ ⇔ r · q · sAx(ax) ∈ A′)⇐⇒

(∀r, s ∈ T̂Σ(Xn))r · p · s
Bx

(bx) ∈ B′ ⇔ r · q · s
Bx

(bx) ∈ B′)
m

(∀r, s ∈ T̂Σ(Xn))((r · p · s)Ax(ax) ∈ A′ ⇔ (r · q · s)Ax(ax) ∈ A′)⇐⇒

(∀r, s ∈ T̂Σ(Xn))((r · p · s)Bx(bx) ∈ B′ ⇔ (r · q · s)Bx(bx) ∈ B′)
m

p ≡ q(µAx
)⇔ p ≡ q(µBx

).
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Therefore the mapping p/µAx
→ p/µBx

(p ∈ T̂Σ(Xn)) is an isomorphism between
the monoids Syntm(T (Ax)) and Syntm(T (Bx)). ♦

The following result can be proved in a similar way.

Lemma 6. If A and B are equivalent connected ΣXn-recognizers then for all

x ∈ Xn ∪ Σ0, Synts(T (Ax)) ∼= Synts(T (Bx)). ♦

Now we show

Theorem 5. Theorems 1 and 3 are equivalent.

Proof. It is obvious that Theorem 1 implies Theorem 3.
To prove the opposite direction, suppose that Theorem 3 is valid and the con-

ditions of Theorem 1 are satisfied. Take a recognizable ΣXn-tree T and let A be
the minimal ΣXn-recognizer for T .

First assume that T ∈ Prop. Let B be a connected ΣXn-recognizer recognizing
T such that T (Bx) ∈ Prop(Lang) for all x ∈ T̂Σ(Xn). Therefore, by (2) in Theo-
rem 1, Syntm(T (Bx)) ∈M. By Lemma 5, Syntm(T (Ax)) ∼= Syntm(T (Bx)), thus
Syntm(T (Ax)) ∈M, which by (2) in Theorem 1 implies T (Ax) ∈ Prop(Lang).

Conversely, suppose that T (Ax) ∈ Prop(Lang) for all x ∈ T̂Σ(Xn). By (2)
in Theorem 1, Syntm(T (Ax)) ∈ M. Let B be a connected ΣXn-recognizer with
T (B) = T (A) which satisfies (1) in Theorem 1. By Lemma 5, Syntm(T (Ax)) and
Syntm(T (Bx)) are isomorphic. Then Syntm(T (Bx)) ∈ M. Therefore, by (2) in
Theorem 1, T (Bx) ∈ Prop(Lang). From this, using (1) in Theorem 1, we obtain
that T (A) = T (B) ∈ Prop.

We have obtained that the conditions of Theorem 3 are also satisfied. Therefore,
Prop can be defined by M. ♦

Using a similar proof, one can show

Theorem 6. Theorems 2 and 4 are equivalent. ♦

We now show that Theorem 3 is equivalent to

Theorem 7. Let Prop be a property of recognizable tree languages and M a class

of monoids. Assume that the following conditions are satisfied:

(1) For every ΣXn-language T and all connected ΣXn-recognizers A with T (A) =
T we have

T ∈ Prop⇐⇒ (∀x ∈ Xn ∪ Σ0)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by M.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be defined by M.
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Proof. It is obvious that Theorem 3 implies Theorem 7.
The opposite direction can be shown by the same idea as the second part of

the proof of Theorem 5. Suppose that Theorem 7 is valid and the conditions of
Theorem 3 are satisfied. Take a recognizable ΣXn-tree T .

First assume that T ∈ Prop. Let B be a connected ΣXn-recognizer recog-
nizing T . Moreover, let A be the minimal ΣXn-recognizer for T . By our as-
sumption, T (Ax) ∈ Prop(Lang) for all x ∈ T̂Σ(Xn). Then, by (2) in Theorem
3, Syntm(T (Ax)) ∈ M. By Lemma 5, Syntm(T (Ax)) ∼= Syntm(T (Bx)), thus
Syntm(T (Bx)) ∈M, which by (2) in Theorem 3 implies T (Bx) ∈ Prop(Lang).

Conversely, let B be a connected ΣXn-recognizer with T (B) = T such that
T (Bx) ∈ Prop(Lang) for all x ∈ T̂Σ(Xn). By condition (2) in Theorem 3,
Syntm(T (Bx)) ∈ M, and thus Syntm(T (Ax)) ∈ M since Syntm(T (Ax)) and
Syntm(T (Bx)) are isomorphic. Therefore, again by (2) in Theorem 3, T (Ax) ∈
Prop(Lang). From this, using (1) in Theorem 3, we obtain that T (B) = T (A) ∈
Prop.

We have obtained that the conditions of Theorem 7 are satisfied. Therefore,
Prop can be defined by M. ♦

Summarizing our equivalence results, we have

Theorem 8. Theorems 1, 3 and 7 are equivalent. ♦

Using the same technique as in the proof of Theorem 5, one can show that
Theorems 2 and 4 are equivalent to

Theorem 9. Let Prop be a property of recognizable tree languages. Assume that

the following conditions are satisfied:

(1) For every ΣXn-language T and all connected ΣXn-recognizers A with T =
T (A) we have

T ∈ Prop⇐⇒ (∀x ∈ Xn ∪ Σ0)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be defined by S.

4 DR tree languages

First of all, we recall several well known concepts from the theory of root-to-frontier
tree recognizers.

In what follows, the frequently recurring phrase deterministic root-to-frontier

is usually abbreviated directly to DR. As before, Σ is a ranked alphabet and X
is a (nonempty) frontier alphabet. As usual, in this section we shall suppose that
Σ0 = ∅.
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In the study of DR tree languages, which form a proper subclass of all recog-
nizable tree languages, a natural counterpart of syntactic semigroups are syntactic
path semigroups introduced in [8]. Thus, for defining classes of DR recognizable
tree languages we shall use path semigroups. We have also changed the definition
of properties of tree languages defined by tree automata (monotonicity, nilpotency
etc) in such a way which is more natural for DR recognizers. To distinguish them
from the general definition, we shall use the prefix DR.

A finite DR Σ-algebra consists of a non-empty finite set A and a Σ-indexed
family of root-to-frontier operations

σA : A −→ Am (σ ∈ Σm).

Again we write simply A = (A,Σ). A DR ΣXn-recognizer is now defined as a
system A = (A, a0, a), where A = (A,Σ) is a finite DR Σ-algebra, a0 ∈ A is the
initial state, and a = (A(1), . . . , A(n)) ∈ (℘A)n is the final state vector. (℘A denotes
the power-set of a set A.)

To define the tree language recognized by A, we introduce a mapping αA of
TΣ(Xn) into ℘A:

(1) αA(xi) = A(i) for xi ∈ Xn,

(2) αA(p) = {a ∈ A | σA(a) ∈ αA(p1) × . . . × αA(pm)} for p = σ(p1, . . . , pm)
(σ ∈ Σm, p1, . . . , pm ∈ TΣ(Xn)).

The tree language recognized by A is now defined as the set

T (A) = {p ∈ TΣ(Xn) | a0 ∈ αA(p)}.

A ΣXn-tree language is DR recognizable if it is recognized by some DR ΣXn-
recognizer. Such tree languages are called DR tree languages.

All DR Σ-algebras considered in this paper are supposed to be finite.
Set Σ̂ =

⋃

({σ1, . . . , σm} | σ ∈ Σm, m > 0). For any x ∈ Xn the set gx(p) ⊆ Σ̂∗

of x-paths in a given ΣXn-tree p is defined as follows:

(1) gx(x) = e,

(2) gx(y) = ∅ for y ∈ Xn, y 6= x,

(3) gx(p) = σ1gx(p1) ∪ . . . ∪ σmgx(pm) for p = σ(p1, . . . , pm).

For T ⊆ TΣ(Xn) and x ∈ Xn, set Tx =
⋃

(gx(p) | p ∈ T ).
For a DR ΣXn-recognizer A = (A, a0, a) and x ∈ Xn, now define the recognizer

Ax = (Σ̂, A, a0, δ, A
(i)) by δ(a, σj) = πj(σ(a)) (a ∈ A, σ ∈ Σ), where x = xi and

πj is the jth projection of a vector. (Since Ax are used to recognize words (paths)
they are written in the standard form of finite state recognizers.)

We shall use the following obvious result.

Lemma 7. For all DR recognizable ΣXn-tree language T and x ∈ Xn, Tx is a

recognizable language. ♦
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The syntactic path congruence of a ΣXn-tree language T is the relation on Σ̂∗

defined by the following condition. For any w1, w2 ∈ Σ̂∗,

w1 µ̂T w2 ⇐⇒ (∀x ∈ X)(∀u, v ∈ Σ̂∗)(uw1v ∈ Tx ⇐⇒ uw2v ∈ Tx).

The syntactic path monoid Synpm(T ) of T is Σ̂∗/µ̂T . Denote by the same µ̂T

the restriction of µ̂T to Σ̂+. Then Σ̂+/µ̂T is called the syntactic path semigroup of
T and it is denoted by Synps(T ).

The following facts are obvious since in both cases µ̂T is the intersection of the
usual syntactic congruences of the languages Tx (x ∈ X).

Lemma 8. For any DR ΣXn-tree language T , Σ̂∗/µ̂T is isomorphic to a subdirect

product of the syntactic monoids Σ̂∗/µ̂Tx
(x ∈ Xn). Similarly, Σ̂+/µ̂T is isomorphic

to a subdirect product of the syntactic semigroups Σ̂+/µ̂Tx
(x ∈ Xn). ♦

A DR property is a class of DR tree languages. We say that a DR property
Prop can be path-defined by a class M of monoids, if for all DR tree languages
T , T ∈ Prop ⇐⇒ Syntpm(T ) ∈M. Moreover, a DR-property Prop can be path-

defined by a class S of semigroups, if for all DR tree languages T , T ∈ Prop ⇐⇒
Syntps(T ) ∈ S.

Using Lemma 8, the next result can be proved in the same way as Theorem 1.

Theorem 10. Let Prop be a DR property. Assume that the following conditions

are satisfied:

(1) For every DR ΣXn-language T there exists a DR ΣXn-recognizer A with

T (A) = T such that

T ∈ Prop⇐⇒ (∀x ∈ Xn)(T (Ax) ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be path-defined by M. ♦

By the proof of Lemma 7, the above result can be formulated as follows.

Theorem 11. Let Prop be a DR property. Assume that the following conditions

are satisfied:

(1) For every DR ΣXn-language T ,

T ∈ Prop⇐⇒ (∀x ∈ Xn)(Tx ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.
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Then Prop can be path-defined by M. ♦

One can also show

Theorem 12. Let Prop be a DR property. Assume that the following conditions

are satisfied:

(1) For every DR ΣXn-language T ,

T ∈ Prop⇐⇒ (∀x ∈ Xn)(Tx ∈ Prop(Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be path-defined by S.

4.1 DR monotone tree languages

It is said that a DR ΣXn-recognizer A = (A, a0, a) is DR monotone if there exists
a partial ordering ≤ on A such that πi(σ(a)) ≥ a for all σ ∈ Σm, 1 ≤ i ≤ m and
a ∈ A. Moreover, a tree language T ⊆ TΣ(Xn) is DR monotone, if T = T (A) for a
DR monotone ΣXn-recognizer A.

Let S be a semigroup and s ∈ S an arbitrary element. It is said that r ∈ S
is a divisor of s if s = rt or s = tr for some t ∈ S. A subsemigroup S′ of S is
closed under divisors if S′ contains all divisors of each of its elements. Moreover,
we say that a subsemigroup S′ of S is a right-unit subsemigroup if there exists an
s ∈ S such that S′ = {r ∈ S | s = sr}. More precisely, in this case S′ is called the
right-unit subsemigroup of S belonging to s.

The class of monoids whose all right-unit subsemigroups are closed under divi-
sors will be denoted by Mcld.

The following result from [3] gives a semigroup-theoretic characterization of
monotone languages.

Theorem 13. A recognizable language L is monotone iff every right-unit subsemi-

group of the syntactic monoid of L is closed under divisors. ♦

Thus the class of monotone languages is defined by the class Mcld of monoids.
The next result is from [1].

Theorem 14. The class of all monotone tree languages together with Mcld satisfies

the conditions of Theorem 3. ♦

For DR monotone tree languages we have

Theorem 15. The class Prop of all DR monotone tree languages with M = Mcld

satisfies the conditions of Theorem 11.
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Proof. It has been shown in [1] that (2) and (3) are true.
For showing (1), take a DR monotone ΣXn-language T . For all x ∈ Xn, Tx are

monotone. Therefore, Tx ∈ Prop(Lang).
Conversely, assume that for all xi ∈ Xn, Txi

are monotone. Therefore, there are
monotone recognizers Bi = (Σ̂, Bi, bi0 , δi, B

′
i) with partial orderings ≤i on Bi such

that T (Bi) = Txi
. Define the DR ΣXn-recognizer B = (B, b0,b) in the following

way:

(1) B = (B,Σ) where B = B1× . . .×Bn and for all (b1, . . . , bn) ∈ B and σ ∈ Σm,

σB(b1, . . . , bn) =

((δ1(b1, σ1), . . . , δn(bn, σ1)), . . . , (δ1(b1, σm), . . . , δn(bn, σm))).

(2) b0 = (b10 . . . , bn0
).

(3) B(i) = B1 × . . .×Bi−1 ×Bi
′ ×Bi+1 × . . .×Bn.

It is a routine work to show that T (B) = T . Define the relation ≤ on B by

((b1, . . . , bn) ≤ (b′1, . . . , b
′
n))⇐⇒ ((∀i ∈ {1, . . . , n})(bi ≤i b

′
i))

((b1, . . . , bn), (b
′
1, . . . , b

′
n) ∈ B).

Easy to show that ≤ is a partial ordering and (b1, . . . , bn) ≤ πj(σ(b1, . . . , bn)) for
all (b1, . . . , bn) ∈ B, σ ∈ Σ and j ∈ {1, . . . , n}. Thus, T ∈ Prop. ♦

Since the class of DR tree languages is a proper subclass of the class of all
tree languages both the class of all monotone tree languages and the class of DR
monotone tree languages can be defined by the same class Mcld of monoids, one
could come to the hypothesis that the class of all DR monotone tree languages
is the restriction of the class of all monotone tree languages to the class of DR
tree languages. However, in [3] it was shown that the class of DR monotone tree
languages and that of monotone tree languages are incomparable.

4.2 DR nilpotent tree languages

Let A = (A,Σ) be a DR Σ-algebra, a ∈ A an element and p ∈ TΣ(Xn) a tree.
Define the word fr(ap) ∈ A∗ in the following way:

1) if p = x ∈ Xn, then fr(ap) = a,

2) if p = σ(p1, . . . , pm) and (a1, . . . , am) = σA(a), then

fr(ap) = fr(a1p1) . . . fr(ampm).

A DR ΣXn-algebra A = (A,Σ) is DR nilpotent if there are an integer k ≥ 0
and an element ā ∈ A such that for all a ∈ A and p ∈ TΣ(Xn) with mh(p) ≥ k,
fr(ap) = āl for a natural number l. (ā is called the nilpotent element of A and mh(p)
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is the length of the shortest path of p.) A DR ΣXn-recognizer A = (A, a0, a) is DR

nilpotent if A is DR nilpotent. Moreover, a ΣXn-tree language T is DR nilpotent

if it can be recognized by a DR nilpotent ΣXn-recognizer.
A semigroup S is nilpotent if it has a zero-element 0 and there is a non-negative

integer k such that s1 . . . sk = 0 for all s1, . . . , sk ∈ S.
The class of all nilpotent semigroups will be denoted by Snil.
The following result from [12] gives a semigroup-theoretic characterization of

nilpotent languages. (See, also [5].)

Theorem 16. A recognizable language L is nilpotent iff the syntactic semigroup

of L is nilpotent. ♦

Thus the class of nilpotent languages can be defined by the class Snil of semi-
groups.

Theorem 17. The class of all DR nilpotent tree languages with S = Snil satisfy

the conditions of Theorem 12.

Proof. It has been proved in [1] that (2) and (3) are true.
Condition (1) can be shown in a similar way as (1) in the proof of Theorem

15 by replacing ”DR monotone” with ”DR nilpotent”, taking (b1, . . . , bk) to be the
nilpotent element if bi is the nilpotent element of Bi, and disregarding the partial
ordering.

4.3 DR definite tree languages

Let S be a semigroup. It is said that S is right regular if the equality ssI = sI holds
in S for any element s and idempotent sI . The class of all right regular semigroups
will be denoted by Srr

Let k ≥ 0 be an arbitrary integer. A DR Σ-algebra A = (A,Σ) is DR k-definite
if fr(ap) = fr(a′p) for all a, a′ ∈ A and p ∈ TΣ(Xn) with mh(p) ≥ k. A DR
ΣXn-recognizer A = (A, a0, a) is DR k-definite if A is DR k-definite. Moreover, a
ΣXn-tree language T is DR k-definite if it can be recognized by a DR k-definite
ΣXn-recognizer. Finally, T is DR definite if it is DR k-definite for some k.

It is well known that the class of all definite languages can be defined by the
class of all right regular semigroups. Thus, condition (2) of Theorem 12 is satisfied
by Srr. We now show

Theorem 18. The class of all DR definite tree languages with S = Srr satisfies

the conditions of Theorem 12.

Proof. Condition (3) of Theorem 12 is obviously satisfied by Srr.
It is obvious that if T ⊆ TΣ(Xn) is DR k-definite then so are Tx for all x ∈

Xn. Conversely, assume that Txi
are ki-definite. There are ki-definite recognizers

Bi = (Σ̂, Bi, bi0 , δi, B
′
i) such that T (Bi) = Txi

. Again take the DR ΣXn-recognizer
B = (B, b0,b) obtained by the construction used in the proof of Theorem 15. Let
k = max(ki | i = 1, . . . , n). It is easy to show that B is k-definite and T (B) = T .
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