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The Vagueness Measure: A New Interpretation and

an Application to Image Thresholding

József Dombi∗ and Gergely Gulyás†

Abstract

Here, we introduce a new interpretation of the vagueness measure (which
appeared in an earlier work) and an application for this approach. If the
vagueness measure is computed for the distribution function of a given pop-
ulation, the value obtained gives a similar characteristic as the standard de-
viation of the population. Based on this property, a new global thresholding
algorithm was developed that generalizes the idea of Otsu’s optimality cri-
terion by the means of continuous-valued logic. The performance of this
method is compared with other commonly used algorithms to validate the
usefulness of the proposed approach. Although the purpose of this algorithm
is to threshold a grayscale image (which can be a useful step in the segmenta-
tion process of biological and medical images), it can be generalized for other
tasks that require the separation of two or more populations, characterized
by real values.

Keywords: Image segmentation; Global thresholding; Fuzziness measure;
Pliant system; Vagueness functions; Vagueness measure; Ignorance Functions;
Weak Ignorance Functions

1 Introduction

In the field of fuzzy sets, the fuzziness measures are used to reflect the uncer-
tainty of the membership functions. The vagueness measure [9] was derived from
fuzziness measures and it is a part of the Pliant system [11] which is a coher-
ent continuous-valued logical system. A vagueness measure can be constructed by
means of vagueness functions, which are closely related to entropy functions like
Shannon’s entropy function (as we showed earlier). In this paper we present a new
interpretation of the vagueness measure. When applied to a distribution function,
the result value gives a similar characteristic as the standard deviation of the given
population.

In the field of image processing, segmentation is one of the most important tasks.
The goal of segmentation is to divide the image into disjoint regions so that these
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classes represent different objects. A frequently used technique for segmentation is
the global thresholding, whose method is very useful in biological and medical image
processing. Generally, the task requires to choose an appropriate threshold value
for a given property and this value divides the pixels of the image into two classes
based on the property: the pixels whose property value are below of the threshold
constitute the first class, while the others belong to the second class. In many cases
the property is the grayscale value of the pixels, but it can be other feature value
which were computed for each pixels. Many algorithms have been introduced in
the literature that can choose a good threshold value [15, 18, 23, 24, 26, 29, 33].
Some of these methods are based on fuzzy set theory and are able to handle any
ambiguity of data [3, 4, 6, 7, 13, 14, 27, 28].

In this paper we will present the vagueness measure in a new context because we
apply it on distribution functions. We will show that this interpretation is related
to the standard deviation. Based on this property, we give a new application of the
vagueness measure in a global thresholding algorithm which generalizes the idea of
Otsu’s method. The proposed approach will be compared with other well-known
algorithms in order to show the effectiveness of the algorithm.

2 Preliminaries

Let f be a 2-dimensional discrete image function which is defined in such a way
that

f : {0, . . . ,M − 1} × {0, . . . , N − 1} → {0, . . . , L− 1},

where L denotes the maximum intensity level. Let h denote the histogram (func-
tion) of the image which gives the number of occurrences at a given gray level:

h(q) = |{(x, y) : f(x, y) = q and (x, y) is a pixel}|,

where |.| is the cardinality of a given set. The normalized histogram p gives the
probability of occurrence of a given gray level:

p(q) = P (intensity = q) =
h(q)∑L−1
i=0 h(i)

For a given threshold value t, we can define the a priori probabilities of the back-
ground and object:

p
(t)
B =

t∑
q=0

p(q) p
(t)
O =

L−1∑
q=t+1

p(q)

As we mentioned earlier, which part of the intensities belongs to the object depends
on the image, but for simplicity we will take the object to be the brighter part of
the image. Let c denote the cumulative distribution function such that
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c(q) = P (intensity ≤ q) =

q∑
i=0

p(i).

Consider the cumulative distribution functions of the background and object
for a given threshold t:

c
(t)
B (q) =

∑q
i=0 h(i)∑t
i=0 h(i)

q = 0, . . . , t

c
(t)
O (q) =

∑q
i=t+1 h(i)∑L−1
i=t+1 h(i)

q = t+ 1, . . . , L− 1

We can assign a binary image to a given grayscale image f and a given threshold
intensity t in the following way:

ft(x, y) =

{
1 if f(x, y) ≤ t
0 otherwise

In general, a global thresholding algorithm is one that determines a single thresh-
old value and thresholds the entire image with that value.

3 Vagueness functions and vagueness measure

In Fuzzy Theory [31, 32] the membership function (denoted by µ) can be regarded
as the approximation of the characteristic function belonging to crisp sets. Then,
a fuzziness measure expresses the distance between the characteristic function and
a given membership function, and reflects the uncertainty of the membership func-
tion. In the following sections we introduce the vagueness functions and the vague-
ness measure [9] which belong to the Pliant system (which will be also introduced).
The vagueness measure can be interpreted as a fuzziness measure in the Pliant
system but we give a new interpretation of the vagueness measure on distribution
functions (when it does not play the role of a fuzziness measure).

3.1 Pliant system

The Pliant system [8, 10, 11] is a subclass of continuous valued logic where the
fuzzy logical operators like negation, conjunction and disjunction, and the fuzziness
measure constitute a coherent system. In the Pliant logic each operator is defined
by one generator function. In fuzzy logic, several different generator functions are
used. One of the main features of the Pliant concept that consists of infinitely
many negations [8]. In the following we shortly introduce the definition of the
Pliant system and the necessary notions from fuzzy logic.
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Definition 1. We say that n(x) is a negation if n : [0, 1] → [0, 1] satisfies the fol-
lowing conditions:

C1: n : [0, 1]→ [0, 1] is continuous (Continuity)
C2: n(0) = 1, n(1) = 0 (Boundary conditions)
C3: n(x) < n(y) for x > y (Monotonicity)
C4: n(n(x)) = x (Involution)

Using the general representation theorem we have for the strict t-norm (conjunc-
tive operator) and strict t-conorm (disjunctive operator) the following definitions.

Definition 2. Let fc(x) : [0, 1] → [0,∞] be continuous and strictly decreasing
monotone generator function. Then

c(x, y) = f−1
c (fc(x) + fc(y)). (1)

is a strict t-norm (conjunctive operator).

Definition 3. Let fd(x) : [0, 1] → [0,∞] be continuous and strictly increasing
monotone generator function. Then

d(x, y) = f−1
d (fd(x) + fd(y)). (2)

is a strict t-conorm (disjunctive operator).

Note: In Pliant logic, c stands for the conjunctive operator and d stands for the dis-
junctive operator. Those familiar with fuzzy logic theory will find that the terminol-
ogy used here is slightly different from that used in standard texts [1, 2, 5, 12, 17, 21].

Definition 4. If fc(x) and fd(x) are related in an inverse manner, i.e.

fc(x)fd(x) = 1, (3)

then we will call the generated connectives a Pliant system. It has been shown that
only this system of strict t-norms and t-conorms is equipped with infinitely many
negations [8].

Definition 5. The general form of the multiplicative Pliant system is

oα(x, y) = f−1
(

(fα(x) + fα(y))
1/α
)

(4)

where f : [0, 1] → [0,∞] is a continuous and strictly decreasing function which is
the generator function of the strict t-norm operator.

If α > 0, than oα(x, y) conjunctive operator (t-norm).

If α < 0, than oα(x, y) disjunctive operator (t-conorm).
(5)

The corresponding negation is:

ην(x) = f−1

(
f(ν0)

f(ν)

f(x)

)
or ην∗(x) = f−1

(
f2(ν∗)

f(x)

)
(6)
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We have to note that ην and ην∗ are well defined and satisfy the conditions of
Definition 1 (see in [8]), thus the negations can be interpreted when f(x) = 0. The
parameter ν, like ν∗ is the neutral value of the negation and can be interpreted as
the strictness of the negation.

Because the generator function is determined up to a multiplicative constant,
we can arrange it such that f(ν0) = 1 and so ην(x) = f−1 (f(ν)/f(x)). If f(ν0) =
f(ν) = 1, then we get the following.

Definition 6. Let f(x) : [0, 1] → [0,∞] be continuous and strictly decreasing
monotone function. Then

η(x) = f−1

(
1

f(x)

)
(7)

is the standard Pliant negation function.

In the Pliant system the conjunctive and disjunctive operators exist in weighted
forms which are defined by the following formulas:

c(w, x) = f−1

(
n∑
i=1

wif(xi)

)
and d(w, x) = f−1

 1
n∑
i=1

wi
f(xi)

 . (8)

Thus, we can define a bivariate conjunction operator where the weights are equal,
and what we call mean conjunction operator.

Definition 7. Let c̄(x, y) denote the mean conjunction operator in bivariate case:

c̄(x, y) = f−1

(
1

2
(f(x) + f(y))

)
(9)

where f : [0, 1]→ [0,∞) is a continuous, strictly decreasing generator function such
that f(1) = 0 ( [8]).

3.2 Vagueness functions and measure

The idea and construction of a vagueness measure [9] can be derived from the
fuzziness measure. Now we will introduce the vagueness measure as a part of the
Pliant system.

Definition 8. The vagueness function v : [0, 1]→ [0, 1] in the Pliant system is

v(x) = c̄(x, η(x)) = f−1

(
1

2

(
f(x) +

1

f(x)

))
(10)

Definition 9. The normalized vagueness function is

v∗(x) =
1

v(ν0)
v(x), (11)

where ν0 is the fix point of the negation η such that η(ν0) = ν0.
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Now we will give a list of properties for the vagueness function:
(P1): v(x) = 0 iff x ∈ {0, 1} (Sharpness: no vagueness)
(P2): v(x)/v(ν0) = 1 iff x = ν0 (Maximality: maximal vagueness)
(P3): v(x1) < v(x2) if (Monotonicity)

x1 < x2 and x1 ≤ ν0 or
x1 > x2 and x1 ≥ ν0

(P4): v(x) = v(η(x)) (Symmetry)

We can get a very simple form of the vagueness function if we use the generator
function of the Dombi operator [8], namely f(x) =

(
1−x
x

)α
. First, we get the

following formula:

vα(x) =
1

1 +
(

1
2

(
1−x
x

)α
+ 1

2

(
x

1−x

)α) 1
α

. (12)

In the Dombi operator case the negation η in the Pliant system is the standard
negation η(x) = 1−x (based on Definition 6) and therefore ν0 = 1

2 and vα(ν0) = 1
2 ,

and we get the following.

Definition 10. The normalized vagueness function in the Dombi case is

v∗α(x) =
1

vα(ν0)
vα(x) = 2vα(x) =

2

1 +
(

1
2

(
1−x
x

)α
+ 1

2

(
x

1−x

)α) 1
α

. (13)

Let α = 1. Then the vagueness function and the normalized vagueness function
have the following simple forms:

v1(x) = 2x(1− x) or v∗1(x) = 4x(1− x) (14)

While we got the idea of the vagueness measure from the fuzziness measures, it can
be interpreted in a more general way than a measure of fuzziness. Thus, we give a
definition which works on a finite set of values from [0, 1].

Definition 11. Let x = {x1, x2, . . . , xn} where xi ∈ [0, 1], and let v be a vagueness
function. Then

V(x) =
1

n

n∑
i=1

v(xi) (15)

is a vagueness measure defined by v.

Definition 12. Let V∗
α denote the vagueness measure defined by v∗α, where v∗α is

the normalized vagueness function in the Dombi case.

3.3 Relationship between the vagueness measure and the
standard deviation

As we showed earlier in [9], the vagueness measure can be interpreted as a fuzziness
measure. In this subsection we provide a small example which shows that if the
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vagueness measure is applied to a distribution function, it is closely related to the
variance of the given population.

In our example, three histograms were generated using three Gaussians with the
same mean and different standard deviations (the discrete histogram functions were
generated by a simple sampling process). The cumulative distribution functions
were also calculated, all functions can be seen in Figure 1. The dashed, the solid and
the dotted line histograms were created using 15, 30 and 45 as standard deviation
values, respectively. The corresponding vagueness values are 16.92, 33.85 and 49.96
(we used V∗

1 as the vagueness measure), which are related to the former standard
deviations. A short explanation is the following. The less the standard deviation,
the sharper the distribution function is (see in in Figure 1), and more values are
closer to 0 or 1, which leads a smaller vagueness measure value. Table 1 contains
more vagueness measure values calculated for the example distribution functions
using different α values as measure parameters.
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(b) Distribution functions

Figure 1: Example histograms and cumulative distribution functions. The dashed,
the solid and the dotted line histograms were created using Gaussians with the
standard deviation values 15, 30 and 45, respectively.

3.4 Relationship between the vagueness and weak ignorance
functions

We have to mention the similarity between the vagueness functions and weak igno-
rance functions which were proposed in [25] and have almost the same properties,
although they have different constructions. Weak ignorance functions can be de-
fined based on ignorance functions [4].

Definition 13. A continuous mapping G : [0, 1]2 → [0, 1] is an ignorance function
such that:
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HHH
HHα
σ

15.000 30.000 45.000

0.125 32.658 65.218 90.927
0.250 25.777 51.540 74.609
0.500 20.551 41.100 60.360
1.000 16.923 33.846 49.958
2.000 14.658 29.317 43.350
4.000 13.371 26.743 39.570
8.000 12.684 25.369 37.546

Table 1: Relationship between the vagueness measure and the standard deviation.
The table contains the vagueness measure values computed for the example dis-
tribution functions (with different standard deviation values, appeared in the first
row) where the measure has different α values (appeared in the first column).

(G1) G(x, y) = G(y, x) ∀x, y ∈ [0, 1]
(G2) G(x, y) = 0 iff x = 1 or y = 1
(G3) G(0.5, 0.5) = 1
(G4) G is decreasing in [0.5, 1]2

(G5) G is increasing in [0, 0.5]2

Theorem 1. Let G : [0, 1]2 → [0, 1] be an ignorance function. The continuous
function g : [0, 1]→ [0, 1] given by

g(x) = G(x, 1− x)

is a weak ignorance function which satisfies:

(g1) g(x) = g(1− x) ∀x ∈ [0, 1]
(g2) g(x, y) = 0 iff x ∈ {0, 1}
(g3) g(0.5) = 1

The similarities between the vagueness and weak ignorance functions are ob-
vious. The (g2) property is the same as the (P1) property. In the case of the
(g1) property, it can be seen that the vagueness function is more general because it
expresses the (P4) symmetry using a general negation, while the standard strong
negation N(x) = 1 − x appears in the (g1) property. The (P2) property states
that a normalized vagueness function gets its maximum (= 1) at the fixpoint of its
negation. If we suppose again that in (g1) the strong negation appears with the
fixpoint 0.5, then (g3) tells us that at this fixpoint g has its maximum value. It is
the same as in (P2) if we restrict it to the strong negation. The monotonicity is
not required for weak ignorance functions explicitly.
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4 Thresholding based on vagueness measure

Now we present a new global thresholding algorithm which uses the vagueness
measure and generalizes the idea of Otsu’s method [22]. Although this algorithm
works on a grayscale image it can be generalized for the case of real values because
it only needs the distribution functions of the populations. First, consider the two
vectors of the cumulative distribution function values of the background and object
for a given threshold t:

C
(t)
B = {c(t)B (0), c

(t)
B (1), . . . , c

(t)
B (t)}

C
(t)
O = {c(t)O (t+ 1), c

(t)
O (t+ 2), . . . , c

(t)
O (L− 1)}

Similarly to Otsu’s thresholding criterion [22] which minimizes the intra-class vari-
ance, we construct a new method which minimizes the joint vagueness measure of
the background and the object in order to yield two well separated population of
intensities.

Definition 14. Let C
(t)
B and C

(t)
O the vectors of the cumulative distribution function

values of the background and object for a given threshold t. Then the joint vagueness
measure belonging to these vectors and the threshold t is defined by the following
formula:

p
(t)
B · V

∗
α1

(
C

(t)
B

)
+ p

(t)
O · V

∗
α2

(
C

(t)
O

)
. (16)

With the notations above we can express the new thresholding criterion in the
terms of the following optimization problem:

t∗ = argmint

(
p
(t)
B · V

∗
α1

(
C

(t)
B

)
+ p

(t)
O · V

∗
α2

(
C

(t)
O

))
, (17)

where t∗ is the best threshold corresponding to the minimum joint vagueness mea-
sure. The apriori probabilities of the background and the object balance the effect
of the vagueness measures if the two population do not have the same size. The
pseudo-code of the algorithm can be seen below (Algorithm 1: Pliant Thresholding
Algorithm (PTA)). The method requires the histogram h of the image and the
parameters of the vagueness measures (α1, α2) as the input. The first step can be
carried out by using only the histogram. In the second step the calculated values
must be used and the vagueness values. The algorithm chooses the threshold t∗

which belongs to the lowest joint vagueness measure.
An example image and the running results of the PTA can be seen in Figure 2.

Figure 3 contains an example where the PTA was applied on the same image using
different values of α1, α2.

5 Experimental results

In order to validate the performance of the PTA, it was applied to a set of synthetic
images and to a set of standard images (which are widely used in the literature).
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(a) Original image
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(b) Histogram of the image

(c) Optimal segmentation (d) The thresholded image using the value 156
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Figure 2: An example image and the results of the PTA. The algorithm chose the
threshold value 156.
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Algorithm 1 Pliant Thresholding Algorithm (PTA)

Require: histogram h, parameters of the two vagueness measures α1, α2

(a) compute p
(t)
B , p

(t)
O , c

(t)
B , c

(t)
O for all t ∈ [0, L− 1]

(b) compute joint vagueness measures for all t ∈ [0, L− 1]

(i) compute value V∗
α1

(
C

(t)
B

)
(ii) compute value V∗

α2

(
C

(t)
O

)
(iii) compute the joint vagueness measure

(c) take t∗ as the best threshold corresponding to the minimum joint vague-
ness measure

Figure 3: Applying of the PTA using different sets of (α1, α2): (0.0625, 16.0),
(0.125, 8.00), (0.25, 4.00), (0.50, 2.00), (1.00, 1.00), (2.00, 0.50), (4.00, 0.25),
(8.00, 0.125), (16.00, 0.0625), from left to right, top to bottom.
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We compared the PTA (using the parameters α1 = α2 = 1
2 ) with some other

well-known and commonly used thresholding methods, namely Otsu’s method [22],
Huang-Wang algorithm [13], Kittler’s method [16], Li’s method [20], and Area
algorithm [3] (with φ1(x) = φ2(x) = x). There are many approaches available for
comparing thresholding algorithms in the literature [19, 24, 26, 33]. Here we have
applied the misclassification error [30] as the performance criterion which is the
following.

Definition 15. Let BO and FO denote the known background and object pixel
sets belonging to the optimal segmentation, and let BT and FT be the background
and object area pixels in the result image thresholding by t, respectively. Then
the misclassification error which belongs to a given threshold t is computed by the
following formula:

ME = 1− |BO ∩BT |+ |FO ∩ FT |
|BO|+ |FO|

. (18)

5.1 Comparison on the sets of synthetic images

Now, we introduce the creating process of the synthetic images which were used in
the first evaluation. The first (basic) image set was created as follows. An image
consists of a square on the center of the image which is the object and the other
surrounding pixels compose the background (we do not need more complicated
shapes because the algorithm works on the image’s histogram). The object and the
background were generated by two Gaussians (with different means but with not
necessarily different standard deviations). The means were picked up from the set
{0, 30, 50, 120, 150, 200} while for the deviations we used the set {10, 20, 30} (not all
of the possible selections were generated). So we got a synthetic set with 250 images.
We applied different distortions on the synthetic images in order to yield more test
cases: we used additive Gaussian noise (with different standard deviations) and
impulsive salt-and-pepper noise (with different amount of corrupted pixels). Each
distortion with 4 different parameters were used on the original images so the total
number of the images was 250 + 250 · 2 · 4 = 2250. Some examples can be seen in
Figure 4.

Figure 4: Synthetic image examples (from the left to the right): standard image
without any distorsions, image with Gaussian noise, and image contaminated by
salt-and-pepper noise.
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The summarized results can be found in Table 2. The rows belong to different
synthetic sets: the first contains the misclassification errors on the original images
while the next four show the results on the images with additive Gaussian noise, and
the last four give the values for the salt-and-pepper noise contaminated images. As
it can be seen the PTA and the Area algorithm have almost the same error values
(small differences occur in the the cases of the salt-and-pepper noise contaminated
images) and both perform better than the other studied methods.

Type Otsu Huang-W. Kittler Li Area PTA (α = 0.5)
B 0.049 0.049 0.071 0.053 0.045 0.045
G2 0.049 0.049 0.080 0.054 0.045 0.045
G5 0.051 0.055 0.084 0.056 0.048 0.048
G10 0.058 0.068 0.113 0.065 0.059 0.059
G15 0.070 0.093 0.164 0.079 0.076 0.076
SP1 0.054 0.052 0.077 0.058 0.049 0.048
SP3 0.071 0.061 0.078 0.072 0.058 0.056
SP5 0.099 0.072 0.089 0.090 0.069 0.065
SP10 0.124 0.098 0.109 0.136 0.096 0.108

Table 2: Misclassification errors on synthetic images. Every row belongs to a set
of synthetic images: B means the original synthetic images, G denotes the images
with additive Gaussian noise where the number is the standard deviation σ, and
SP refers to the salt-pepper noise contaminated images where the number gives the
percentage of the modified pixels.

5.2 Comparison on the set of standard images

The second evaluation of the algorithm was investigated by using 20 classical and
bimodal test images which are taken from a collection of Carnegie Mellon University
(http://www.cs.cmu.edu/∼cil/v-images.html). The images can be seen in Figure 5
while the ground-truth images appear in Figure 6 where the ground-truth thresholds
were set manually.

The missclassification error values are presented in Table 3 below. These values
are the average measures calculated for the 20 test images. In this case, the PTA
gives a slightly worse result than Otsu, but Li’s algorithm and the Area perform
very similarly. We should mention here that the measure ME suffers from the
subjectivity of the human expert or observer who sets the ground-truth thresholds,
so these differencies could be regardarded as insignificant. However we have chosen
the ground-truth threshold instead of creating a gold standard mask because we
compare global thresholding algorithms, and we think in this case that the ground-
truth threshold value gives the technical maximum for these algorithms at least
from ME aspect.
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Figure 5: Original images

Images Otsu Huang-W. Kittler Li Area PTA (α = 0.5)
Standard 0.085 0.135 0.185 0.101 0.106 0.095

Table 3: Misclassification errors on standard images.
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Figure 6: Ground-truth images
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6 Conclusions

In this study we provided a new interpretation of the vagueness measure which
assigns a value to a distribution function that is similar to the population’s standard
deviation. Then we gave an application using this property (in the form of a global
thresholding algorithm). The proposed method performs as well as or better than
the classical and state-of-the-arts methods. One advantage of this approach is that
the algorithm can be parameterized, hence it can be adapted to a given problem.
In the future, we would like to try other conjunction operators taken from the
Pliant system (e.g. a weighted conjunction) that have more parameters. It is an
interesting question of how the parameters should be optimized such that it fits the
given problem. Anyway, it would be useful to know what classes of problems the
vagueness measure can be applied to.
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Aggregation Functions. Fuzzy Sets and Their Extension: Representation, Ag-
gregation and Models. Studies in Fuzziness and Soft Computing, Vol. 220,
2008.
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