
Acta Cybernetica 22 (2016) 715–733.

Nonlinear Symbolic Transformations for Simplifying

Optimization Problems∗

Elvira Antal†‡ and Tibor Csendes†

Abstract

The theory of nonlinear optimization traditionally studies numeric com-
putations. However, increasing attention is being paid to involve computer
algebra into mathematical programming. One can identify two possibilities
of applying symbolic techniques in this field. Computer algebra can help the
modeling phase by producing alternate mathematical models via symbolic
transformations. The present paper concentrates on this direction. On the
other hand, modern nonlinear solvers use more and more information about
the structure of the problem through the optimization process leading to hy-
brid symbolic-numeric nonlinear solvers.

This paper presents a new implementation of a symbolic simplification al-
gorithm for unconstrained nonlinear optimization problems. The program can
automatically recognize helpful transformations of the mathematical model
and detect implicit redundancy in the objective function.

We report computational results obtained for standard global optimization
test problems and for other artificially constructed instances. Our results
show that a heuristic (multistart) numerical solver takes advantage of the
automatically produced transformations.

New theoretical results will also be presented, which help the underlying
method to achieve more complicated transformations.

Keywords: nonlinear optimization, reformulation, Mathematica

1 Introduction

Application of symbolic techniques to rewrite or solve optimization problems are
a promising and emerging field of mathematical programming. Symbolic prepro-
cessing of linear programming problems [11] is the classic example, this kind of
transformation was implemented in the AMPL processor about twenty years ago

∗This work was partially supported by the Grant TÁMOP-4.2.2.A-11/1/KONV-2012-0073.
†University of Szeged, Institute of Informatics, H-6720 Szeged, Árpád tér 2, Hungary, E-mail:

antale@inf.u-szeged.hu, csendes@inf.u-szeged.hu
‡Kecskemét College, Faculty of Mechanical Engineering and Automation, Hungary

DOI: 10.14232/actacyb.22.4.2016.1

716 Elvira Antal and Tibor Csendes

as an automatic “presolving” mechanism [7, 8]. A more recent example is the assis-
tance of (mixed-) integer nonlinear programming solvers, as in the Reformulation-
Optimization Software Engine of Liberti et al. [10]. In this field, the relaxation of
some constraints or increasing the dimension of the problem could be reasonable
to achieve feasibility.

However, as the work of Csendes and Rapcsák [5, 14] shows, it is also possible to
produce equivalent models of an unconstrained nonlinear optimization problem via
symbolic transformations automatically, while bijective transformations between
the optima of the models are constructed. This method is capable of eliminating
redundant variables or simplifying the problem in other ways.

The present paper is organized as follows. Section 2 summarizes briefly the
results of Csendes and Rapcsák [5, 14] and presents a new, proper Mathemat-
ica implementation of their method together with a comparison with the earlier
reported Maple prototype [2]. Section 3 presents computational results to show
that the automatically produced transformations can help a traditional heuristic
numeric solver, namely Global [4], to reduce computation times and function eval-
uations. Section 4 extends the theory of the mentioned method in two directions:
describes parallel substitutions and introduces constraints into the model.

2 The Simplifier Method

2.1 Theoretical Background

We concentrate on unconstrained nonlinear optimization problems of the form

min
x∈Rn

f(x), (1)

where f(x) : Rn → R is a smooth function given by a formula, i.e. a symbolic
expression. “Expression” denotes a well-formed, finite combination of symbols
(constants, variables, operators, function names and brackets), usually realized in
computer algebra systems with a list (for example, a nested list of pointers in
Mathematica [20]), or a directed acyclic graph [15]. In the subsequent description,
vectors are denoted by boldface letters, sets by capital letters, and functions by
small letters. The meaning of zi depends on context: it denotes the ith element of
a vector z or an ordered set Z. We will use the function notation v(z) to represent a
v expression, which can contain any variable zi, any real constant, and any function
name.

The simplifier method aims to recognize, whether (1) could be transformed into
an equivalent formulation, which is better in the following senses: the new formu-
lation has fewer arithmetic operations to execute during evaluation, the dimension
of the problem is less, or it is simpler to solve for another reason. Equivalent means
here, that a bijective transformation can be given between the optima of the original
and those of the transformed problem.

Csendes and Rapcsák [5] showed that an objective function g(y) is equivalent
to f(x) in (1), if we get g(y) by the following transformation:

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 717

• apply a substitution in f(x):

yi := h(x) , 1 ≤ i ≤ n,

where h(x) is a smooth function with a range R, and h(x) is strictly monotonic
as a function of at least one variable xi,

• rename the remaining variables:

yj := xj , j = 1, . . . , i− 1, i+ 1, . . . , n,

and

• omit the variables yi without presence in the evolving objective function.

The term appropriate substitution will refer to an yi = h(x) substitution, where

• h(x) satisfies the criteria being smooth, monotonic in at least one variable
xi, and its range is equal to R,

• h(x) covers (characterizes all occurrences of) at least one variable xi, that is,
xi could be removed totally from the optimization problem by substituting
h(x) by yi, and

• yi = h(x) is not a simple renaming, that is, h(x) 6= xi, i = 1, . . . , n.

After applying a transformation with an appropriate substitution yi = h(x), y
has at most the same dimension as x. Redundant variables can be eliminated, if
h(x) covers two or more variables. In other words, we have the possibility to recog-
nize whether the model can be formalized with a smaller set of variables. However,
these are sufficient, but not necessary conditions for simplifier transformations.

For example, consider f(x1, x2) = (x1 + x2)2. It is equivalent to minimize
g(y1) = y21 , and the optimal values of the original variables x1 and x2 can be set
by the symbolic equation y1 = x1 + x2, which is an appropriate substitution. In
fact, we can handle an infinite number of global optimum points in this way, which
is impossible for any numerical solver.

One of the main goals of the simplifier method is to find appropriate substitu-
tions which would eliminate variables. Csendes and Rapcsák [5] with their Assertion
2 suggest to compute the partial derivatives ∂f(x)/∂xi, factorize them, and search
for appropriate substitutions in the factors.

Assertion 2 [5]. If the variables xi and xj appear everywhere in the expression of
a smooth function f(x) in a term h(x), then the partial derivatives ∂f(x)/∂xi and
∂f(x)/∂xj can be factorized in the forms (∂h(x)/∂xi) p(x) and (∂h(x)/∂xj) q(x),
respectively, and p(x) = q(x).

If ∂f(x)/∂xi cannot be factorized, then any appropriate substitution that is
monotonic as a function of xi is linear as a function of xi.

718 Elvira Antal and Tibor Csendes

For illustrative purposes, let us consider the following problem:

min
x∈R3

30 · (5x1 + e1+x2) + 20 · x3,

s.t. ln(5x1 + e1+x2) + x3 ≥ 5.

This example can be a tiny part of a process synthesis problem. Automatic model
generator tools in the field of process synthesis produce several types of multiplicity
and redundancy [6]. Among other redundancies, it is possible for some variables
denoting chemical elements to appear exclusively in the chemical formula of a given
material. In our example, x1 and x2 appear everywhere in the term h(x) = 5x1 +
e1+x2 . For the sake of simplicity, the constraint can be reformulated by adding a
penalty term [9] to the objective, so we need to minimize

f(x) = 30 · (5x1 + e1+x2) + 20 · x3 + σ
(
ln(5x1 + e1+x2) + x3 − 5− x4

)2
,

where x1, x2, x3 are real variables based on physical parameters, σ is a penalty con-
stant and x4 is a slack variable. Due to Assertion 2, ∂f(x)/∂x1 can be transformed
into the form (∂h(x)/∂x1) · p(x), similarly ∂f(x)/∂x2 = (∂h(x)/∂x2) · q(x), while
p(x) = q(x). In our example ∂h(x)/∂x1 = 5, ∂h(x)/∂x2 = e1+x2 , and

p(x) = q(x) =
2
(
75x1 + 15e1+x2 + σ

(
ln(5x1 + e1+x2) + x3 − 5− x4

))
5x1 + e1+x2

.

Based on the above result, we created a computer program to produce equiva-
lent transformations automatically for the simplification of unconstrained nonlinear
optimization problems. The naive implementation would realize the following steps:

1. Compute the gradient of the objective function.

2. Factorize the partial derivatives.

3. Collect appropriate substitutions which contain xi, into a list li:

a) Initialize li to be the empty set.

b) If the factorization was successful for ∂f(x)/∂xi, then extend li with the
respective integrals of the factors.

c) Extend li with the subexpressions of f(x) that are linear in xi.

d) Drop the elements of li which do not fulfill the conditions of an appro-
priate substitution (the elements of li need to be monotonic in xi).

4. Create a list S by applying all proper combinations of the appropriate sub-
stitutions from L =

⋃
li, i = 1, . . . , n to f(x).

5. Choose the least complex element of S to be the simplified objective function.

6. Solve the problem with the simplified objective function (if possible).

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 719

7. Give the solution of the original problem by executing inverse transformations.

Most of the required steps of the algorithm (partial differentiation, factorization,
symbolic integration and substitution) are realized in modern computer algebra
systems as reliable symbolic computation methods. On the other hand, our first
implementation in Maple showed that even one of the market-leader computer
algebra systems has serious deficiency to our requirements in point of substitution
capability and interval arithmetic with infinite intervals [2].

Actually, the exact range calculation for a nonlinear function has the same com-
plexity as computing the global minimum and maximum. However, naive interval
inclusion can be applied to verify whether the range of a subexpression is equal to R.
Naive interval inclusion is exact for a single use expression (SUE, an expression that
contains any variable at most once), but it might produce overestimation for more
complex expressions [12]. The possible overestimation can lead to false-positive
answers in the range calculation. In other words, L can contain some substitutions
with a range which is not equal to R. It means that an additional verification for
the range of the produced non-SUE substitutions would be required. On the other
hand, most of the substitutions produced in our tests were SUEs. As an alternative,
real quantifier elimination [17, 19] would be an applicable symbolic technique for
range calculation.

Naive interval inclusion can also be used for the monotonicity test. A real
function f : Rn → R is monotone if any x,y ∈ Rn such that x ≤ y satisfy
f(x) ≤ f(y). Let us use the product order here: (x1, . . . , xn) ≤ (y1, . . . , yn) if
xi ≤ yi, i = 1, . . . , n. In the discussed application we need to test whether a
function hi(x) is strictly monotonic as a function of a variable xi. Therefore we
compute, whether the naive interval inclusion of the partial derivative ∂hi(x)/∂xi
contains zero. This approach fits the mathematical definition of monotonicity and
is expressive, as a strictly monotone function has a single region of attraction. Un-
fortunately, overestimation of the naive interval inclusion for non-SUEs can produce
false-negative answers in the monotonicity test, so even some monotonic substitu-
tions can be dropped.

Step 3 and Step 4 can be combined to speed up the process and also to ensure
that a proper substitution set is applied to f(x). We call a well ordered set H of
appropriate substitutions proper if all the formulas hi(x) ∈ H can be substituted
by new variables at the same time in a function f(x). That is, the expressions
∀hi(x) ∈ H do not overlap in the computation tree of f(x). Without this property,
not all substitutions yi = hi(x), hi(x) ∈ H could be applied. For example, in
f(x) = (x1 + x2 + x3)2, the substitutions y1 = x1 + x2 and y2 = x2 + x3 would
be also appropriate, but H = {x1 + x2, x2 + x3} is not a proper substitution set
because x1 + x2 and x2 + x3 both refer to the same occurrence of x2. In fact, we
prefer to choose the most complex h(x) formula to eliminate a variable, so in this
example, the substitution y3 = x1 +x2 +x3 should be accepted. At this point, and
in Step 5, an easily applicable complexity definition for expressions is needed. In
our implementation, an expression is said to be more complex than an other one if
its representation (a list of pointers in Mathematica) is longer.

720 Elvira Antal and Tibor Csendes

2.2 Implementation in Mathematica

Compared to our first implementation in the computer algebra system Maple [2],
the new platform Mathematica has several advantages. First of all, the substitution
procedures are much better, since the Mathematica programming language is based
on term-rewriting. In other words, the capabilities of the basic substitution routine
of Mathematica can be extended with regular expression based term-rewriting rules.
We have written a specialized substitution routine in about 50 program lines. A
dozen (delayed) rules are introduced, and we have combined four different ways
for evaluating them, using the expanded, simplified, and also the factorized form
of the formula. It is probably the most important part of the program, as simple
refinements could have substantial influence on the result quality of the whole
simplification process.

Mathematica has also better interval arithmetic implementation: this was cru-
cial for quick and reliable range calculation on the expressions to be substituted.
Naive interval inclusion for the enclosure of the ranges have been realized with the
standard range arithmetic of Mathematica.

Furthermore, our new program supports the enumeration of all possible sub-
stitutions in Step 3, and it still keeps up in running time with the simpler Maple
version, which has used simple heuristics to choose one possible substitution. The
reasons for that are the application of adequate programming techniques, and some
nice properties of the Mathematica system, such as automatic parallelization on list
operations. However, a further study on an efficient substitution selection strategy
would be welcome.

Let us mention that Mathematica tends to include more and more expert tools
to ensure the possibility of writing efficient program code. For example, it has pro-
vided utilities to exploit the parallel computing abilities of the graphics processing
unit (GPU) using CUDA or OpenCL technology since 2010.

Demonstration of the presented algorithm and our newest program codes will
be available at the following homepage:

http://www.inf.u-szeged.hu/~csendes/symbsimp/

2.3 Improvements Compared to the Maple Version

Some simple examples follow to demonstrate the advantages of our new Mathemat-
ica program compared to the Maple version.

These examples were generated by us and were the problematic ones out of
our self-made collection in the test phase of the Maple implementation, so it was
obvious to use them to test the new program. See Table 1 for the Maple-based
results and Table 2 for the results obtained by the Mathematica version. For the
test cases not discussed, the two implementations gave the same output.

Remark, that the renaming convention of Csendes and Rapcsák [5] is slightly
modified in the following tables. Simple renaming (yj := xj) is not applied in the
hope that more elaborated substitutions are emphasized in this way.

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 721

Table 1: Results of some synthetic tests solved by our old, Maple based implemen-
tation

ID Function f Function g Substitutions
Problem

type
Result
type

Sin2 2x3
· sin(2x1 + x2)

2y1 y1 = x3
· sin(2x1 + x2)

A 3

Exp1 ex1+x2 ey1 y1 = x1 + x2 A 1
Exp2 2ex1+x2 2y1 y1 = ex1+x2 A 3
Sq1 x21x

2
2 none none D 2

Sq2 (x1x2 + x3)2 y21 y1 = x1x2+x3 A 1
SqCos1 (x1x2 + x3)2

− cos(x1x2)
y23 − cos(y1) y1 = x1x2,

y3 = y1 + x3

A 1,3

SqExp2 (x1 + x2)2

+2e1ex1+x2

y21 + 2e1ey1 y1 = x1 + x2 A 1

SqExp3 (x1 + x2)2

+2e1+x1+x2

none none A 2

Table 2: Results of some synthetic tests solved by our new, Mathematica based
implementation

ID Function f Function g Substitutions
Problem

type
Result
type

Sin2 2x3
· sin(2x1 + x2)

2x3 sin(y1) y1 = 2x1 + x2 A 1

Exp1 ex1+x2 ey1 y1 = x1 + x2 A 1
Exp2 2ex1+x2 2ey1 y1 = x1 + x2 A 1
Sq1 x21x

2
2 none none D 2

Sq2 (x1x2 + x3)2 y21 y1 = x1x2+x3 A 1
SqCos1 (x1x2 + x3)2

− cos(x1x2)
y21 − cos(x1x2) y1 = x1x2+x3 A 1

SqExp2 (x1 + x2)2

+2e1ex1+x2

y21 + 2e1+y1 y1 = x1 + x2 A 1

SqExp3 (x1 + x2)2

+2e1+x1+x2

y21 + 2e1+y1 y1 = x1 + x2 A 1

722 Elvira Antal and Tibor Csendes

We apply again the evaluation codes from [2], which describe the quality of the
results and the nature of the problem. These codes appear in the “Problem type”
and “Result type” columns of Tables 1 and 2. The letters characterize the actual
problem:
(A). Simplifying transformations are possible according to the presented theory.

(B). Simplifying transformations could be possible by extension of the presented
theory.

(C). Some helpful transformations could be possible by extension of the presented
theory, but they do not necessarily simplify the problem (e.g., since they
increase dimensionality).

(D). We do not expect any helpful transformation.

The results are described by the second indicator: our program produced
1. proper substitutions,

2. no substitutions, or

3. incorrect substitutions.

As we had discussed earlier [2], Maple provides incorrect interval arithmetic, so we
needed to use heuristics in the Maple implementation for range calculation. Also
the algebraic substitution capabilities of Maple are weak. Almost all mistakes of
the early implementation originated from these two reasons.

Code “2” is also used when only constant multipliers are eliminated.
In short, A1 means that proper substitution is possible and it has been found by

the algorithm, while D2 means that as far as we know, no substitution is possible,
and this was the conclusion of the program as well. The unsuccessful cases are
those denoted by other codes.

The differences between the obtained results are explained next. For the Sin2
test problem, a proper simplification was obtained by the new implementation,
while the old one conveyed a more complex, but non-monotonic substitution.

In Exp2, ex1+x2 does not have a range equal to R, but the heuristic range
calculation method used in Maple recognized it as an appropriate substitution.
The range calculation subroutine in Mathematica proved to be better in this case.

In Sq1, the Maple implementation was not able to recognize the subexpression
x1x2 in the expression x21x

2
2, but was able to recognize x1x2 + x3 in its square

in Sq2. Since the second is not a multiplication type expression but a sum, it is
represented in a different way. In Mathematica, regular expressions can be used to
produce good substitutions, and our specialized substitution routine worked well
for this problem. On the other hand, x1x2 is not monotone as a function of x1 or
x2 for the whole search interval (supposed to be R), so it cannot be chosen as an
appropriate substitution.

Also for the SqCos1 test problem, the new, Mathematica-based method applied
a routine to check whether the substitution expression is monotone, so y1 = x1x2
was eliminated from the substitution list.

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 723

In the cases SqExp2-3, also the weakness of the expression matching capability
of Maple can be observed, as it was not able to recognize x1 + x2 in e1+x1+x2 , only
in e1ex1+x2 .

2.4 Computational Test Results on Global Optimization
Problems

Standard and frequently used global optimization test problems were used to study
the capabilities and limitations of the symbolic simplification algorithm. The test
set was extended in comparison to our earlier paper [2]. The description and even
various implementations of the examined problems can be found in several resources
and online collections. For example, the compact mathematical formulation and
known optima of all of the mentioned problems can be found in Appendix A at
Pal [13]. Our computational results are summarized in Table 3.

ID Dim. New variables Substitutions
Problem

type
Result
type

Transform.
time

BR 2 y = [x1, y1] y1 = x2
−6 + (5/π)x1
−0.129185x21

A 1 0.1092

Easom 2 y = x none D 2 0.1404
G5 5 y = x none D 2 2.7456
G7 7 y = x none D 2 36.5821
GP 2 y = x none D 2 0.4212
H3 3 y = x none D 2 16.3488
H6 6 Stopped. Stopped. D 2 1800 <
L1 1 y = x none D 2 0.0312
L2 1 y = x none D 2 0.6552
L3 2 y = x none D 2 2.3088
L5 2 y = x none D 2 15.3348
L8 3 y = [y1, y2, y3] y1 =

(x1 − 1)/4,
y2 =
(x2 − 1)/4,
y3 = (x3−1)/4

A 1 13.1820

L9 4 y =
[y1, y2, y3, y4]

y1 =
(x1 − 1)/4,
y2 =
(x2 − 1)/4,
y3 =
(x3 − 1)/4,
y4 = (x4−1)/4

A 1 174.7047

L10 5 Stopped. Stopped. A 1 1800 <
L11 8 Stopped. Stopped. A 1 1800 <
L12 10 Stopped. Stopped. A 2 1800 <
L13 2 y = x none D 2 0.4992
L14 3 y = x none D 2 0.7800
L15 4 y = x none D 2 1.0296
L16 5 y = x none D 2 2.0904
L18 7 y = x none D 2 32.1517
Sch21
(Beale) 2 y = x none C 2 0.1248
Sch214

724 Elvira Antal and Tibor Csendes

(Powell) 4 y = x none D 2 0.0936
Sch218
(Matyas) 2 y = x none D 2 0.0156
Sch227 2 y = x none D 2 0.0624
Sch25
(Booth) 2 y = x none C 2 0.0312
Sch31 3 y = x none D 2 0.0468
Sch31 5 y = x none D 2 0.0936
Sch32 2 y = [y1, y2] y1 = x1 − x22,

y2 = x2 − 1
A 1 0.0468

Sch32 3 y = x none D 2 0.0312
Sch37 5 y = x none D 2 0.0936
Sch37 10 y = x none D 2 0.2808
SHCB 2 y = x none D 2 0.0156
THCB 2 y = x none D 2 0.0156
Rastrigin 2 y = x none C 2 0.0936
RB 2 y = [y1, y2] y1 = x21 −x2,

y2 = 1− x1
A 1 0.0440

RB5 5 y = [x1, x2,
x3, x4, y1]

y1 = x24 − x5 A 1 0.3080

S5 4 y = x none D 2 225.5018
S7 4 y = x none D 2 1,010.2431
S10 4 Stopped. Stopped. D 2 1800 <
R4 2 y = x none C 2 0.2964
R5 3 y = [x1, x2, y2] y1 = 3 + x3,

y2 = (π/4)y1

A 1 13.8216

R6 5 y = [x1, x2,
x3, x4, y2]

y1 = 3 + x5,
y2 = (π/4)y1

A 2 995.6883

R7 7 Stopped. Stopped. A 2 1800 <
R8 9 Stopped. Stopped. A 2 1800 <

Table 3: Results for the standard global optimization test functions

In the common cases, most of our new results are identical to what we have
obtained with the earlier, Maple-based implementation. The two differences are
reported here. For the Schwefel-227 test problem, the Maple version gave the
substitution y1 = x21 + x22 − 2x1. This expression characterizes all occurrences of
x2, but it is not monotonic in any variable, so the Mathematica version had not
suggested it for substitution. For Schwefel-32 (n=2), Mathematica found a good
substitution, while Maple did not.

All transformations were performed with Mathematica 9.0 under time con-
straints. In those cases, in which the complete simplifier program had not stopped
in 1800 seconds, the message “Stopped.” was written to the New variables and
Substitutions columns and “1800 <” to the Transformation time column of Ta-
ble 3. The numerical tests ran on a computer with an Intel i5-3470 processor, 8
GB RAM and 64-bit operating system.

Most of the running time was used by the symbolic formula transformations of
the extended substitution routine. In the problematic cases, usually symbolic fac-
torization consumed 1800 seconds. While every transformation in Table 2 finished
in less than 0.2 seconds, the running time for the standard test cases vary more.
24 of 45 test cases ran in one second, further 10 analysis required less than one

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 725

minute, but 7 test cases would require more than a half hour to finish.

Altogether, 45 well-known global optimization test problems were examined,
and our Mathematica program offered equivalent transformations for 8 cases. In
other words, our method suggested some simplification for 18% of this extended
standard global optimization test set. The next section presents numerical results
to demonstrate that these transformations could be useful for a global optimization
solver.

3 On the Advantages of the Transformations

This section presents numerical test results to verify the usefulness of the trans-
formations of Tables 2 and 3. We compare the results of a numerical global opti-
mization solver for the minimization of the original and the transformed problem
forms, for every cases of Tables 2 and 3 where our algorithm produced an equiv-
alent transformation. The numerical indicators, as reached global optima values,
running times, and function evaluation numbers are presented in Tables 4, 5, and 6.
Boldface denotes the better options of related numbers.

Table 4: Optimal function values found by Global
Original problem Transformed problem

ID Fbest Fmean Fvar Fbest Fmean Fvar
Exp1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Exp2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sq2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SqCos1 −1.0000 −0.7671 0.1899 −1.0000 -0.9922 0.0700
SqExp2 3.0000 3.0000 0.0000 3.0000 3.0000 0.0000
SqExp3 3.0000 3.0000 0.0000 3.0000 3.0000 0.0000
CosExp −2.0000 -1.6166 0.4397 −2.0000 −1.5896 0.2781
BR 0.3979 0.3979 0.0000 0.3979 0.3979 0.0000
L8 0.0000 2.1386 5.6861 0.0000 2.2651 6.8558
L9 0.0000 2.4410 8.7591 0.0000 2.3897 10.1134
RB 0.0000 19.7318 1094.1167 0.0000 0.0000 0.0000
RB5 0.0000 1.8510 3.8703 0.0000 1.8400 3.8677
R5 0.0000 1.9017 26.3097 0.0000 0.0000 0.0000
R6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sch3.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

726 Elvira Antal and Tibor Csendes

Table 5: Number of function evaluations of Global
Original problem Transformed problem

ID NumEvalmean NumEvalvar NumEvalmean NumEvalvar
Exp1 87 2, 280 51 188
Exp2 102 2, 489 55 327
Sq2 478 57, 927 52 38
SqCos1 1467 463, 242 1,131 279,915
SqExp2 155 4, 903 61 142
SqExp3 151 5, 282 61 142
CosExp 1, 110 1, 805, 418 631 154,691
BR 136 1, 504 115 769
L8 785 266, 138 797 242,593
L9 2, 606 1, 838, 627 2,371 1,343,151
RB 749 71, 762 127 976
RB5 3, 162 693,878 2,634 709, 652
R5 1,908 1, 644, 365 2, 957 581,382
R6 6,001 223,269 6, 069 269, 551
Sch3.2 119 1, 290 59 121

Table 6: Running times of Global (seconds)
Original problem Transformed problem

ID Tmean Tvar Tmean Tvar
Exp1 0.0289 0.0004 0.0113 0.0000
Exp2 0.0346 0.0005 0.0124 0.0000
Sq2 0.0919 0.0029 0.0072 0.0000
SqCos1 0.1822 0.0083 0.1406 0.0047
SqExp2 0.0270 0.0002 0.0088 0.0000
SqExp3 0.0264 0.0002 0.0088 0.0000
CosExp 0.2139 0.0429 0.1623 0.0134
BR 0.0241 0.0001 0.0195 0.0000
L8 0.0992 0.0046 0.0990 0.0040
L9 0.2771 0.0220 0.2445 0.0150
RB 0.0857 0.0009 0.0241 0.0001
RB5 0.2705 0.0050 0.2089 0.0045
R5 0.2407 0.0286 0.4567 0.0159
R6 0.7830 0.0136 0.7785 0.0047
Sch3.2 0.0187 0.0001 0.0116 0.0000

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 727

We performed 100 independent runs for every test cases, with the Matlab im-
plementation of a general multi-start solver with a quasi-Newton type local search
method, Global with the BFGS local search [4]. The tests were run on the same
computer, which was described in Subsection 2.4, with 64-bit MATLAB R2011b.
The parameters of Global were set to the defaults.

The solver needs an initial search interval for every variable, so we set the
[−100, 100] interval as initial box of every variable in our self-made test cases (Ta-
ble 2), and the usual boxes for the standard problems (see for example Appendix
A in [13]). In the transformed cases, the bounds were transformed appropriately.

Table 4 shows the optimal function values reached by Global with the above
mentioned parameters. Fbest denotes the minimal optimum value, Fmean is the
mean of the reached optimum values in average of the 100 runs, and Fvar denotes
the variance of the reached minimum values. The real global optimum values were
reached in every independent run for both of the original and the transformed forms
in 8 of 15 cases. In the cases RB and R5, only the transformed form helped the
solver to reach the minimum value in all 100 runs. Totally in 5 of 15 cases, the
transformed form was easier to solve with Global, the two forms were equivalently
difficult to solve in 8 cases, but in 2 cases the original form was slightly more
favorable.

Let us compare the number of function evaluations required by the solver in a
run (Table 5). NumEvalmean refers to the mean of the number of function evalu-
ations, and NumEvalvar refers to the variance of the same indicator. The trans-
formed problem needed fewer function evaluations in 12 of 15 cases, and in some
cases it outperformed the original form very well. For example, Global needs only
17% of the original function evaluations for finding the optimum of the Rosenbrock
problem in the transformed form, 80% of the original with the transformed Branin,
and 11% of the original function evaluations with the transformed Sq2 problem.
The original form of L8 and R6 was slightly better for the solver in terms of func-
tion evaluations, and at L8 also in founding minimum values. The original form
of R5 needed fewer function evaluations, but did not enable the solver to find the
global optima in every run, while the transformed form did.

Regarding running times (Table 6), the transformed problem form allows Global
to run a bit quicker than on the original problem form in almost every case. The
average relative improvement in the running times of the whole test set is 31.5%.
However, this indicator is better for our self-made problems (56.9%) and worse for
the standard problems (9.3%).

We can conclude that the equivalent transformations of Table 2 and Table 3,
which seem to be very simple, have a big influence on the performance of a tradi-
tional global optimization solver.

728 Elvira Antal and Tibor Csendes

4 Theoretical Extension

We generalize the theoretical results of the papers of Csendes and Rapcsák [5,
14] to allow parallel substitutions and to cover constrained nonlinear optimization
problems.

Let us start with an example for parallel substitutions. Consider the following
objective function:

f(x1, x2, x3) = (x1 + x2 + x3)2 + (x1 − 2x2 − 3x3)2.

It is equivalent to minimize g(y1, y2) = y21 +y22 , which is a two-dimensional problem
against the original three-dimensional one. Neither y1 = x1 + x2 + x3 nor y2 =
x1 − 2x2 − 3x3 is appropriate in the earlier meaning, as they are smooth and
monotonic in every variable, but none of the variables are covered by y1 or y2.
However, y1 together with y2 characterizes all occurrences of x1, x2, and x3, and
H = {x1+x2+x3, x1−2x2−3x3} is a proper set of substitutions, resulting dimension
reduction of the aforementioned problem. The theoretical extension aims to handle
this kind of parallel substitutions.

The original nonlinear optimization problem that will be simplified automati-
cally now can include constraints, too:

min
x∈Rn

f(x)

ci(x) = 0 (2)

cj(x) ≤ 0,

where f(x), ci(x), cj(x) : Rn → R are smooth real functions, given by a formula,
and i = 1, . . . , p1 and j = p1 + 1, . . . , p2 are integer indexes.

The transformed constrained optimization problem will be

min
y∈Rm

g(y)

di(y) = 0 (3)

dj(y) ≤ 0,

where g(y) : Rm → R is the transformed form of f(x), and di(y), dj(y) : Rm → R
are again smooth real functions, the transformations of the constraints ci(x), cj(x),
i = 1, . . . , p1 and j = p1 + 1, . . . , p2.

Denote by X the set of variable symbols in the objective function f(x) and in
the constraint functions ck(x), k = 1, . . . , p2. Y will be the set of variable symbols in
the transformed functions g(y), and dk(y), k = 1, . . . , p2. Remark, that dimension
increase is not allowed for the transformation steps, so m ≤ n and |Y | ≤ |X|. At
the beginning of the algorithm, Y := X.

Denote the set of the expressions on the left-hand side of the original constraints
by C:

C := {ck(x) : Rn → R , k = 1, . . . , p2}.

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 729

Denote by F the expression set of all subexpressions (all well-formed expressions
that are part of the original expressions) of f(x) and ck(x) ∈ C.

The crucial part of our algorithm is the transformation step. If an H ⊂ F
expression set covers a V ⊆ X variable set (that is, none of v ∈ V happens out of
H in the original expression of f(x) or ck(x) ∈ C), and |H| ≤ |V |, then apply every
substitutions, related to H, to f(x) and C as follows. Substitute a new variable yi in
place of hi(x) for all hi(x) ∈ H in f(x) and also in every ck(x) ∈ C. Furthermore,
let us update the variable set of the transformed problem: Y := (Y ∪ yi) \ V .

This will be referred to as a transformation step (corresponding to H). The
special case |H| = |V | = 1, p1 = p2 = 0 belongs to the algorithm given by Csendes
and Rapcsák [5] for the unconstrained case.

Further on, the notation y := H(x) will be used as an abbreviation for the
following: yi := hi(x), i = 1, . . . , |H|.

The following assertion is a straightforward generalization of Assertion 1 in [5].

Assertion 1. If a variable xi appears in exactly one term, namely in h(x), ev-
erywhere in the expressions of the smooth functions f(x) and ck(x), k = 1, . . . , p2,
then the partial derivatives of these functions related to xi all can be written in the
form (∂h(x)/∂xi)p(x), where p(x) is continuously differentiable.

Recall, that an ordered set H of substitutions is called proper, if all expressions
hi(x) ∈ H are such that they can be substituted by new variables at the same time.
Ordering is required only for univocal indexing of the substitutions.

Theorem 1. If H is proper and all hi(x) ∈ H expressions are smooth and strictly
monotonic as a function of every variable v ∈ V ⊆ X, the cardinality of H is
less than or equal to the cardinality of V , and the domain of hi(x) is equal to R
for all hi(x) ∈ H, then the transformation step corresponding to H simplifies the
original problem in such a way that every local minimizer (maximizer) point x∗ of
the original problem is transformed to a local minimizer (maximizer) point y∗ of
the transformed problem.

Proof. Consider first the sets of feasibility for the two problems. The substitution
equations ensure that if a point x was feasible for the problem (2), then it remains
feasible after the transformations for the new, simplified problem (3). The same is
true for infeasible points.

Denote now a local minimizer point of f(x) by x∗, and let y∗ := H(x∗) be the
transformed form of x∗. As each hi(x) ∈ H is strictly monotonic in at least one
variable, all points from the a = N(x∗, δ) neighborhood of x∗ will be transformed
into a b = N(y∗, ε) neighborhood of y∗, and ∀xj /∈ a : yj /∈ b. Both the objective
functions f(x) and g(y), and the old and transformed constraint functions have the
same value before and after the transformation. This fact ensures that each local
minimizer point x∗ will be transformed into a local minimizer point y∗ of g(y).
The same is true for local maximizer points, by similar reasoning.

Additionally, |H| ≤ |V |, so the construction of the transformation step ensures
that the application of every substitution of H eliminates at least as many xi

730 Elvira Antal and Tibor Csendes

variables from the optimization model as the number of the new variables in every
iteration.

In contrast to Theorem 1, which gives sufficient conditions to have such a sim-
plification transformation that will bring local minimizer points of the old problem
to local minimizer points of the new one, the following theorem provides sufficient
conditions to have a one-to-one mapping of the minimizer points.

Theorem 2. If H is proper, and all hi(x) ∈ H expressions are smooth, strictly
monotonic as a function of every variable v ∈ V ⊆ X, the cardinality of H is less
than or equal to the cardinality of V , and the domain and range of hi(x) are equal to
R for all hi(x) ∈ H, then the transformation step corresponding to H simplifies the
original problem in such a way that every local minimizer (maximizer) point y∗ of
the transformed problem can be transformed back to a local minimizer (maximizer)
point x∗ of the original problem.

Proof. Since the substitution equations preserve the values of the constraint func-
tions, each point y of the feasible set of the transformed problem (3) must be
mapped from a feasible point x of the original problem (2): y = H(x). The same
holds for infeasible points.

Denote a local minimizer point of (3) by y∗. Now, since the ranges of the
transformation functions in H are equal to R, every local minimizer point y∗ of the
transformed problem (3) is necessarily a result of a transformation: let x∗ be the
back-transformed point: y∗ = H(x∗). Consider a neighborhood N(y∗, δ) of y∗,
where every feasible point y has a greater or equal function value: g(y) ≥ g(y∗),
and those feasible points x of (2), for which H(x) = y ∈ N(y∗, δ). The latter set
may be infinite if the simplification transformation decreases the dimensionality of
the optimization problem. Anyway, there is a suitable neighborhood N(x∗, δ′) of
x∗ inside this set, for which the relation f(x) ≥ f(x∗) holds for all x ∈ N(x∗, δ′)
that satisfies the constraints of (2). In other words, x∗ is a local minimum point of
(2).

The argument for local maximizers is similar.

Corollary 1 is an immediate consequence of Theorem 1:

Corollary 1. If H is proper, all the hi(x) ∈ H expressions are smooth and invert-
ible as a function of every variable v ∈ V ⊆ X, and the cardinality of H is less than
or equal to the cardinality of V , then the transformation step corresponding to H
simplifies the original problem in such a way that every local optimum point x∗ of
the original problem is transformed to a local optimum point y∗ of the transformed
problem.

5 Summary

This paper examines the possibility and ability of implementing equivalent trans-
formations for nonlinear optimization problems as an automatic presolving phase
of numerical global optimization methods.

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 731

An extensive computational test has been completed on standard global op-
timization test problems and on other often used global optimization test func-
tions together with some custom made problems designed especially to test the
capabilities of symbolic simplification algorithms. Maple and Mathematica based
implementations were compared.

The test results show that most of the simplifiable cases were recognized by our
new, Mathematica-based algorithm, and the substitutions were correct. Tests with
a numerical solver, namely Global, were performed to check the usefulness of the
produced transformations. The results show that the produced substitutions can
improve the performance of this multi-start solver.

We have presented some new theoretical results on automatic symbolic transfor-
mations to simplify constrained nonlinear optimization problems. However, further
investigations would be necessary to build an efficient branch and bound strategy
into the algorithm at Step 3–4 to realize good running times for the described
parallel substitutions.

As a natural extension of the present application, symbolic reformulations are
promising for speeding up interval methods of global optimization. The overesti-
mation sizes for interval arithmetic [1] based inclusion functions were investigated
in optimization models [18]. Symbolic transformations seem to be appropriate for
a proper reformulation. Obvious improvement possibilities in this field are the
use of the square function instead of the usual multiplication (where it is suitable),
the transformation along the subdistributivity law, and finding SUE forms. In fact,
such transformations usually are performed by the default expression simplification
mechanism [16] of an ordinary computer algebra system. The domain of calcula-
tion has an important role in this presolve approach, since important features of
functions such as monotonicity change substantially within the domain where a
function is defined.

References

[1] Alefeld, G., Herzberger, J. Introduction to Interval Computation. Academic
Press, New York, 1983.

[2] Antal, E., Csendes, T., Virágh, J. Nonlinear Transformations for the Sim-
plification of Unconstrained Nonlinear Optimization Problems. Cent. Eur. J.
Oper. Res. 21(4):665–684, 2013.

[3] Avanzolini, G., Barbini, P. Comment on “Estimating Respiratory Mechanical
Parameters in Parallel Compartment Models”. IEEE Trans. Biomed. Eng.
29:772–774, 1982.

[4] Csendes, T., Pál, L., Send́ın, J. O. H., Banga, J. R. The GLOBAL Optimiza-
tion Method Revisited. Optimization Letters 2:445–454, 2008.

732 Elvira Antal and Tibor Csendes

[5] Csendes, T., Rapcsák, T. Nonlinear Coordinate Transformations for Uncon-
strained Optimization. I. Basic Transformations. J. Global Optim. 3(2):213–
221, 1993.

[6] Farkas, T., Rev, E., Lelkes, Z. Process flowsheet superstructures: Structural
multiplicity and redundancy Part 1: Basic GDP and MINLP representations.
Computers and Chemical Engineering, 29:2180–2197, 2005.

[7] Fourer, R., and Gay, D. M. Experience with a Primal Presolve Algorithm.
In Hager, W. W., Hearn, D. W. and Pardalos, P. M., editors, Large Scale
Optimization: State of the Art, pages 135–154. Kluwer Academic Publishers,
Dordrecht, 1994.

[8] Gay, D. M. Symbolic-Algebraic Computations in a Modeling Language for
Mathematical Programming. In Alefeld, G., Rohn, J. and Yamamoto, T.,
editors. Symbolic Algebraic Methods and Verification Methods, pages 99–106.
Springer-Verlag, 2001.

[9] Grossmann, I. E. MINLP optimization strategies and algorithms for process
synthesis. In Proc. 3rd Int. Conf. on Foundations of Computer-Aided Process
Design, page 105., 1990.

[10] Liberti, L., Cafieri, S., Savourey, D. The Reformulation-Optimization Software
Engine. Mathematical Software – ICMS 2010, LNCS 6327, pages 303–314,
2010.

[11] Mészáros, Cs., Suhl, U. H. Advanced preprocessing techniques for linear and
quadratic programming. OR Spectrum 25(4):575–595, 2003.

[12] Neumaier, A. Improving interval enclosures. Manuscript. Available at
http://www.mat.univie.ac.at/~neum/ms/encl.pdf

[13] Pál, L. Global optimization algorithms for bound constrained problems. Ph.D.
thesis, University of Szeged, 2011.

[14] Rapcsák, T., Csendes, T. Nonlinear Coordinate Transformations for Uncon-
strained Optimization. II. Theoretical Background. J. Global Optim. 3(3):359–
375, 1993.

[15] Schichl, H., Neumaier, A. Interval Analysis on Directed Acyclic Graphs for
Global Optimization. J. Global Optim. 33(4):541–562, 2005.

[16] Stoutemyer, D. R. Ten commandments for good default expression simplifica-
tion. J. Symb. Comput. 46:859–887, 2011.

[17] Sturm, T., Tiwari A. Verification and synthesis using real quantifier elimi-
nation. In Proceedings of the 36th international symposium on Symbolic and
algebraic computation (ISSAC ’11), ACM, New York, NY, USA, 329–336,
2011.

Nonlinear Symbolic Transformations for Simplifying Optimization Problems 733

[18] Tóth, B., Csendes, T. Empirical investigation of the convergence speed of
inclusion functions. Reliable Computing, 11:253–273, 2005.

[19] Vajda, R. Effective Real Quantifier Elimination. In J. Karsai, R. Vajda
(eds.), Interesting Mathematical Problems in Sciences and Everyday Life -
2011, University of Szeged, ISBN:978-963-306-109-1

[20] Wolfram Mathematica 9 Documentation Center, Mathematica Tutorial: Ba-
sic Internal Architecture. Available at https://reference.wolfram.com/

mathematica/tutorial/BasicInternalArchitecture.html

Received 15th June 2015

