
Acta Cybernetica 21 (2014) 307–330.

Asymptotic Proportion of Hard Instances

of the Halting Problem

Antti Valmari∗

Abstract

Although the halting problem is undecidable, imperfect testers that fail

on some instances are possible. Such instances are called hard for the tester.

One variant of imperfect testers replies “I don’t know” on hard instances,

another variant fails to halt, and yet another replies incorrectly “yes” or

“no”. Also the halting problem has three variants: does a given program halt

on the empty input, does a given program halt when given itself as its input,

or does a given program halt on a given input. The failure rate of a tester

for some size is the proportion of hard instances among all instances of that

size. This publication investigates the behaviour of the failure rate as the size

grows without limit. Earlier results are surveyed and new results are proven.

Some of them use C++ on Linux as the computational model. It turns out

that the behaviour is sensitive to the details of the programming language

or computational model, but in many cases it is possible to prove that the

proportion of hard instances does not vanish.

Keywords: halting problem, three-way tester, generic-case tester, approxi-

mating tester

1 Introduction

Turing proved in 1936 that undecidability exists by showing that the halting prob-
lem is undecidable [10]. Rice extended the set of known undecidable problems to
cover all questions of the form “does the partial function computed by the given
program have property X”, where X is any property that at least one computable
partial function has and at least one does not have [7]. For instance, X could
be “returns 1 for all syntactically correct C++ programs and 0 for all remaining
inputs.” In other words, it may be impossible to find out whether a given weird-
looking program is a correct C++ syntax checker. These results are basic material
in such textbooks as [3].

On the other hand, imperfect halting testers are possible. For any instance
of the halting problem, a three-way tester eventually answers “yes”, “no”, or “I

∗Tampere University of Technology, Department of Mathematics, PO Box 553, FI-33101 Tam-
pere, FINLAND, E-mail: Antti.Valmari@tut.fi

DOI: 10.14232/actacyb.21.3.2014.3



308 Antti Valmari

don’t know”. If it answers “yes” or “no”, then it must be correct. We say that
the “I don’t know” instances are hard instances for the tester. Also other kinds of
imperfect testers have been introduced, as will be discussed in Section 2.1.

Assume that T1 is a tester. By Turing’s proof, it has a hard instance I1. If I1
is a halting instance, then let T2 be “if the input is I1, then reply ‘yes’, otherwise
run T1 and return its reply”. If I1 is non-halting, then let T2 be “if the input is
I1, then reply ‘no’, otherwise run T1 and return its reply”. By construction, T2

is a tester with one fewer hard instances than T1 has. By Turing’s proof, also T2

has a hard instance. Let us call it I2. It is hard also for T1. This reasoning can
be repeated without limit, yielding an infinite sequence T1, T2, . . . of testers and
I1, I2, . . . of instances such that Ii is hard for T1, . . . , Ti but not for Ti+1, . . . .
Therefore, every tester has an infinite number of hard instances, but no instance is
hard for all testers.

A program that answers “I don’t know” for every program and input is a three-
way tester, although it is useless. A much more careful tester simulates the given
program on the given input at most 99

n

steps, where n is the joint size of the
program and its input. If the program stops by then, then the tester answers
“yes”. If the program repeats a configuration (that is, a complete description of
the values of variables, the program counter, etc.) by then, then the tester answers
“no”. Otherwise it answers “I don’t know”. With this theoretically possible but
in practice unrealistic tester, any hard halting instance has a finite but very long
running time.

The proofs by Turing and Rice may leave the hope that only rare artificial
contrived programs yield hard instances. One could dream of a three-way tester
that answers very seldom “I don’t know”. This publication analyses this issue,
by surveying and proving results that tell how the proportion of hard instances
behaves when the size of the instances grows without limit.

Section 2 presents the variants of the halting problem and imperfect testers sur-
veyed, together with some basic results and notation. Earlier research is discussed
in Section 3. The section contains some proofs to bring results into the framework
of this publication. Section 4 presents some new results in the case that a program
has many copies of all big sizes, or information can be packed densely inside the
program. It is not always assumed that the program has access to the information.
A natural example of such information is dead code, such as if(1==0)then{...}.
In Section 5, results are derived for C++ programs with inputs from files. Section 6
briefly concludes this publication.

This publication is a significantly extended version of [12, 13]. The papers [12,
13] are otherwise essentially the same, but three proofs were left out from [13]
because of lack of space. In the present publication, Theorems 4 and 6 and Corol-
laries 2 and 4 are new results lacking from [12, 13]. Furthermore, [12, 13] incorrectly
claimed the opposite of Theorem 6. The present publication fixes this error and
also a small error in Proposition 4.



Asymptotic Proportion of Hard Instances of the Halting Problem 309

2 Concepts and Notation

2.1 Variants of the Halting Problem

The literature on hard instances of the halting problem considers at least three
variants of the halting problem:

E does the given program halt on the empty input [2],

S does the given program halt when given itself as its input [6, 8], and

G does the given program halt on the given input [1, 4, 9].

Each variant is undecidable. Variant G has a different notion of instances from
others: program–input pairs instead of just programs. A tester for G can be trivially
converted to a tester for E or S, but the proportion of hard program–input pairs
among all program–input pairs of some size is not necessarily the same as the
similar proportion with the input fixed to the empty one or to the program itself.

The literature also varies on what the tester does when it fails. Three-way
testers, that is, the “I don’t know” answer is used implicitly by [6], as it discusses
the union of two decidable sets, one being a subset of the halting and the other of
the non-halting instances. In generic-case decidability [8], instead of the “I don’t
know” answer, the tester itself fails to halt. Yet another idea is to always give a
“yes” or “no” answer, but let the answer be incorrect for some instances [4, 9].
Such a tester is called approximating. One-sided results, where the answer is either
“yes” or “I don’t know”, were presented in [1, 2]. For a tester of any of the three
variants, we say that an instance is easy if the tester correctly answers “yes” or
“no” on it, otherwise the instance is hard.

These yield altogether nine different sets of testers, which we will denote with
three-way(X), generic(X), and approx(X), where X is E, S, or G. Some simple facts
facilitate carrying some results from one variant of testers to another.

Proposition 1. For any three-way tester there is a generic-case tester that has pre-
cisely the same easy “yes”-instances, easy “no”-instances, hard halting instances,
and hard non-halting instances.

There also is an approximating tester that has precisely the same easy “yes”-
instances, at least the same easy “no”-instances, precisely the same hard halting
instances, and no hard non-halting instances; and an approximating tester that has
at least the same easy “yes”-instances, precisely the same easy “no”-instances, no
hard halting instances, and precisely the same hard non-halting instances.

Proof. A three-way tester can be trivially converted to the promised tester by
replacing the “I don’t know” answer with an eternal loop, the reply “no”, or the
reply “yes”.

Proposition 2. For any generic-case tester there is a generic-case tester that
has at least the same “yes”-instances, precisely the same “no”-instances, no hard
halting instances, and precisely the same hard non-halting instances.



310 Antti Valmari

Proof. In parallel with the original tester, the instance is simulated. (In Turing
machine terminology, parallel simulation is called “dovetailing”.) If the original
tester replies something, the simulation is aborted. If the simulation halts, the
original tester is aborted and the reply “yes” is returned.

Proposition 3. For any i ∈ N and tester T , there is a tester Ti that answers
correctly “yes” or “no” for all instances of size at most i, and similarly to T for
bigger instances.

Proof. Because there are only finitely many instances of size at most i, there is a
finite bit string that lists the correct answers for them. If n ≤ i, Ti picks the answer
from it and otherwise calls T . (We do not necessarily know what bit string is the
right one, but that does not rule out its existence.)

2.2 Notation

We use Σ to denote the set of characters that are used for writing programs and
their inputs. It is finite and has at least two elements. There are |Σ|n character
strings of size n. If α and β are in Σ∗, then α ⊑ β denotes that α is a prefix of β,
and α ❁ β denotes proper prefix. The size of α is denoted with |α|.

A set A of finite character strings is self-delimiting if and only if membership
in A is decidable and no member of A is a proper prefix of a member of A. The
shortlex ordering of any set of finite character strings is obtained by sorting the
strings in the set primarily according to their sizes and strings of the same size in
the lexicographic order.

Not necessarily all elements of Σ∗ are programs. The set of programs is denoted
with Π, and the set of all (not necessarily proper) prefixes of programs with Γ. So
Π ⊆ Γ. For tester variants E and S, we use p(n) to denote the number of programs
of size n. Then p(n) = |Σn ∩ Π|. For tester variant G, p(n) denotes the number
of program–input pairs of joint size n. We will later discuss how the program and
its input are paired into a single string. The numbers of halting and non-halting
(a.k.a. diverging) instances of size n are denoted with h(n) and d(n), respectively.
We have p(n) = h(n) + d(n).

If T is a tester, then hT (n), hT (n), dT (n), and dT (n) denote the number of
its easy halting, hard halting, easy non-halting, and hard non-halting instances of
size n, respectively. Obviously hT (n) + hT (n) = h(n) and dT (n) + dT (n) = d(n).
The smaller hT (n) and dT (n) are, the better the tester is. The failure rate of T is
(hT (n) + dT (n))/p(n).

When referring to all instances of size at most n, we use capital letters. So, for
example, P (n) =

∑n
i=0 p(i) and DT (n) =

∑n
i=0 dT (i).



Asymptotic Proportion of Hard Instances of the Halting Problem 311

3 Related Work

3.1 Early Results by Lynch

Nancy Lynch [6] used Gödel numberings for discussing programs. In essence, it
means that each program has at least one index number (which is a natural number)
from which the program can be constructed, and each natural number is the index
of some program.

Although the index of an individual program may be smaller than the index
of some shorter program, the overall trend is that indices grow as the size of the
programs grows, because otherwise we would run out of small numbers. On the
other hand, if the mapping between the programs and indices is 1–1, then the
growth cannot be faster than exponential. This is because p(n) ≤ |Σ|n. With
real-life programming languages, the growth is exponential, but (as we will see in
Section 5.2) the base of the exponent may be smaller than |Σ|.

To avoid confusion, we refrain from using the notationHT , etc., when discussing
results in [6], because the results use indices instead of sizes of programs, and their
relationship is not entirely straightforward. Fortunately, some results of [6] can
be immediately applied to programming languages by using the shortlex Gödel
numbering. The shortlex Gödel number of a program is its index in the shortlex
ordering of all programs.

The first group of results of [6] reveals that a wide variety of situations may be
obtained by spreading the indices of all programs sparsely enough and then filling
the gaps in a suitable way. For instance, with one Gödel numbering, for each three-
way tester, the proportion of hard instances among the first i indices approaches 1
as i grows. With another Gödel numbering, there is a three-way tester such that
the proportion approaches 0 as i grows. There even is a Gödel numbering such
that as i grows, the proportion oscillates in the following sense: for some three-way
tester, it comes arbitrarily close to 0 infinitely often and for each three-way tester,
it comes arbitrarily close to 1 infinitely often.

In its simplest form, spreading the indices is analogous to defining a new lan-
guage SpaciousC++ whose syntax is identical to that of C++ but the semantics
is different. If the first ⌊n/2⌋ characters of a SpaciousC++ program of size n are
space characters, then the program is executed like a C++ program, otherwise it
halts immediately. This does not restrict the expressiveness of the language, be-
cause any C++ program can be converted to a similarly behaving SpaciousC++
program by adding sufficiently many space characters to its front. However, it
makes the proportion of easily recognizable trivially halting instances overwhelm.
A program that replies “yes” if there are fewer than ⌊n/2⌋ space characters at the
front and “I don’t know” otherwise, is a three-way tester. Its proportion of hard
instances vanishes as the size of the program grows.

As a consequence of this and Proposition 3, one may choose any failure rate
above zero and there is a three-way tester for SpaciousC++ programs with at most
that failure rate. Of course, this result does not tell anything about how hard
it is to test the halting of interesting programs. This is the first example in this



312 Antti Valmari

publication of what we call an anomaly stealing the result. That is, a proof of a
theorem goes through for a reason that has little to do with the phenomenon we
are interested in.

Indeed, the first results of [6] depend on using unnatural Gödel numberings.
They do not tell what happens with untampered programming languages. Even
so, they rule out the possibility of a simple and powerful general theorem that
applies to all models of computation. They also make it necessary to be careful
with the assumptions that are made about the programming language.

To get sharper results, optimal Gödel numberings were discussed in [6]. They
do not allow distributing programs arbitrarily. A Gödel numbering is optimal if
and only if for any Gödel numbering, there is a computable function that maps it
to the former such that the index never grows more than by a constant factor.1

The most interesting sharper results are opposite to what was obtained without the
optimality assumption. To apply them to programming languages, we first define
a programming language version of optimal Gödel numberings.

Definition 1. A programming language is end-of-file data segment, if and only if
each program consists of two parts in the following way. The first part, called the
actual program, is written in a self-delimiting language (so its end can be detected).
The second part, called the data segment, is an arbitrary character string that
extends to the end of the file. The language has a construct via which the actual
program can read the contents of the data segment.

The data segment is thus a data literal in the program, packed with maximum
density. It is not the same thing as the input to the program.

Corollary 1. For each end-of-file data segment language,

∃c > 0 : ∃T ∈ three-way(S) : ∀n ∈ N :
HT (n) +DT (n)

P (n)
≥ c and

∃c > 0 : ∀T ∈ three-way(S) : ∃nT ∈ N : ∀n ≥ nT :
HT (n) +DT (n)

P (n)
≥ c .

Proof. Let L be the end-of-file data segment language, and let G be any Gödel
numbering. Consider the following program P in L. Let a and d be the sizes of
its actual program and data segment. The actual program reads the data segment,

interpreting its content as a number i in the range from |Σ|d−1
|Σ|−1 + 1 to |Σ|d+1−1

|Σ|−1 .

Then it simulates the ith program in G. The shortlex index of P is at most i′ =
∑a+d

j=0 |Σ|
j ≤ |Σ|a+d+1. We have |Σ|d−1

|Σ|−1 +1 ≤ i, yielding |Σ|d−1 ≤ |Σ|i− i−|Σ|+1,

so |Σ|d ≤ |Σ|i, thus i′ ≤ |Σ|a+2i. The shortlex numbering of L is thus an optimal
Gödel numbering. From this, Proposition 6 in [6] gives the claims.

1The definition in [6] seems to say that the function must be a bijection. We believe that this
is a misprint, because each proof in [6] that uses optimal Gödel numberings obviously violates it.



Asymptotic Proportion of Hard Instances of the Halting Problem 313

A remarkable feature of the latter result compared to many others in this pub-
lication is that c is chosen before T . That is, there is a positive constant that only
depends on the programming language (and not on the choice of the tester) such
that all testers have at least that proportion of hard instances, for any big enough
n. On the other hand, the proof depends on the programming language allowing
to pack raw data very densely. Real-life programming languages do not satisfy
this assumption. For instance, C++ string literals "..." cannot pack data densely
enough, because the representation of " inside the literal (e.g., \" or \042) requires
more than one character.

Because of Proposition 3, “∃nT ∈ N” cannot be moved to the front of “∀T ∈
three-way(S)”.

The result cannot be generalized to hT , dT , and p, because the following
anomaly steals it. We can change the language by first adding 1 or 01 to the
beginning of each program π and then declaring that if the size of 1π or 01π is
odd, then it halts immediately, otherwise it behaves like π. This trick does not
invalidate optimality but introduces infinitely many sizes for which the proportion
of hard instances is 0.

3.2 Results on Domain-Frequent Programming Languages

In [4], the halting problem was analyzed in the context of programming languages
that are frequent in the following sense:

Definition 2. A programming language is (a) frequent (b) domain-frequent, if
and only if for every program π, there are nπ ∈ N and cπ > 0 such that for every
n ≥ nπ, at least cπp(n) programs of size n (a) compute the same partial function
as π (b) halt on precisely the same inputs as π.

Instead of “frequent”, the word “dense” was used in [4], but we renamed the
concept because we felt “dense” a bit misleading. The definition says that programs
that compute the same partial function are common. However, the more common
they are, the less room there is for programs that compute other partial functions,
implying that the smallest programs for each distinct partial function must be
distributed more sparsely. “Dense” was used for domain-frequent in [9].

Any frequent programming language is obviously domain-frequent but not nec-
essarily vice versa. On the other hand, even if a theorem in this field mentions
frequency as an assumption, the odds are that its proof goes through with domain-
frequency. Whether a real-life programming language such as C++ is domain-
frequent, is surprisingly difficult to find out. We will discuss this question briefly
in Section 4.1.

As an example of a frequent programming language, BF was mentioned in [4].
Its full name starts with “brain” and then contains a word that is widely considered
inappropriate language, so we follow the convention of [4] and call it BF. Information
on it can be found on Wikipedia under its real name. It is an exceptionally simple
programming language suitable for recreational and illustrational but not for real-
life programming purposes. In essence, BF programs describe Turing machines with



314 Antti Valmari

a read-only input tape, write-only output tape, and one work tape. The alphabet of
each tape is the set of 8-bit bytes. However, BF programs only use eight characters.

As a side issue, a non-trivial proof was given in [4] that only a vanishing pro-
portion of character strings over the eight characters are BF programs. That is,
limn→∞ p(n)/8n exists and is 0. It trivially follows that if all character strings over
the 8 characters are considered as instances and failure to compile is considered as
non-halting, then the proportion of hard instances vanishes as n grows.

The only possible compile-time error in BF is that the square brackets [ and ]

do not match. Most, if not all, real-life programming languages have parentheses
or brackets that must match. So it seems likely that compile-time errors dominate
also in the case of most, if not all, real-life programming languages. Unfortunately,
this is difficult to check rigorously, because the syntax and other compile-time rules
of real-life programming languages are complicated. Using another, simpler line of
argument, we will prove the result for both C++ and BF in Section 5.1.

In any event, if the proportion of hard instances among all character strings
vanishes because the proportion of programs vanishes, that is yet another example
of an anomaly stealing the result. It is uninteresting in itself, but it rules out the
possibility of interesting results about the proportion of hard instances of size n
among all character strings of size n. Therefore, from now on, excluding Section 5.1,
we focus on the proportion of hard instances among all programs or program–input
pairs.

In the case of program–input pairs, the results may be sensitive to how the
program and its input are combined into a single string that is used as the input of
the tester. To avoid anomalous results, it was assumed in [4, 9] that this “pairing
function” has a certain property called “pair-fair”. The commonly used function
x+(x+y)(x+y+1)/2 is pair-fair. To use this pairing function, strings are mapped
to numbers and back via their indices in the shortlex ordering of all finite character
strings.

A proof was sketched in [9] that, assuming domain-frequency and pair-fairness,

∀T ∈ approx(G) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n) + dT (n)

p(n)
≥ cT .

That is, the proportion of wrong answers does not vanish. However, this leaves open
the possibility that for any failure rate c > 0, there is a tester that fares better than
that for all big enough n. This possibility was ruled out in [4], assuming frequency
and pair-fairness. (It is probably not important that frequency instead of domain-
frequency was assumed.) That is, there is a positive constant such that for any
tester, the proportion of wrong answers exceeds the constant for infinitely many
sizes of instances:

∃c > 0 : ∀T ∈ approx(G) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n) + dT (n)

p(n)
≥ c . (1)

The third main result in [4], adapted and generalized to the present setting, is the
following. We present its proof to obtain the generalization and to add a detail



Asymptotic Proportion of Hard Instances of the Halting Problem 315

that the proof in [4] lacks, that is, how Ti,j is made to halt for “wrong sizes”.
Generic-case testers are not mentioned, because Proposition 2 gave a related result
for them.

Theorem 1. For each programming model and variant E, S, G of the halting
problem,

∀c > 0 : ∃Tc ∈ approx(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hTc

(n)

p(n)
≤ c ∧

dTc
(n)

p(n)
= 0 and

∀c > 0 : ∃Tc ∈ three-way(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hTc

(n)

p(n)
≤ c .

Proof. Let C = ⌈1/c⌉. Consider the family Ti,j of the programs of the following
kind, where i ∈ N, j ∈ N, and 0 ≤ i ≤ C. If n < j, Ti,j answers “no” in the
case of approximating and “I don’t know” in the case of three-way testers. If
n ≥ j, Ti,j simulates all instances of size n until ⌈ip(n)/C⌉ of them have halted.
If the simulation stage terminates, then if the given instance is among those that
halted, Ti,j answers “yes”, otherwise Ti,j answers “no” or “I don’t know”. Thus an
approximating Ti,j has dTi,j

(n) = 0.
We prove next that some Ti,j is the required tester. Let in = ⌊Ch(n)/p(n)⌋.

Then inp(n)/C ≤ h(n) < (in + 1)p(n)/C. When n ≥ j, the simulation stage of
Tin,j terminates and the proportion of hard halting instances of Tin,j is less than
1/C ≤ c. Some 0 ≤ i ≤ C is the in for infinitely many values of n. Furthermore,
there is a smallest such i. We denote it with i′. There also is a j such that when
n ≥ j, then in ≥ i′. With these choices, Ti′,j always halts.

For a small enough c and the approximating tester Tc in Theorem 1, (1) implies
that the failure rate of Tc oscillates, that is, does not approach any limit as n → ∞.
This observation is directly obtainable from Lemma 23 in [4].

3.3 Results on Turing Machines

For Turing machines with one-way infinite tape and randomly chosen transition
function, the probability of falling off the left end of the tape before halting or re-
peating a state approaches 1 as the number of states grows [2]. The tester simulates
the machine until it falls off the left end, halts, or repeats a state. If falling off the
left end is considered as halting, then the proportion of hard instances vanishes as
the size of the machine grows. This can be thought of as yet another example of
an anomaly stealing the result.

Formally, ∃T ∈ three-way(X) : limn→∞(hT (n) + dT (n))/p(n) = 0, that is,

∃T ∈ three-way(X) : ∀c > 0 : ∃nc ∈ N : ∀n ≥ nc :
hT (n) + dT (n)

p(n)
≤ c .

Here X may be E, S, or G. Although E was considered in [2], the proof also ap-
plies to S and G. Comparing the result to Theorem 2 in Section 4.1 reveals that



316 Antti Valmari

the representation of programs as transition functions of Turing machines is not
domain-frequent.

On the other hand, independently of the tape model, the proportion does not
vanish exponentially fast [8]. Like in [2], the proportion is computed on the transi-
tion functions, and not on some textual representations of the programs. The proof
relies on the fact that any Turing machine has many obviously similarly behaving
copies of bigger and bigger sizes. They are obtained by adding new states and tran-
sitions while keeping the original states and transitions intact. So the new states
and transitions are unreachable. They are analogous to dead code. These copies
are not common enough to satisfy Definition 2, but they are common enough to
rule out exponentially fast vanishing. Generic-case decidability was used in [8], but
the result applies also to three-way testers by Proposition 1.

The results in [1] are based on using weighted running times. For every positive
integer k, the proportion of halting programs that do not halt within time k + c is
less than 2−k, simply because the proportion of times greater than k+c is less than
2−k. The publication presents such a weighting that c is a computable constant.

Assume that programs are represented as self-delimiting bit strings on the input
tape of a universal Turing machine. The smallest three-way tester of variant E that
answers “yes” or “no” up to size n and “I don’t know” for bigger programs, is of
size n±O(1) [11].

4 Programming Languages with Assumptions

4.1 Domain-Frequent Languages

The assumption that the programming language is domain-frequent (Definition 2)
makes it possible to use a small variation of the standard proof of the non-existence
of halting testers, to prove that each halting tester of variant S has a non-vanishing
set of hard instances. For three-way and generic-case testers, one can also say some-
thing about whether the hard instances are halting or not. Despite its simplicity,
as far as we know, the following result has not been presented in the literature.
However, see the comment on [9] in Section 3.2.

Theorem 2. If the programming language is domain-frequent, then

∀T ∈ three-way(S) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧

dT (n)

p(n)
≥ cT ,

∀T ∈ generic(S) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
dT (n)

p(n)
≥ cT , and

∀T ∈ approx(S) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n) + dT (n)

p(n)
≥ cT .

Proof. Let the execution of X with an input y be denoted with X(y). For any
T , consider the program PT that first tries its input x with T . If T (x) replies



Asymptotic Proportion of Hard Instances of the Halting Problem 317

“yes”, then PT (x) enters an eternal loop. If T (x) replies “no”, then PT (x) halts
immediately. The case that T (x) replies “I don’t know” is discussed below. If T (x)
fails to halt, then PT (x) cannot continue and thus also fails to halt.

By the definition of domain-frequent, there are cT > 0 and nT ∈ N such that
when n ≥ nT , at least cT p(n) programs halt on precisely the same inputs as PT . Let
P ′ be any such program. Consider PT (P

′). If T (P ′) answers “yes”, then PT (P
′)

fails to halt. Then also P ′(P ′) fails to halt. Thus “yes” cannot be the correct
answer for T (P ′). A similar reasoning reveals that also “no” cannot be the correct
answer for T (P ′). So P ′ is a hard instance for T .

Nothing more is needed to prove the claim for approximating testers. In the
case of generic-case testers, the hard instances make T and thus PT fail to halt, so
they are non-halting instances.

In the case of three-way testers, all hard instances can be made halting in-
stances by making PT halt when T replies “I don’t know”. This proves the claim
hT (n)/p(n) ≥ cT . The claim dT (n)/p(n) ≥ cT is proven by making PT enter an
eternal loop when T replies “I don’t know”. These two proofs may yield different
cT values, but the smaller one of them is suitable for both. Similarly, the bigger of
their nT values is suitable for both.

The second claim of Theorem 2 lacks a hT (n) part. Indeed, Proposition 2 says
that with generic-case testers, hT (n) can be made 0. With approximating testers,
hT (n) can be made 0 at the cost of dT (n) becoming d(n), by always replying “yes”.
Similarly, dT (n) can be made 0 by always replying “no”.

The next theorem applies to testers of variant E and presents some results
similar to Theorem 2. To our knowledge, it is the first theorem of its kind that
applies to the halting problem on the empty input. It assumes not only that many
enough equivalent copies exist but also that they can be constructed. On the other
hand, its equivalence only pays attention to the empty input.

Definition 3. A programming language is computably empty-frequent if and only
if there is a decidable equivalence relation “≈” between programs such that

• for each program π, there are cπ > 0 and nπ ∈ N such that for every n ≥ nπ,
at least cπp(n) programs of size n are equivalent to π, and

• for each programs π and π′, if π ≈ π′, then either both or none of π and π′

halt on the empty input.

If π ≈ π′, we say that π′ is a cousin of π.

It can be easily seen from [4] that BF is computably empty-frequent.

Theorem 3. If the programming language is computably empty-frequent, then

∀T ∈ three-way(E) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
dT (n)

p(n)
≥ cT .

The result also holds for generic-case testers but not for approximating testers.



318 Antti Valmari

Proof. Given any three-way tester T , consider a program PT that behaves as fol-
lows. First it constructs its own code and stores it in a string variable. Hard-wiring
the code of a program inside the program is somewhat tricky, but it is well known
that it can be done. With Gödel numberings, the same can be obtained with
Kleene’s second recursion theorem.

Then PT starts constructing its cousins of all sizes and tests each of them with
T . By the assumption, there are cT > 0 and nT ∈ N such that for every n ≥ nT ,
PT has at least cT p(n) cousins of size n. If T ever replies “yes”, then PT enters an
eternal loop and thus does not continue testing its cousins. If T ever replies “no”,
then PT halts immediately. If T replies “I don’t know”, then PT tries the next
cousin.

If T ever replies “yes”, then PT fails to halt on the empty input. By definition,
also the tested cousin fails to halt on the empty input. So the answer “yes” would be
incorrect. Similarly, if T ever replies “no”, that would be incorrect. So T must reply
“I don’t know” for all cousins of PT . They are thus hard instances for T . Because
there are infinitely many of them, PT does not halt, so they are non-halting.

To prove the result for generic-case testers, it suffices to run the tests of the
cousins in parallel, that is, go around a loop where each test that has been started
is executed one step and the next test is started. If any test ever replies “yes” or
“no”, PT aborts all tests that it has started and then does the opposite of the reply.

A program that always replies “no” is an approximating tester with dT (n) = 0
for every n ∈ N.

The results in this section and Section 3.2 motivate the question: are real-life
programming languages domain-frequent? For instance, is C++ domain-frequent?
Unfortunately, we have not been able to answer it. We try now to illustrate why it
is difficult.

Given any C++ program, it is easy to construct many longer programs that
behave in precisely the same way, by adding space characters, line feeds (denoted
with ), comments, or dead code such as if(0!=0){. . . }. It is, however, hard to
verify that many enough programs are obtained in this way. For instance, it might
seem that many enough programs can be constructed with string literals. We now
provide evidence that suggests (but does not prove) that it fails.

Any program of size n can be converted to (|Σ| − 3)k identically behaving
programs of size n + k + 12 by adding {char*s="σ";} to the beginning of some
function, where σ ∈ (Σ\{", \, })k. (The purpose of { and } is to hide the variable
s, so that it does not collide with any other variable with the same name.) More
programs are obtained by including escape codes such as \" to σ.

However, it seems that this is a vanishing instead of at least a positive constant
proportion when k → ∞. In the absence of escape codes, it certainly is a vanishing
proportion. This is because one can add {char*s="σ",*t="ρ";} instead, where
|σ| + |ρ| = k − 6. Without escape codes, this yields (k − 5)(|Σ| − 3)k−6 programs.
When k → ∞, (|Σ| − 3)k/((k − 5)(|Σ| − 3)k−6) = (|Σ| − 3)6/(k − 5) → 0.

That is, although string literals can represent information rather densely, they
do not constitute the densest possible way of packing information into a C++



Asymptotic Proportion of Hard Instances of the Halting Problem 319

program (assuming the absence of escape codes). A pair of string literals yields
an asymptotically strictly denser packing. Similarly, a triple of string literals is
denser still, and so on. Counting the programs in the presence of escape codes is
too difficult, but it seems likely that the phenomenon remains the same.

So string literals do not yield many enough programs. It seems difficult to first
find a construct that does yield many enough programs, and then prove that it
works.

4.2 End-of-file Data Segment Languages

In this section we prove a theorem that resembles Theorem 3, but relies on different
assumptions and has a different proof.

We say that a three-way tester is n-perfect if and only if it does not answer “I
don’t know” when the size of the instance is at most n. The following lemma is
adapted from [11].

Lemma 1. Each programming language has a constant e such that the size of each
n-perfect three-way tester of variant E or S is at least n− e.

Proof. Let Tn be any n-perfect three-way tester of variant E or S. Consider a
program P that constructs character strings x in shortlex order and tests them
with Tn until Tn(x) replies “I don’t know”. If Tn(x) replies “yes”, P simulates x
before trying the next character string. When simulating x, P gives it the empty
input in the case of variant E and x as the input in the case of S. The reply “I don’t
know” eventually comes, because otherwise Tn would be a true halting tester. As
a consequence, P eventually halts. Before halting, P simulates at least all halting
programs of size at most n.

The time consumption of any simulated execution is at least the same as the
time consumption of the corresponding genuine execution. So the execution of P
cannot contain properly a simulated execution of P . P does not read any input,
so it does not matter whether it is given itself or the empty string as its input.
Therefore, the size of P is bigger than n. Because the only part of P that depends
on n is Tn, there is a constant e such that the size of Tn is at least n− e.

In any everyday programming language, space characters can be added freely
between tokens. Motivated by this, we define that a blank character is a character
that, for any program, can be added to at least one place in the program without
affecting the meaning of the program.

Theorem 4. Let X be E or S. If the programming language is end-of-file data
segment and has a blank character, then

∀T ∈ three-way(X) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧

dT (n)

p(n)
≥ cT .

Proof. Assume first that tester T is a counter-example to the hT -claim. That is,
for every c > 0, T has infinitely many values of n such that hT (n)/p(n) < c.



320 Antti Valmari

If T uses its data segment, let the use be replaced by the use of ordinary con-
stants, liberating the data segment for the use described in the sequel. Let Tk,m

be the following program. Here k is a constant inside Tk,m represented by Θ(log k)
characters, and m is the content of the data segment of Tk,m interpreted as a natu-
ral number m in base |Σ|. Let a and d be the sizes of the actual program and data
segment of Tk,m. We have a = Θ(log k). Let x be the input of Tk,m.

The program Tk,m first computes n := k + d. If |x| < n, then Tk,m adds blank
characters to x, to make its size n. Next, if |x| > n, then Tk,m replies “I don’t
know” and halts. Otherwise Tk,m gives x (which is now of size precisely n) to T .
If T (x) replies “yes” or “no”, then Tk,m gives the reply as its own reply and halts.
Otherwise Tk,m constructs each character string y of size n and tests it with T .
Tk,m simulates in parallel those y for which T (y) returns “I don’t know” until m of
them have halted (with y or the empty string as the input, as appropriate). Then
it aborts those that have not halted. If x is among those that halted, then Tk,m

replies “yes”, otherwise Tk,m replies “no”.
For each k ∈ N, there are infinitely many values of n such that hT (n)/p(n) <

|Σ|−k. For any such n we have hT (n) < p(n)|Σ|−k ≤ |Σ|n|Σ|−k. So n−k characters
suffice for representing hT (n). Therefore, there is Tk,m such that d = n − k and
m = hT (n). It is an n-perfect three-way tester of size a + d = d + Θ(log k) =
n− k + Θ(log k). A big enough k yields a contradiction with Lemma 1.

The proof of the dT -claim is otherwise similar, but Tk,m counts the number v
of those y for which T (y) returns “I don’t know”, and simulates the y until v −m
of them have halted. The hT -claim and dT -claim are combined into a single claim
by choosing the smaller cT and bigger nT provided by their proofs.

4.3 End-of-file Dead Segment Languages

In this section we show that if dead information can be added extensively enough,
a tester of variant E with an arbitrarily small positive failure rate exists, but the
opposite holds for variant S. The reason for the result on variant E is that as the
size of the programs grows, a bigger and bigger proportion of programs consists
of copies of smaller programs. This phenomenon is so strong that to obtain the
desired failure rate, it suffices to know the empty-input behaviour of all programs
up to a sufficient size.

An end-of-file dead segment language is defined otherwise like end-of-file data
segment language (Definition 1), but the actual program cannot read the data seg-
ment. This is the situation with any self-delimiting real-life programming language,
whose compiler stops reading its input when it has read a complete program. Any
end-of-file dead segment language is frequent and computationally domain-frequent.

Theorem 5. For each end-of-file dead segment language,

∀c > 0 : ∃Tc ∈ three-way(E) : ∀n ∈ N :
hTc

(n) + dTc
(n)

p(n)
≤ c .

The result also holds with approximating and generic-case testers.



Asymptotic Proportion of Hard Instances of the Halting Problem 321

Proof. Let r(n) denote the number of programs whose dead segment is not empty.
We have r(n) ≤ p(n) ≤ |Σ|n, so r(n)|Σ|−n ≤ 1. For each n ∈ N, r(n + 1) =
|Σ|p(n) ≥ |Σ|r(n). So r(n)|Σ|−n grows as n grows. These imply that there is ℓ
such that r(n)|Σ|−n → ℓ from below when n → ∞.

Because there are programs, ℓ > 0. For every c > 0 we have ℓc > 0, so there is
nc ∈ N such that r(nc)|Σ|

−nc ≥ ℓ− ℓc. On the other hand, p(n) = r(n + 1)/|Σ| ≤
ℓ|Σ|n. These imply p(nc − 1)|Σ|n−nc+1/p(n) = r(nc)|Σ|

n−nc/p(n) ≥ 1 − c. Here
p(nc−1)|Σ|n−nc+1 is the number of those programs of size n whose actual program
is of size less than nc.

The behaviour of a program on the empty input only depends on its actual
program. Let na be the size of the actual program. Consider a three-way tester
that looks the answer from a look-up table if na < nc and replies “I don’t know”
if na ≥ nc (cf. Proposition 3). It has (hT (n) + dT (n))/p(n) ≥ 1 − c, implying the
claim.

Proposition 1 generalizes the result to approximating and generic-case testers.

The above proof exploited the fact that the correct answer for a long program
is the same as the correct answer for a similarly behaving short program. This does
not work for testers of variant S, because the short and long program no longer get
the same input, since each one gets itself as its input. Although the program does
not have direct access to its dead segment, it gets it via the input. This changes
the situation to the opposite of the previous theorem.

Theorem 6. For each end-of-file dead segment language,

∃c > 0 : ∀T ∈ three-way(S) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≥ c ∧

dT (n)

p(n)
≥ c ,

∃c > 0 : ∀T ∈ generic(S) : ∀n0 ∈ N : ∃n ≥ n0 :
dT (n)

p(n)
≥ c , and

∃c > 0 : ∀T ∈ approx(S) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n) + dT (n)

p(n)
≥ c .

Proof. We prove first the claims on three-way and generic-case testers.
Let us recall the overall idea of the proof of Theorem 2. In that proof, for

any tester T , a program PT was constructed that gives its input x to T . If T (x)
replies “yes”, then PT (x) enters an eternal loop. If T (x) replies “no”, then PT (x)
halts immediately. To prove that a three-way tester has many hard (a) halting (b)
non-halting instances, in the case of the “I don’t know” reply, PT (x) was made to
(a) halt immediately (b) enter an eternal loop. All programs that halt on the same
inputs as PT were shown to be hard instances for T . For each n that is greater than
a threshold that may depend on T , the existence of at least cT p(n) such programs
was proven, where cT may depend on T but not on n.

We now apply the same idea, but, to get a result where the same constant c
applies to all testers T , we no longer construct a separate program PT for each T .



322 Antti Valmari

Instead, we construct a single program P , which obtains T from the size of the
input of P . (A similar idea appears in [4].) To discuss this, for any i > 0, let Pi

be the program whose shortlex index is i. Let δ(i) = i− s(i) + 1, where s(i) is the
biggest square number that is at most i. The essence of δ(i) is that as i gets the
values 1, 2, 3, . . . , δ(i) gets each value 1, 2, 3, . . . infinitely many times.

One more idea needs to be explained before discussing the details of P . Let

Σ be partitioned to Σ1 and Σ2 of sizes ⌊ |Σ|
2 ⌋ and ⌈ |Σ|

2 ⌉. Let na be the size of the
actual program of P . For each n > na, by modifying the dead segment, |Σ|n−na

programs are obtained that have the same actual program as P . For i ∈ {1, 2}, let
Πi be the set of those of them whose dead segment ends with a character in Σi. We
have 1

3 |Σ|
n−na ≤ |Π1| ≤ |Π2|. Because 0 < p(n) ≤ |Σ|n, by choosing c = 1

3 |Σ|
−na

we get 1
3 |Σ|

n−na/p(n) ≥ c.
The program P first checks that its input x is a program with a non-empty dead

segment. If it is not, then P halts immediately. Otherwise, P constructs Pδ(|x|)

by going through all character strings in the shortlex order until δ(|x|) programs
have been found. Then P constructs every program y that has the same size, has
the same actual program, and belongs to the same Πi as x. Then P executes the
Pδ(|x|)(y) in parallel until any of the following happens.

If any Pδ(|x|)(y) replies “yes”, then P enters an eternal loop. If any Pδ(|x|)(y)
replies “no”, then P aborts the remaining Pδ(|x|)(y) and halts. If every Pδ(|x|)(y)
replies “I don’t know”, then P halts if x ∈ Π1, and enters an eternal loop if x ∈ Π2.
If none of the above ever happens, then P fails to halt.

Recall that na is the size of the actual program of P . For any tester T , there
are infinitely many n such that n > na and Pδ(n) is T . For any such n, there are
|Σ|n−na programs P ′ of size n that have the same actual program as P . Let P ′′

be any of them. The execution of P (P ′′) starts Pδ(n)(P
′) for at least 1

3 |Σ|
n−na

distinct P ′. If Pδ(n)(P
′) replies “yes”, then T claims that P ′(P ′) halts. Then also

P (P ′) halts, because P halts on the same inputs as P ′, since they have the same
actual program. Furthermore, P (P ′′) halts, because P only looks at the size, actual
program, and Πi-class of its input, and P ′′ and P ′ agree on them. But the halting
of P (P ′′) is in contradiction with the behaviour of P described above. Therefore,
no Pδ(n)(P

′) can reply “yes”. For a similar reason, none of them replies “no” either.

In conclusion, all at least 1
3 |Σ|

n−na distinct P ′ are hard instances for T . If T is
a three-way tester, it replies “I don’t know” for all of them. Depending on whether
P ′′ ∈ Π1 or P ′′ ∈ Π2, they are hard halting or hard non-halting instances. If T is a
generic-case tester, it halts on none of these hard instances. Therefore, also P (P ′′)
and P ′′(P ′′) fail to halt. So they all are hard non-halting instances.

In the case of approximating testers, P is modified such that it lets all Pδ(|x|)(y)
run into completion and counts the “yes”- and “no”-replies that they give. If the
majority of the replies are “no”, then P halts, otherwise P enters an eternal loop.
For the same reasons as above, P (P ′′) halts if and only if P (P ′) halts if and only
if P ′(P ′) halts. So at least half of the replies are wrong.

Finally, we prove a corollary of the above theorem that deals with the halting
problem itself, not with imperfect testers. Imperfect testers are used in the proof



Asymptotic Proportion of Hard Instances of the Halting Problem 323

of the corollary, but not in the statement of the corollary.

Lemma 2. Let X be any of E, S, and G, and let f be any total computable function
from natural numbers to integers. If

∃c > 0 : ∀T ∈ three-way(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≥ c ,

then lim
n→∞

h(n)− f(n)

p(n)
does not exist.

Proof. Assume that limn→∞(h(n)− f(n))/p(n) = x and c > 0. Let i = ⌈− log2 c⌉.

There is an xi of the form m +
∑i+1

j=1 bj2
−j such that m is an integer, bj ∈ {0, 1}

when 1 ≤ j ≤ i + 1, and xi < x ≤ xi + 2−i−1. There also is n0 such that when
n ≥ n0, then xi ≤ (h(n)− f(n))/p(n) < xi + 2−i.

A tester T that disobeys the formula is obtained as follows. If n < n0, T replies
“I don’t know”. If n ≥ n0, T simulates all instances of size n until ⌈xip(n)⌉+ f(n)
have halted. If the given instance is among those that halted, then T replies “yes”
and otherwise “I don’t know”. We have hT (n)/p(n) < 2−i ≤ c.

Corollary 2. Consider variant S of the halting problem and any end-of-file dead
segment language. Then limn→∞ h(n)/p(n) does not exist.

The proof of Lemma 2 can be modified to approximating testers with (hT (n)+
dT (n))/p(n) ≥ c. By (1), the limit fails to exist also in the framework of [4].

5 C++ without Comments and with Input

5.1 The Effect of Compile-Time Errors

We first show that among all character strings of size n, those that are not C++
programs — that is, those that yield a compile-time error — dominate overwhelm-
ingly, as n grows. In other words, a random character string is not a C++ program
except with vanishing probability. The result may seem obvious until one realizes
that a C++ program may contain comments and string literals which may contain
almost anything. We prove the result in a form that also applies to BF.

C++ is not self-delimiting. After a complete C++ program, there may be, for
instance, definitions of new functions that are not used by the program. This is
because a C++ program can be compiled in several units, and the compiler does
not check whether the extra functions are needed by another compilation unit.
Even so, if π is a C++ program, then π0 is definitely not a C++ program and not
even a prefix of a C++ program. Similarly, if π is a BF program, then π] is not a
prefix of a BF program.

Proposition 4. If for every π ∈ Π there is c ∈ Σ such that πc /∈ Γ, then

lim
n→∞

p(n)

|Σ|n
= 0 .



324 Antti Valmari

Proof. Let q(n) = |Σn ∩ Γ|. Obviously 0 ≤ p(n) ≤ q(n) ≤ |Σ|n.

Assume first that for every ε > 0, there is nε ∈ N such that p(n)/q(n) < ε
for every n ≥ nε. Because 0 ≤ p(n)/|Σ|n ≤ p(n)/q(n), we get p(n)/|Σ|n → 0 as
n → ∞.

In the opposite case there is ε > 0 such that p(n)/q(n) ≥ ε for infinitely many
values of n. Let they be n1 < n2 < . . .. Because πc is not a prefix of any program,
q(ni+1) ≤ |Σ|q(ni)−p(ni) ≤ (|Σ|−ε)q(ni). For the remaining values of n, obviously
q(n + 1) ≤ |Σ|q(n). These imply that when n > ni, we have 0 ≤ p(n)/|Σ|n ≤
q(n)/|Σ|n ≤ q(ni)/|Σ|

ni ≤ (1 − ε/|Σ|)i → 0 when i → ∞, which happens when
n → ∞.

Consider a tester T that replies “no” if the compilation fails and “I don’t know”
otherwise. If compile-time error is considered as non-halting, then Proposition 4
implies that hT (n) → 0, hT (n) → 0, dT (n) → 1, and dT (n) → 0 when n → ∞. As
we pointed out in Section 3.2, this is yet another instance of an anomaly stealing
the result.

5.2 The C++ Language Model

The model of computation we study in this section is program–input pairs, where
the programs are written in C++, and the inputs obey the rules stated by the
Linux operating system. Furthermore, Σ is the set of all 8-bit bytes. To make firm
claims about details, it is necessary to fix some language and operating system.
The validity of the details below has been checked with C++ and Linux. Most
likely many other programming languages and operating systems could have been
used instead.

There are two deviations from the real everyday programming situation. First,
of course, it must be assumed that unbounded memory is available. Otherwise
everything would be decidable. (However, at any instant of time, only a finite
number of bits are in use.) Second, it is assumed that the programs do not contain
comments. This assumption needs a discussion.

Comments are information that is inside the program but ignored by the com-
piler. They have no effect to the behaviour of the compiled program. We show
next that most long C++ programs consist of a shorter C++ program and one or
more comments.

Lemma 3. There are at most (|Σ| − 1)n comment-less C++ programs of size n.

Proof. Everywhere inside a C++ program excluding comments, it is either the case
that @ or the case that the new line character cannot occur next. That is, for
every character string α, either α@ or α is not a prefix of any comment-less C++
program.

(Perhaps surprisingly, there indeed are places that are outside comments and
where any byte except can occur.)



Asymptotic Proportion of Hard Instances of the Halting Problem 325

Lemma 4. If n ≥ 16, then there are at least ((|Σ|−1)4+1)(n−19)/4 C++ programs
of size n.

Proof. Let A = Σ \ {*}, and let m = ⌊n/4 − 4⌋ = ⌈(n− 19)/4⌉. Consider the
character strings of the form

int main(){/*αβ*/}

where α consists of (n mod 4) space characters and β is any string of the form
β1β2 · · ·βm, where βi ∈ A4 ∪ {*//*} for 1 ≤ i ≤ m. Each such string is a syn-
tactically correct C++ program of size n. Their number is ((|Σ| − 1)4 + 1)m ≥
((|Σ| − 1)4 + 1)(n−19)/4.

Corollary 3. The proportion of comment-less C++ programs among all C++
programs of size n approaches 0, when n → ∞.

Proof. Let s = |Σ| − 1. By Lemmas 3 and 4, the proportion is at most
sn/(s4 + 1)(n−19)/4 = s19(s4/(s4 + 1))(n−19)/4 → 0, when n → ∞.

As a consequence, although comments are irrelevant for the behaviour of pro-
grams, they have a significant effect on the distribution of long C++ programs.
To avoid the risk that they cause yet another anomaly stealing the result, we re-
strict ourselves to C++ programs without comments. This assumption does not
restrict the expressive power of the programming language, but reduces the number
of superficially different instances of the same program.

The input may be any finite string of bytes. This is how it is in Linux. Although
not all such inputs can be given directly via the keyboard, they can be given by
directing the so-called standard input to come from a file. There is a separate test
construct in C++ for detecting the end of the input, so the end of the input need
not be distinguished by the contents of the input. There are 256n different inputs
of size n.

The sizes of a program and input are the number of bytes in the program and
the number of bytes in the input file. This is what Linux reports. The size of an
instance is their sum. Analogously to Section 4.1, the size of a program is additional
information to the concatenation of the program and the input. This is ignored by
our notion of size. However, the notion is precisely what programmers mean with
the word. Furthermore, the convention is similar to the convention in ordinary (as
opposed to self-delimiting) Kolmogorov complexity theory [5].

Lemma 5. With the C++ programming model in Section 5.2, p(n) < |Σ|n+1.

Proof. By Lemma 3, the number of different program–input pairs of size n is at
most

n
∑

i=0

(|Σ| − 1)i|Σ|n−i = |Σ|n
n
∑

i=0

( |Σ| − 1

|Σ|

)i
< |Σ|n

∞
∑

i=0

( |Σ| − 1

|Σ|

)i
= |Σ|n+1 .



326 Antti Valmari

5.3 Proportions of Hard Instances

The next theorem says that with halting testers of variant G and comment-less
C++, the proportions of hard halting and hard non-halting instances do not vanish.

Theorem 7. With the C++ programming model in Section 5.2,

∀T ∈ three-way(G) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧

dT (n)

p(n)
≥ cT .

Proof. We prove first the hT (n)/p(n) ≥ cT part and then the dT (n)/p(n) ≥ cT
part. The results are combined by picking the bigger nT and the smaller cT .

There is a program PT that behaves as follows. First, it gets its own size np

from a constant in its program code. The constant uses some characters and thus
affects the size of PT . However, the size of a natural number constantm is Θ(logm)
and grows in steps of zero or one as m grows. Therefore, by starting with m = 1
and incrementing it by steps of one, it eventually catches the size of the program,
although also the latter may grow.

Then PT reads the input, counting the number of the characters that it gets
with ni and interpreting the string of characters as a natural number x in base
|Σ|. We have 0 ≤ x < |Σ|ni , and any natural number in this range is possible. Let
n = np + ni.

Next PT constructs every program–input pair of size n and tests it with T . In
this way PT gets the number hT (n) of easy halting pairs of size n.

Then PT constructs again every pair of size n. This time it simulates each of
them in parallel until hT (n) + x of them have halted. Then it aborts the rest and
halts. It halts if and only if hT (n) + x ≤ h(n). (It may be helpful to think of x as
a guess of the number of hard halting pairs.)

Among the pairs of size n is PT itself with the string that represents x as the
input. We denote it with (PT , x). The time consumption of any simulated execution
is at least the same as the time consumption of the corresponding genuine execution.
So the execution of (PT , x) cannot contain properly a simulated execution of (PT , x).
Therefore, either (PT , x) does not halt, or the simulated execution of (PT , x) is still
continuing when (PT , x) halts. In the former case, h(n) < hT (n) + x. In the latter
case (PT , x) is a halting pair but not counted in hT (n) + x, so h(n) > hT (n) + x.
In both cases, x 6= h(n)− hT (n).

As a consequence, no natural number less than |Σ|ni is hT (n). So hT (n) ≥
|Σ|ni = |Σ|n−np . By Lemma 5, p(n) < |Σ|n+1. So for any n ≥ np, we have
hT (n)/p(n) > |Σ|−np−1.

The proof of the dT (n)/p(n) ≥ cT part is otherwise similar, except that PT

continues simulation until p(n) − dT (n) − x pairs have halted. (Now x is a guess
of dT (n), yielding a guess of h(n) by subtraction.) The program PT gets p(n) by
counting the pairs of size n whose program part is compilable. It turns out that
p(n)− dT (n)− x 6= h(n), so x cannot be dT (n), yielding dT (n) ≥ |Σ|ni .

Next we adapt the second main result in [4] to our present setting, with a



Asymptotic Proportion of Hard Instances of the Halting Problem 327

somewhat simplified proof and obtaining the result also for three-way and generic-
case testers.

Theorem 8. With the C++ programming model in Section 5.2,

∃c > 0 : ∀T ∈ three-way(G) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≥ c ∧

dT (n)

p(n)
≥ c ,

∃c > 0 : ∀T ∈ generic(G) : ∀n0 ∈ N : ∃n ≥ n0 :
dT (n)

p(n)
≥ c , and

∃c > 0 : ∀T ∈ approx(G) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n) + dT (n)

p(n)
≥ c .

Proof. The proof follows the same strategy as the proof of Theorem 6, but differs
in some technical details.

To prove the claim for three-way testers, for any character string α, let lb(α) = 0
if α is the empty string, and otherwise lb(α) is the value of the least significant bit
of the last character of α. For any character strings α and β, let α ≃ β if and
only if |α| = |β| and lb(α) = lb(β). For any size n greater than 0, “≃” has two
equivalence classes, each containing |Σ|n/2 character strings. For any i > 0, let Pi

be the program whose shortlex index is i.
There is a program P that behaves as follows. We denote its execution on input

α with P (α). Please observe that if α ≃ β, then P (β) behaves in the same way as
P (α).

First P (α) finds the program Pδ(|α|), where δ(i) = i− s(i)+ 1, where s(i) is the
biggest square number that is at most i.

Then P (α) goes through, in the shortlex order, all ⌈|Σ||α|/2⌉ character strings β
such that α ≃ β, until any of the termination conditions mentioned below occurs or
P (α) has gone through all of them. For each β, it runs Pδ(|α|) on β. We denote this
with Pδ(|α|)(β). If Pδ(|α|)(β) fails to halt, then P (α) never returns from it and thus
fails to halt. If Pδ(|α|)(β) halts replying “yes”, then P (α) enters an eternal loop,
thus failing to halt. If Pδ(|α|)(β) halts replying “no”, then P (α) halts immediately.
If Pδ(|α|)(β) halts replying “I don’t know”, then P (α) tries the next β. It is not
important what P (α) does if Pδ(|α|)(β) halts replying something else.

If Pδ(|α|)(β) halted replying “I don’t know” for every β such that α ≃ β, then
P (α) checks whether lb(α) = 0. If yes, then P (α) enters an eternal loop, otherwise
P (α) halts.

Now let T (Q, γ) be any three-way tester that tests whether program Q halts on
the input γ. How the two components Q and γ of the input of T are encoded into
one input string is not important. There is a program that has P hard-coded into
a string constant, inputs β, calls T (P, β), and gives its reply as its own reply. Let
i be the shortlex index of this program, so the program is Pi.

There are infinitely many positive integers j such that δ(j) = i. Let j be
such, and let α be any character string of size j. So Pδ(|α|) is Pi. If, during the
execution of P (α), Pi(β) ever replies “yes” or “no”, then the same happens during



328 Antti Valmari

the execution of P (β), because P (β) behaves in the same way as P (α) (the fact that
Pi(β) was called implies α ≃ β). But that would be incorrect by the construction
of P . Therefore, T (P, β) replies “I don’t know” for every β of size j.

As a consequence, T has at least |Σ|j hard instances of size |P | + j. If j > 0,
then half of them are halting and the other half non-halting, thanks to the lb(α) = 0
test near the end of P . By Lemma 5, p(n) < |Σ|n+1. So if n = |P |+ j > |P |, then

hT (n)

p(n)
≥

|Σ|n−|P |

2|Σ|n+1
=

1

2|Σ||P |+1
and

dT (n)

p(n)
≥

1

2|Σ||P |+1
.

The program P does not depend on n, so letting c = 1/(2|Σ||P |+1) we have the
claim.

The proof for generic-case testers is otherwise similar, but the β are tried in
parallel and T (P, β) fails to halt for every β of size j. All hard instances are
non-halting. The P for approximating testers lets each Pδ(|α|)(β) continue until
completion, counts the numbers of the “yes”- and “no”-replies they yield, and then
does the opposite of the majority of the replies.

Application of Lemma 2 to this result yields the following.

Corollary 4. With the C++ programming model in Section 5.2, limn→∞ h(n)/p(n)
does not exist.

6 Conclusions

This study did not cover all combinations of a programming model, variant of the
halting problem, and variant of the tester. So there is a lot of room for future work.

The results highlight what was already known since [6]: the programming model
has a significant role. With some programming models, a phenomenon of secondary
interest dominates the distribution of programs, making hard instances rare. Such
phenomena include compile-time errors and falling off the left end of the tape of a
Turing machine.

Many results were derived using the assumption that information can be packed
very densely in the program or the input file. Sometimes it was not even neces-
sary to assume that the program could use the information. It sufficed that the
assumption allowed to make many enough similarly behaving longer copies of an
original program. Intuition suggests that if the program can access the information,
testing halting is harder than in the opposite case. A comparison of Theorem 5 to
Theorem 6 supports this intuition.

Corollaries 2 and 4 and the comment after Corollary 2 tell that the proportion
of all (not just hard) halting instances has no limit with end-of-file dead segment
languages and variant S of the halting problem, with the C++ model and variant
G, and in the framework of [4]. It must thus oscillate irregularly as the size of the
program grows — irregularly because of Lemma 2. This is not a property of various
notions of imperfect halting testers, but a property of the halting problem itself.



Asymptotic Proportion of Hard Instances of the Halting Problem 329

Acknowledgements

I thank professor Keijo Ruohonen for helpful discussions, and the anonymous re-
viewers of SPLST ’13 and Acta Cybernetica for their helpful comments. The latter
pointed out that Proposition 4 had been formulated incorrectly.

References

[1] Calude, C. S. and Stay, M. A. Most programs stop quickly or never halt.
Advances in Applied Mathematics, 40:295–308, 2008.

[2] Hamkins, J. D. and Miasnikov, A. The halting problem is decidable on a set of
asymptotic probability one. Notre Dame Journal of Formal Logic, 47(4):515–
524, 2006.

[3] Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[4] Köhler, S., Schindelhauer, C., and Ziegler, M. On approximating real-world
halting problems. In Lískiewicz, M. and Reischuk, R., editor, Proc. 15th Fun-
damentals of Computation Theory, Lecture Notes in Computer Science 3623,
pages 454–466, 2005. Springer.

[5] Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, 2008.

[6] Lynch, N. Approximations to the halting problem. Journal of Computer and
System Sciences, 9:143–150, 1974.

[7] Rice, H. G. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74:358–366, 1953.

[8] Rybalov, A. On the strongly generic undecidability of the halting problem.
Theoretical Computer Science, 377:268–270, 2007.

[9] Schindelhauer, C. and Jakoby, A. The non-recursive power of erroneous com-
putation. In Pandu Rangan, C., Raman, V., and Ramanujam, R., editors,
Proc. 19th Foundations of Software Technology and Theoretical Computer Sci-
ence, Lecture Notes in Computer Science 1738, pages 394–406, 1999. Springer.

[10] Turing, A. M. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society ser. 2, 42:230–
265, 1937.

[11] Valmari, A. Sizes of up-to-n halting testers. In Halava, V., Karhumäki, J., and
Matiyasevich, Y., editors, Proceedings of the Second Russian Finnish Sympo-
sium on Discrete Mathematics, TUCS Lecture Notes 17, pages 176–183, Turku,
Finland, 2012.



330 Antti Valmari

[12] Valmari, A. The asymptotic behaviour of the proportion of hard instances of
the halting problem (extended version). Computer Science Research Reposi-
tory arXiv:1307.7066, 2013.

[13] Valmari, A. The asymptotic behaviour of the proportion of hard instances
of the halting problem. In Kiss, Á., editor, Proceedings of SPLST ’13, 13th
Symposium on Programming Languages and Software Tools, pages 170–184,
Szeged, Hungary, 2013.


