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The Logic of Aggregated Data

Tjalling Gelsema∗

Abstract

A notion of generalization-specialization is introduced that is more expres-
sive than the usual notion from, e.g., the UML or RDF-based languages. This
notion is incorporated in a typed formal language for modeling aggregated
data. Soundness with respect to a sets-and-functions semantics is shown sub-
sequently. Finally, a notion of congruence is introduced. With it terms in
the language that have identical semantics, i.e., synonyms, can be discovered.
The resulting formal language is well-suited for capturing faithfully aggre-
gated data in such a way that it can serve as the foundation for corporate
metadata management in a statistical office.
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Introduction

This article is a sequel to [8]. The reader is therefore advised to make her- or
himself acquainted of the notions and the results of [8]. Also, we inform the reader
that this article is written from the perspective of information management in a
statistical office. Its results however, we feel, are applicable in any situation where
large quantities of aggregated datasets need to be managed faithfully.

One of the distinguishing features of a national statistical institute (NSI) is
the large amount of information it harbors, dealing with many different social
and economic phenomena. Managing this mass of information, i.e., making sure
that the right pieces of information are available at any situation where they are
required, is both necessary as well as nontrivial. For various reasons — accuracy,
professionalism, transparency and coherence to name a few — an NSI should be
aware of all the social and economic concepts it uses to produce statistics, across
the entire process from data collection to publication.

While Statistics Netherlands (SN) is very keen on managing these concepts for
the statistics that are published on its website, overall office-wide management of
information across the statistical production process lags behind. Apart from the
obvious, such as low risk of public exposure, there are various reasons why office-
wide information management receives less attention and is difficult to achieve.
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First, true office-wide information management requires local investments, from
the various departments the organization consists of, while the return on the invest-
ments is often less apparent from the point of view of these departments. The ad-
ministration, i.e., the proper naming and describing, of the numerous variables, clas-
sifications, datasets, production rules, etcetera, is sometimes considered drudgery
and mostly for the benefit of others.

Second, variables, classifications, statistical information models, micro data and
aggregated data show dependencies that makes proper management of, say, vari-
ables through a variable management system, separately from that of, say, clas-
sifications through a classification management system, hard to realize. As an
example of such a dependency, consider variables like turnover generated from the
sales of shoes, turnover generated from the sales of jeans, etcetera. These vari-
ables are properly managed only if they are seen as one generic variable, turnover
generated from the sales of a good say, that is ‘indexed’ by some classification of
goods: only then need changes, e.g., in the definition of the variables, be recorded
only once instead of for each of the indexed variables separately. For the converse,
classifications that depend on variables, examples can be given as well.

In many organizations such as SN there is a need for corporate metadata man-
agement, which is aimed at integrating these separate initiatives in a meaningful
way. However, uncovering dependencies that are meaningful from the perspective of
corporate metadata management is harder than is acknowledged by initiatives such
as the GSIM [22]. Besides, as a separate discipline, studying structural metadata,
which is aimed at discovering these dependencies, has received too little attention
in the scientific literature anyway (but see, e.g., [20]). In the sequel we will give
some examples that fail to be handled properly by existing metadata frameworks.
As we will see, having access to such dependencies can make various tasks much
easier, but the systems or frameworks that should record them, we claim, are ei-
ther lacking or are inadequate. As a result, the administrative tasks mentioned
earlier are not properly supported and they therefore require more human effort
than necessary.

SN has initiated a program to gain an office-wide overview of all of its datasets
that are one ‘steady state’ behind its output tables in the statistical process:
datasets that have reached a certain stability in the sense that they are no longer
subject to changes, and are one step away from publishing. This is part of a larger
effort to arrive at a complete overview, from data collection to publishing, which is
carried out in the opposite direction (i.e., from publishing to data collection). Dur-
ing the years 2013 and 2014, these ‘pre-output tables’ were named and described
both in general terms as well as in terms of the variables they consist of, in a joint
effort that involved every department responsible for publishing statistics. The goal
was to have office-wide access, by the beginning of 2015, to both the descriptions
of these datasets (the so-called dataset designs) and through them authorized ac-
cess to the datasets themselves. To achieve this, a separate department has been
established, the Data Service Center (DSC), which is responsible for offering access
to these data for the rest of the organization. The DSC also develops and manages
the automated system for storing and retrieving datasets and dataset designs, of-
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fers guidelines for naming and describing datasets and variables, and offers overall
support to statisticians in applying these guidelines, to name a few of the DSC’s
responsibilities.

While the DSC has put much effort in what we refer to as the ‘non-structural’
business rules of dataset design, among which are the naming conventions, the
‘structural’ business rules have received much less attention. Among these ‘struc-
tural’ business rules are the ones that, given an information model, determine
whether a group of variables can be reasonably put together to form a dataset, or
that determine, given two variables, whether the one is an aggregated form of the
other, as with total turnover generated by a class of businesses and turnover of a
business. The result is that the automated system that the DSC provides is not
sufficiently capable of responding to natural queries that arise when datasets are
designed, which requires a more global and interdependent view of all information
assets than the DSC is able to provide.

One example of such a query is: given an object type (such as one of the types
person, household, or business) list all the currently available variables that apply
to that type (such as age and income, household composition and income, and
turnover and profit, respectively). Another example is: given a family of variables,
such as turnover generated from the sales of shoes and turnover generated from
the sales of jeans examined earlier, list the generic variable and the classification
that they depend on. The first query is natural, because it stimulates the reuse of
existing variables. It is difficult to respond to, because the DSC does not record
object subtyping: e.g., the variable age (recorded as a variable of type person)
will be missing from the list when all variables of type student are requested. The
second query is natural, again for purposes of reuse: the description of the generic
variable together with the descriptions of each of the categories in the classification
are sufficient to understand each of the variables in the family. The automated
system of the DSC cannot respond to the query though, since it does not record
this kind of dependency between variables and classification systems. As a result,
each variable in the family needs to be described separately, which is an example of
the extra human effort that is required because of inadequate support from DSC’s
information systems.

In order to lay down useful dependencies, we claim it is natural and beneficiary
to have a graph-like perception of corporate metadata. Then, we claim, it is equally
natural to view the structure of a dataset as a particular subgraph. To illustrate
what we mean, consider the dataset below that records the ages and the incomes
of two partners in a marriage, as well as the duration of the marriage. (We assume
that we list these for all marriages that existed on a particular date, say January
1 2016, in a particular residential area, say Delft. We also assume that partner 1
and partner 2 in the marriage, abbreviated by ‘pa.1’ and ‘pa.2’ respectively, can be
identified according to some criterion.)

The peculiarity with this dataset is that, without further ado, the correct un-
derstanding of it depends on the correctness of the labels ‘pa.1’ and ‘pa.2’ assigned
to the first four columns. These labels are easily switched and switching them prob-
ably gets unnoticed on first sight. So the dataset has some internal structure in the
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age pa.1 income pa.1 age pa.2 income pa.2 duration

31 20.500 35 22.000 4
62 40.200 57 45.000 31
. . . . . . . . . . . . . . .

Table 1: Data about partners in a marriage

sense that the first and the second column of data need to be treated as a pair, as
well as the third and fourth column. Other than assigning labels to columns, the
DSC however has no means to formally record such information, and neither has
the GSIM.

We propose that these useful dependencies, between columns in a dataset in
the example above, can be adequately expressed in the form of the graph below,
which should be viewed as an information model of a small part of the ‘real world’
a statistician might be interested in. To summarize what is depicted in Fig. 1,

marriage person

amount

no. of years

pa.1

pa.2

income

age

no. of years

duration

marriage,
Delft, 1-1-2016

is

Figure 1: An information model

associated with a marriage are two persons, which are the partners involved in the
marriage. Each person has characteristics age and income, expressed as a no. of
years and an amount, respectively. A marriage has a characteristic duration which
is also recorded as a no. of years. Each marriage recorded in Delft on January 1
2016 is a marriage.

The difference between what we call ‘non-structural’ and ‘structural’ business
rules, respectively, is that only the latter can be expressed in a form sufficiently
precise to be automatically (and correctly) interpreted by a computer program, in
order to automatically respond to queries such as the ones above. While we feel that
both ‘non-structural’ and ‘structural’ business rules are important in the develop-
ment and use of automated systems that are successful in supporting information
management in an NSI, studies of the latter are practically nonexistent in the sci-
entific literature, at least when restricted to statistical information management or
statistical metadata. There is however a huge source of literature available about
techniques in formal semantics [23, 1], a subfield of theoretical computer science,
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which, we feel, has valuable applications to statistical information management.
This article is an attempt to show that these techniques can be successfully applied
to solve the questions raised above.

In order to further delineate the scope of this article, we postulate that within
the statistical process, there are two kinds of data transformations: those that
change the structure of the data and those that keep the structure intact, but only
change the contents of a dataset. Examples of the first kind are aggregation and
row selection, examples of the second kind are data editing and imputation. We
further postulate that, roughly, transformations of the first kind change or produce
structural metadata, while transformations of the second kind change or produce
quality metadata. Simply put, the second kind deals with changes of the estimator,
while the first kind deals with changes of the estimand. This article only deals with
changes of the estimand and hence only deals with changes in structural metadata,
keeping quality metadata out of scope.

In [8] formal semantics, initial algebra semantics [9] and some category theory
[13, 18, 3] in particular, were taken as a point of departure for developing ‘structural’
business rules for statistical data and metadata. The main ideas of [8] can be
summarized as follows:

(i) The most natural and accurate interpretation of statistical data is the sets-
and-functions interpretation. In this interpretation, variables, micro datasets,
dimensional datasets, relations between object types (such as between a mar-
riage and a person in Fig. 1) and also values1 are seen as functions; object
types and value types (such as amount in Fig. 1) are seen as sets. In this
view for instance, a typical variable v takes an object (a person, a household,
a business) from a set of objects p (the interpretation [8] gives to an object
type) to a value taken from a set of values x (the interpretation of a value
type). Hence we have the function v : p→ x;

(ii) To go from, e.g., variables and object type relations to a dataset and from a
micro dataset to a dimensional dataset requires operators that act on sets and
functions. For instance, in [8], column- and row-wise combining, functional
composition and aggregation were considered as operators and were defined
in the sets-and-functions interpretation;

(iii) Structural metadata should be ‘aligned’ in a natural way with these operators.
This means that, for instance, combining variables column-wise in order to
produce a dataset is ‘mirrored’ in combining descriptions of these variables in
order to produce a description of the dataset. The mathematical consequence
of this idea, using the initial algebra semantics point of departure, is that
structural metadata are terms, built from the operators mentioned in (ii), that
are mapped onto the sets and functions of (i) by means of a homomorphism.

In this article, terms that represent sets are called types; terms that represent
functions are called elements. Elements have a domain and a codomain, which are
types.

1We will see how values are interpreted as functions in the next section.
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In the view of [8], the structural metadata for the dataset in Table 1 is the term

〈age ◦ pa.1 , income ◦ pa.1 , age ◦ pa.2 , income ◦ pa.2 , duration〉 ◦ in,

which is an element constructed using the operators column-wise combining 〈. . . 〉
and functional composition ◦, that has the type

marriage, Delft, 1-1-2016

as a domain, and the type

no. of years × amount × no. of years × amount × no. of years

as a codomain. Note that the nodes that are incident with the directed edges from
the graph in Fig. 1 are types that ensure the correct construction of the element
above. For instance, functional composition ◦ is defined only for two elements (cf.
the directed edges of Fig 1) of which the node incident on the tail (its domain) of
the first equals the node incident on the head (its codomain) of the second. This
implies that structural metadata expressed as an element, such as the one above,
is safer than expressed through labels, which is the method that the DSC and the
GSIM must resort to.

In addition, the ‘structural’ business rules that we need to answer the queries
that we saw above require the following idea:

(iv) ‘Structural’ business rules for metadata are equivalences of terms, which,
in the sets-and-functions interpretation of (i) become identities through the
homomorphism of (iii). An example of such an identity is the fact that,
under certain conditions, a two-stroke aggregation process can be reduced to
a one-stroke aggregation step (see [8], Property (6)).

The contribution of this article to the ideas of [8] is twofold. First we extend
the set of operators of [8] by a subtype operator and prove properties of it in
the context of the other operators. Second, we prove that these properties —
the ‘structural’ business rules — can be used to define a language for expressing
structural metadata. For technical reasons explained below, this is more involved
than it was for the set of operators of [8]. We explain these contributions briefly.

The idea of subtyping as an instrument of statistical information management,
is that object types and their subtypes form a grouping mechanism for variables.
A variable such as age of a person is recorded only once, viz. at the most generic
type to which it applies: the object type person. Subtyping, e.g., the notion that
any student is a person, allows access to that variable (e.g., age of a student) at
more specific levels (student). This is the usual concept of inheritance; one of the
foundations of the object-oriënted paradigm [15]. The open-headed generalization-
specialization arrow of the Unified Modeling Language (UML, see [15]) is the usual
way of recording subtyping; note that there is an occurrence of such an arrow in
Fig. 1. On the other hand, more specific types (student) can give rise to variables
(e.g., year of application) that do not apply at the generic level. Thus, subtyping
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is an ordering of types that induces an ordering of groups of variables: the more
generic the type, the less variables apply to it.

The notion of subtyping given in this article is more involved however than
the usual notion from the UML or other ontology languages. In a(n automated)
statistical process we usually need to know the justification for calling one type a
subtype of another, in order to decide whether or not an object is a member of
the subtype. Thus, we require that a subtype can only be defined — we prefer
to say: constructed — out of a given type, if some selection criterion is supplied.
This selection criterion can be a combination of a variable, applicable at the generic
type, and a value in the range of that variable. For instance, we require that the
construction of the object type student from person is supplied with a variable, say
is registered at a university?, and with the value yes applicable to that variable.

The logical consequences of defining a subtype operator in this way are rather
great, though. In [8], the universe of types could be defined independently of the
universe of elements, which is a requirement for the use of equational logic [16] for
defining the language as an initial algebra. With subtyping this is no longer the
case, as the construction of a subtype depends on an element (e.g., the variable is
registered at a university? in the example above). This means that, in a logical
sense, there is an extra effort needed to untie the following knot:

a The universe of elements depends on the universe of types, as the domain and
codomain of an element are both types;

b The universe of types depends on the universe of elements, by the subtype
operator.

The article is organized as follows: in Sections 4 and 5 we define our language
for structural metadata, from scratch, i.e., without support of any theory (such
as equational logic) other than universal algebra [10]. After the Preliminaries of
Section 1, in Sections 2 the subtype operator is introduced and its properties are
shown there and in Section 3. To stress that Sections 2 and 3 are dealing with
data, i.e., with sets and functions, we refer to the subtype operator there as subset
inclusion. In Section 6 the semantics of the language is sketched and in Section 7 we
give some examples that indicate the expressiveness of the language. We conclude
with Section 8.

1 Preliminaries

We recall some of the notions of [8] and introduce some new ones.
For a set p, let Fp be the set of finite subsets of p. For sets x and y, let x×y be

the binary Cartesian product of x and y, i.e., the set of all pairs 〈d, e〉 with d ∈ x
and e ∈ y. More generally, for any number n > 1, the Cartesian product of sets
xi, i ≤ n, is denoted x1 × · · · × xn and consists of all n-tuples with elements taken
from x1, . . . , xn, respectively.

We let 1 = {∗} be an arbitrary but fixed singleton set. We denote the empty
set {} by 0. Note that x1 × · · · × xn = 0 if at least one of the xi equals 0.



218 Tjalling Gelsema

A commutative monoid is a structure m = (m; +, 0) with m a set, + an asso-
ciative and commutative binary operation on m, and with 0 ∈ m an identity for
+ (not to be confused with the empty set). More details can be found in [8]; the
reader could consult [5] for full details. We refer to m simply as a monoid, since all
monoids we consider here are commutative. For monoids m and m′ = (m′; +′, 0′),
a function h : m→ m′ is a (monoid) homomorphism, if h(a+ b) = h(a) +′ h(b) for
all a, b ∈ m, and h(0) = 0′.

For a function v : p→ x, we call p the domain of v and x the codomain of v; the
set of functions with domain p and codomain x is denoted by xp. If v is considered
to be a variable, then we say that v is defined on (the population) p and that v
is defined for (the value set) x. All functions we consider in this article are total;
for v as before this means that it associates with every e in p exactly one d in x,
and then this d is denoted by v(e). If, conversely, every d in x is associated with
at most one e in p through v(e) = d, then v is an injection. The composition of
v : p→ x with w : q → p is the function v ◦w : q → x defined by v ◦w(d) = v(w(d))
for every d ∈ q. We will normally abbreviate v ◦ w by vw. The composition of
two injections is an injection. The left and right identities for composition are the
identity functions: if we let v as before, then v ◦ idp = v = idx ◦ v, where idp : p→ p
is defined by idp(e) = e for every e ∈ p, and similarly for idx.

The product (or: ‘column-wise’ combination) of n functions vi : p→ xi, 1 ≤ i ≤
n with n > 1, is defined in the following way: we let 〈v1, . . . , vn〉 : p→ x1×· · ·×xn
be the function u defined by u(e) = 〈v1(e), . . . , vn(e)〉 (i.e., an n-tuple) for all e ∈ p.
Note that the product is defined for functions with a common domain only. Given
xi as above, we let πni : x1 × · · · × xn → xi, called the i-th projection, be the
function that maps an n-tuple 〈d1, . . . , dn〉 to the element di in xi. Note that πni
is a family of functions: for every combination of n > 1 and i with 1 ≤ i ≤ n, and
every combination of sets x1, . . . , xn, we assume that the i-th projection πni applies
as defined.

We stress that this article excludes the ‘row-wise’ combination of functions, an
operation that was included in [8].

A function w : p→ q is inverse-finite if w−1(d) = {e ∈ p | w(e) = d} is finite for
every d ∈ q. The composition of two inverse-finite functions is inverse-finite and
every injection is inverse-finite. For an inverse-finite w with domain and codomain
as before, let δ(w) : q → Fp be the function that maps an element d ∈ q to the finite
set w−1(d). Note that δ(w) is not an injection in general. For a function v : p→ m
with m a monoid, we let γ(v) : Fp→ m be the function that maps a finite nonempty
set {e1, . . . , ek} to v(e1) + · · ·+ v(ek), and the empty set 0 to the monoid identity
0. The mappings δ(w) and γ(v) are called the dimensional structure induced by w
and the elementary class parameter induced by v, respectively. Their composition
γ(v)δ(w), called the aggregation of v by w, is denoted by α(v, w). Note that the
composition ‘factors through’ Fp.

Aggregation, as defined by α, captures most of the more common aggregation
operators, such as sums, maxima and minima, and (weighted) averages (see [8]).
We conjecture however that medians are not covered by α.

For every d ∈ x there is a unique function ~d : 1 → x with ~d(∗) = d, and
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conversely, every function 1→ x ‘picks out’ a unique element in x. There is thus a
one-to-one correspondence between x and the set of functions with domain 1 and
codomain x. It is therefore natural, but not so common, to identify an element d
in x with the function ~d. Note that, for a function v : x→ y, we can then equally
identify v(d) with v~d (since v(d) = (v~d)(∗)) and even with vd if we omit notational
differences. To sum up: in the sequel the phrase “d is an element of x” can mean
d ∈ x or it can mean d : 1→ x; it will always be clear from the context whichever
applies.

For each set x there is exactly one function with domain x and codomain 1 (viz.
every element in x has ∗ as its image) and we write 1x to denote this function.
Also, for each set x there is a unique function with domain 0 and codomain x and
we denote this function by 0x.

We adopt the following notational conventions: we use the letters p, q, r and
x, x1, . . . xi, . . . , xk, y, z to denote sets, we use a, b, c, d, e to denote elements from
these sets (potentially interpreted as functions with 1 as domain, as explained
above), we use u, v, w to denote arbitrary functions, m,m′ to denote monoids, and
h, g to denote monoid homomorphisms.

The reader is encouraged to interpret a set denoted by p, q or r as a set of
‘objects (or entities) of statistical interest’. This gives an informal meaning to
the notion of an ‘object type’, such as the object type person or the object type
household: informally an ‘object e is of type p’ if e ∈ p. Similarly, any of the
sets x, x1, . . . , xk, y, z and m,m′ should be interpreted as a set of ‘values’, i.e., as a
rough interpretation of a ‘value type’. However, within the context of this article,
we make no mathematical distinction between ‘values’ and ‘objects’, except perhaps
in the case of a ‘value type’ that supports aggregation: we require that such a type
is a monoid. (We also advocate that a classification system is a Boolean algebra
— see [7] — but that is outside the scope of this article.) Thus formally we do
not make any distinction between a set of ‘objects’ and a set of ‘values’. Hence
in particular, the general Cartesian product is also defined for sets of ‘objects’, or
for any combination of sets of ‘objects’ and sets of ‘values’, and the finite powerset
operator F also applies to sets of ‘values’.

Thus, when we write, e.g., v : p → x then v informally corresponds to the
typical notion of a variable: a mapping that takes an object e of object type p
to a value v(e) of value type x. However, any mathematical rule to distinguish a
variable from an arbitrary function is problematic: should we call a mapping of
the form p → x × y a variable or not? And what about a mapping of the form
p × x → y? Also: is p × q an object type when both p and q are designated as
object types? See [8] for a more conceptual discussion on these issues.

We proceed formally. Below we list the most important identities involving com-
position, product and aggregation, discovered and proven in [8]. We assume that h
is a monoid homomorphism in Equation 5, that w is inverse-finite in Equations 4,
5 and 6, and that w is an injection in Equation 7. We urge the reader to draw a
diagram of the situation for each of the identities, in which proper domains and
codomains of the functions involved are depicted as vertices, and the functions are
depicted as directed edges, in a way similar to Fig. 2, which sketches the situation
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Figure 2: Distributivity of composition over aggregation

of Equation 4.

Associativity of composition:
(vw)u = v(wu) (1)

Definition of projection:

π2
1〈v1, v2〉 = v1 and π2

2〈v1, v2〉 = v2 (2)

Distributivity of composition over product, right argument:

〈vu,wu〉 = 〈v, w〉 ◦ u (3)

Distributivity of composition over aggregation, right argument:

α(v, uw) = α(α(v, w), u) (4)

Distributivity of composition over aggregation, left argument :

α(hv,w) = h ◦ α(v, w) (5)

Distributivity of product over aggregation, left argument:

α(〈v1, v2〉, w) = 〈α(v1, w), α(v2, w)〉 (6)

Cancellation law for aggregation:

α(v, w)w = v (7)

We stress that Equations 2, 3 and 6 can be easily extended to arbitrary products.
We therefore also assume the correctness of

πni 〈v1, . . . , vn〉 = vi (2’)

and
〈v1u, . . . , vnu〉 = 〈v1, . . . , vn〉 ◦ u (3’)

and
α(〈v1, . . . , vn〉, w) = 〈α(v1, w), . . . , α(vn, w)〉, (6’)

respectively.
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2 Subset inclusion

In this section we extend the constructs of the previous section with the mechanisms
involved in forming a subset of a given set, given some conditions.

The principle motivation for extending the constructs of [8] with the formation
of a subset is given by the observation that the theory developed in [8] lacks the
means of relating a variable u : p→ x with the variable u′ : p′ → x that is obtained
from u by restricting its domain p to a subset p′ ⊆ p. According to [8], u and u′

can only be treated as separate variables, having separate and unrelated properties,
which in general is not a desirable feature. To see this, take as an example of u
the variable age class of a person, i.e., p is the set of persons and x is a set of age
classes, such as [16 − 25] and [26 − 40]. Then the variable age class of a female
person is a variable u′ : p′ → x, which is essentially just u only applied to the
subset p′ of women. It would be beneficiary if we could describe u′ in terms of
u, so that u′ could inherit some of the properties of u, such as its definition. The
first observation is thus that a subset induces variables that are derived from their
‘principle form’ in the sense that they are essentially the same, only restricted to
this subset. It is the objective of this section to describe the mechanisms behind
this derivation. As a prelude, note that the inclusion i : p′ → p from p′ into p given
by i(e) = e gives us the means to satisfactorily define u′ as u ◦ i.

An equally important observation is that the introduction of a subset p′ of p
gives rise to an asymmetry in the variables that are defined on p and p′ respectively,
in the sense that a variable u : p → x is ‘equally defined’ on p′ (viz. through the
inclusion i, as we saw above) but the reverse need not be true. Take for instance
the variable number of pregnancies carried to term defined on the set p′ of female
persons: this variable makes no sense for the ‘full’ set p of persons. Thus, subsets,
through inclusions, order the availability of variables: through an inclusion more,
and more specialized, variables become available.

It is in this sense that the inclusion i : p′ → p can be thought of as the
generalization-specialization arrow of the class diagrams of the Unified Modeling
Language (UML)[15]. There is however a crucial difference between our treatment
of subsets sketched above and the UML generalization-specialization arrow: we
only allow the creation of a subset p′ from p if it is ‘justified’ by means of variables
that are defined on p. To explain this, note that the set p′ of female persons in-
troduced above suggests that we can tell which entity of p is also an entity of p′,
viz. through the variable sex. Thus in the introduction of p′ we tacitly used as a
selection criterion a variable v : p→ {m, f}, which assigns a gender (either m or f)
to each member of p, and we selected those members e from p for which v(e) = f .
This suggests that we may write p′ = p(v,f) or, more suggestively, p′ = p(v=f).
It is in this way that we require that each subset is to be constructed from the
combination of a set, a variable and a constant, and we will generalize this to the
combination of a set and two variables in a minute. Since the inclusion from a
subset p′ into p is given once p′ is defined in this way, we may also write i = i(v,f)
(or i = i(v=f)).

By identifying an element d from a set x with the constant d : 1 → x, as ex-
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plained in the Preliminaries, we obtain the general situation for subset construction
sketched in Fig. 3. Thus for a variable v : p → x and an element d : 1 → x, we

1

d

��
s(v, d)

i(v,d) // p
v
// x

Figure 3: The subset induced by v and d

define s(v, d) as the set {e ∈ p | v(e) = d(∗)}. We also let i(v, d) be the function
i : s(v, d)→ p defined by i(e) = e for all e ∈ s(v, d).

For technical reasons mainly, we immediately want to make the situation sket-
ched in Fig. 3 even more general. First we observe that any constant d : 1 → x
can be turned into a constant mapping d′ : p→ x (by which we mean that d′ maps
every element of p to the same element d ∈ x) viz. by composing it with the unique
map 1p : p → 1 defined in the Preliminaries. Thus, if we let d′ = d ◦ 1p then d′ is
essentially the same as d: both always yield the element d ∈ x. Note however that
now both d′ and v are variables defined on p. Thus the subset s(v, d) defined above
is identical to the set σ(v, d′) = {e ∈ p | v(e) = d′(e)}, since d′(e) = d(1p(e)) = d(∗).
The introduction of σ however allows a more general construction in which both
arguments are arbitrary variables v and w defined on p and for x, as sketched in
Fig. 4. The case w = d′ then yields the special case of Fig 3. Thus, in the more

σ(v, w)
ι(v,w) // p

v //
w

// x

Figure 4: The subset induced by v and w

general situation sketched in Fig. 4, we let the subset induced by v and w, denoted
by σ(v, w), be defined as the set {e ∈ p | v(e) = w(e)} and, as before, we let the
inclusion induced by v and w, denoted by ι(v, w), be the function ι : σ(v, w) → p
defined by ι(e) = e for all e ∈ σ(v, w). Clearly, ι(v, w) is an injection.

The definitions of σ and ι are inspired by category theory [3, 18, 13] and the
notion of an equalizer in particular, which in a more abstract sense characterizes the
subset and the inclusion induced by two functions. We give the definition involved,
since it can help prove properties of σ and ι that we state in the next section, but
we stress that understanding it is not essential for understanding the development
of the theory in this article. Following the terminology of category theory, given
objects p and x, and arrows v, w : p → x, an equalizer of v and w is an object σ
together with an arrow ι : σ → p for which it holds that vι = wι, and such that
for every object σ′ and arrow ι′ : σ′ → p with vι′ = wι′, there is a unique arrow
µ : σ′ → σ such that ι′ = ιµ.
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σ
ι // p

v //
w

// x

σ′

µ

OO

ι′

;;

Figure 5: An equalizer of v and w

It can be shown, in the category of sets and functions, that σ(v, w) and ι(v, w)
form an equalizer. First, it is easy to see that

vι(v, w) = wι(v, w), (8)

by taking an arbitrary element e from σ(v, w). We remind the reader that vι(v, w)
is shorthand for v◦ι(v, w) and similarly for wι(v, w). Second, assume that vi′ = wi′

for a function i′ : s′ → p, i.e., for every d ∈ s′ we have v(i′(d)) = w(i′(d)). This
means that i′(d) ∈ σ(v, w) for every d ∈ s′. Hence the mapping u : s′ → σ(v, w)
with u(d) = i′(d) for every d ∈ s′ is well-defined and satisfies i′ = ι(v, w) ◦ u. Since
ι(v, w) is an inclusion, u is the only such mapping.

Intuitively, a second motivation for introducing the more general subset con-
struction of Fig. 4 by means of an equalizer is that there are situations for which
comparing two variables, instead of one variable and one constant, could be useful.
Take for instance two variables v and w that both measure the income of a person,
but through different means, e.g., through a survey and a register say. Then to
investigate the set of persons for which both variables yield the same value requires
the equalizer of v and w.

In some situations, it could even be more useful to take the subset of p for
which both variables yield a different result, which upon first glance is a subset
construction that cannot be realized through σ and ι, or through s and i. If however
we assume the set b = {true, false} of the Boolean values and an inequality function
6= : x × x → b, then this subset (and the inclusion similarly) can be expressed as
s(6=〈v, w〉, true) where ‘true’ is a constant 1 → b and 6=〈v, w〉 is the application of
the inequality function to the product of v and w. But then of course, assuming
equality = : x× x→ b, a similar construction shows that σ and ι can be expressed
in terms of the subset construction of Fig. 3. Hence, with some assumptions,
the combination of s and i is equally expressive as σ and ι. Since we made less
assumptions when viewing a subset as an equalizer (cf. Fig. 4) we take σ and ι as
atomic and consider s and i as useful derivations.

One obvious difference is that for σ and ι the order of their arguments is of no
importance, while for s and i it is required that their second argument is a constant.
Thus we have

σ(v, w) = σ(w, v) (9)

and

ι(v, w) = ι(w, v). (10)
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3 More properties of subset inclusion

In this section we continue to investigate properties of the construction of subsets
and subset inclusions, especially in the context of the other operators mentioned in
the Preliminaries, and explain their relevance for statistical practice.

We first study a number of situations in which expressions containing σ and ι
can be simplified. Let p, x, v and w be as before. Consider an injection u : x→ y.
Then we have

σ(uv, uw) = σ(v, w) (11)

and

ι(uv, uw) = ι(v, w), (12)

since u(v(e)) = u(w(e)) if and only if v(e) = w(e), for all e ∈ p. Next, consider
the situation in which a subset of σ(v, w) is induced by v and w, i.e., using the
same condition under which σ(v, w) is formed. This is the situation in which, e.g.,
all females from a set of females are selected: this set should of course remain
unchanged. More precisely, we have the situation sketched in Fig. 6. It can be

σ(vι(v, w), wι(v, w))
ι(vι(v,w),wι(v,w)) // σ(v, w)

ι(v,w) // p
v //
w

// x

Figure 6: The subset of a subset, both ‘induced’ by v and w

shown that

σ(vι(v, w), wι(v, w)) = σ(v, w) (13)

and

ι(vι(v, w), wι(v, w)) = idσ(v,w), (14)

as expected. The conditions for the third simplification are sketched in Fig. 7.
Note that d and e are constants, as defined in the Preliminaries: they are functions

p
v //

1p ##

x

1

d

;;

e

;;

Figure 7: Subsets defined by constants d and e

d, e : 1 → x that are given by members d and e of x. Now suppose that d 6= e.
Then we have

σ(vι(v, d1p), e1pι(v, d1p)) = 0, (15)

and

ι(vι(v, d1p), e1pι(v, d1p)) = 0σ(v,d1p), (16)
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indicating that, e.g., selecting all males from a female population results in the
empty set. Recall that the right hand side of Equation 16 is the unique map with
the empty set as domain and σ(v, d1p) as codomain. Properties 15 and 16 are
depicted in Fig. 8. We leave their proofs to the reader. Finally, the only subset of

σ(vι(v, d1p), e1pι(v, d1p))
ι(vι(v,d1p),e1pι(v,d1p))// σ(v, d1p)

ι(v,d1p) // p

Figure 8: The subset of a subset, induced by different constants

the empty set is the empty set itself, so we have

σ(0x, 0x) = 0, (17’)

where 0x is the unique mapping 0→ x, and

ι(0x, 0x) = 00, (18’)

with 00 the unique mapping 0→ 0. More generally, if v is a mapping p→ q, then

σ(v, v) = p, (17)

and

ι(v, v) = id(p). (18)

Next consider the situation sketched in Fig. 9, where two subsets are formed
using different pairs of variables as conditions. Take for example p as the set of
persons, σ(v1, w1) the subset of women, and σ(v2, w2) the subset of elderly people
(assuming, e.g., suitable conditions on the variables sex and age, respectively). The
question is in what way these subsets are related. Intuitively, the two subsets are

σ(v1, w1)
ι(v1,w1)

%%

x1

p

v1

;;

w1

;;

v2

##
w2

##
σ(v2, w2)

ι(v2,w2)

99

x2

Figure 9: Two subsets induced by different pairs of variables

related through a third: the subset of elderly women. It should be clear that there
are two ways of forming this subset: either by a restriction involving age on the
subset of woman, or by a restriction involving sex on the subset of elderly, the
results of which should be equal intuitively. Formally this situation is depicted in
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σ(v2ι(v1, w1), w2ι(v1, w1))
ι(v2ι(v1,w1),w2ι(v1,w1)) // σ(v1, w1)

ι(v1,w1)

%%
p

σ(v1ι(v2, w2), w1ι(v2, w2))
ι(v1ι(v2,w2),w1ι(v2,w2))

// σ(v2, w2)

ι(v2,w2)

99

Figure 10: Two more subsets induced by different pairs of variables

Fig. 10. As expected the top-left subset equals the bottom-left, i.e., we have

σ(v2ι(v1, w1), w2ι(v1, w1)) = σ(v1ι(v2, w2), w1ι(v2, w2)). (19)

To see this, note that the left-hand side reduces to

{e ∈ σ(v1, w1) | v2ι(v1, w1)(e) = w2ι(v1, w1)(e)},

which equals
{e ∈ p | v1(e) = w1(e) and v2(e) = w2(e)},

since e ∈ σ(v1, w1) if and only if e ∈ p and v1(e) = w1(e), and since ι(v1, w1)(e) = e
for all e ∈ σ(v1, w1). A similar reduction applies to the right-hand side of Equa-
tion 19. It should be equally clear that we then also have

ι(v1, w1)ι(v2ι(v1, w1), w2ι(v1, w1)) = ι(v2, w2)ι(v1ι(v2, w2), w1ι(v2, w2)), (20)

following the paths of the arrows at the top and at the bottom of Fig. 10, respec-
tively. This can be shown formally using the uniqueness condition of the equalizer
construction of Fig. 5, the proof of which we leave to the reader.

The ‘commutativity’ laws specified in Equations 19 and 20 call for a change of
notation: we let σ(v1∼w1) be an alternate notation for σ(v1, w1) (and similarly
for ι(v1∼v2)), we let σ(v1∼w1, v2∼w2) be the left-hand side of Equation 19, and
we let ι(v1∼w1, v2∼w2) be the left-hand side of Equation 20. This means that
Equations 19 and 20 reduce to

σ(v1∼w1, v2∼w2) = σ(v2∼w2, v1∼w1) (21)

and
ι(v1∼w1, v2∼w2) = ι(v2∼w2, v1∼w1), (22)

respectively.
The subsets mentioned in Equation 21 as well as the inclusions mentioned in

Equation 22 can also be formed in ‘one stroke’, viz. through the product operator.
More precisely, in the situation of Fig. 9, we have that

σ(〈v1, v2〉∼〈w1, w2〉) = σ(v1∼w1, v2∼w2), (23)
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and

ι(〈v1, v2〉∼〈w1, w2〉) = ι(v1∼w1, v2∼w2), (24)

the proof of which we leave to the reader.
The notation introduced just before Equation 21 can be extended to any number

of (pairs of) arguments. We give the details by an inductive definition. Assume
vj , wj : p→ xj with 1 ≤ j ≤ m. Then we let σ(v1∼w1) be σ(v1, w1) and ι(v1∼w1)
be ι(v1, w1) as before, and for 1 < j ≤ m we let

σ(v1∼w1, . . . , vm∼wm) = σ(vmι
m−1
1 , wmι

m−1
1 ), (25)

and

ι(v1∼w1, . . . , vm∼wm) = ιm−11 ι(vkι
m−1
1 , wkι

m−1
1 ), (26)

where ιm−11 abbreviates ι(v1∼w1, . . . , vm−1∼wm−1). Without proof, we claim that
Equations 21, 22, 23, and 24 can be extended to any number of arguments. In
particular, as far as Equations 21 and 22 are concerned, this means that

σ(v1∼w1, . . . , vm∼wm) = σ(vφ(1)∼wφ(1), . . . , vφ(m)∼wφ(m)), (27)

and

ι(v1∼w1, . . . , vm∼wm) = ι(vφ(1)∼wφ(1), . . . , vφ(m)∼wφ(m)), (28)

for any permutation φ of {1, . . . ,m}.
We close this section by the observation that in some circumstances forming

a subset in the context of aggregation can be simplified. Consider the situation
sketched in Fig. 11, where we assume that x is a monoid and w is inverse-finite.
To explain this situation, let p be a set of persons, let q be a set of households,

σ(u∼z)
ι(u∼z) // q

α(v,w)

��

u //
z

// y

σ(uw∼zw)
ι(uw∼zw)

// p

w

99

v
// x

Figure 11: Subsets in the context of aggregation I

let w associate a person in p to the household in q he or she is a member of,
and let v be the variable income of a person. Then, assuming + is the monoid
operation of x, α(v, w) is the income of a household, summing over the incomes
of each member in a household. Now let ι(u∼z) select the two-person households
in q, where we assume that y is a set of household composition classes and u and
z are suitable variables (or a suitable combination of a constant and a variable,
as explained earlier). This means that ι(uw∼zw) selects all the members of two-
person households. The question is: how do α(v, w) and the income of a two-person
household formed by α(vι(uw∼zw), wι(uw∼zw)) relate? Intuitively, they should
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be equal, as far as two-person households are concerned. We show that indeed we
have

α(vι(uw∼zw), wι(uw∼zw))ι(u∼z) = α(v, w)ι(u∼z). (29)

Let d ∈ σ(u∼z), i.e., we have u(d) = z(d). We show that α(v, w) applied to d
equals α(vι(uw∼zw), wι(uw∼zw)) applied to d. Since these expand to∑

d=w(e)

v(e) and
∑

d=wι(uw∼zw)(e)

vι(uw∼zw)(e),

respectively, it suffices to show that e ∈ σ(uw∼zw) if and only if d = w(e), since
we then have ι(uw∼zw)(e) = e as required. To show e ∈ σ(uw∼zw) whenever
d = w(e) is easy, since d = w(e) implies that u(w(e)) = z(w(e)). The other
implication is immediate and left to the reader.

It might be tempting to simplify Equation 29 by instead trying to prove the
following equation

δ(wι(uw∼zw))ι(u∼z) = δ(w)ι(u∼z).

This fails however since the codomains of both sides differ.
Finally, a similar but simpler case of forming subsets in the context of aggre-

gation is sketched below (and we assume similar restrictions on x and w). In this

q

α(v,w)

��

1
d

;;

σ(w∼d1)
ι(w∼d1)

// p
v

//
1

<<
w

<<

x

Figure 12: Subsets in the context of aggregation II

case we have

α(v, w) ◦ d = α(vι(w∼d1), wι(w∼d1)) ◦ d. (30)

The proof is left to the reader, but we provide some intuition of the situation above:
let p be a set of persons, w be the gender of a person (q is the set of the two sexes)
and let v be an arbitrary variable, income say. Then the total income of men can
be computed by first computing the totals for both men and woman followed by
selecting the total for men (the left hand side of Equation 30), or men are selected
first from the total popuation p and then their total is computed (the right hand side
of Equation 30). Note that while the left hand side of Equation 30 is more concise
and easier to understand, its right hand side is probably more computationally
efficient.
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4 Types and elements

We begin this section by pointing out that there is a crucial difference between
the operators recalled in the Preliminaries and the subset operator σ introduced in
Section 2. We note that all operators in the Preliminaries that produce a set, viz.
the set Fp of finite subsets of p and the general Cartesian product x1 × · · · × xn of
sets xi, depend only on sets in their arguments: p and the xi, respectively. Also,
most operators that produce a function, viz. the composition v ◦ w, the general
product 〈v1, . . . , vn〉, and the constructs δ(w) and γ(v) for defining aggregation,
depend only on functions in their arguments — the exceptions are the general
projections πni . Nevertheless, in short we have that sets depend on sets only, and
functions depend on functions mostly.

The operator σ(v, w) that produces a set in contrast relies on functions v and
w in its arguments. This means that if we identify a set with a ‘type’, as we will do
in this section, then σ(v, w) is a so-called dependent type [21, 19]: one that needs
additional values, or ‘elements’ as we will call them, in its construction. In the case
of σ(v, w), these values v and w are both ‘elements’ of the functional ‘type’ xp, as
expressed by the declaration v, w : p→ x.

In any case, the system of operators that was considered in [8] made life easy:
it allowed for a language that could be defined within the framework of equational
logic [16] and for which semantics was immediate (“zap”, according to [9]). It made
use of the fact that ‘types’ (or rather: sorts, as they are unfortunately called in
the context of algebras) could be constructed independently of values or ‘elements’.
With the introduction of σ, the resulting system of operators does not have that
advantage anymore.

Though there are extensions of initial algebra semantics that allow dependent
types [14], how we choose to proceed is to introduce ‘types’ and ‘elements’ from
scratch, i.e., without the use of some underlying theory other than universal al-
gebra [10]. This is in part because our atomic formulae also deal with modalities
(introduced in Definition 3 below) that are not treated by such extensions. Second,
and more importantly, we think that the dependency between a typing relation and
a congruence, as formulated in [14] Definition 3.5, is insufficient for our purposes
and requires the inductive approach taken in this section, motivated by Example 1
below and embodied by Definition 6.

In this section we will give a number of elementary definitions that are used in
the next section where they will be put together to form our language. First, both
types and elements are certain terms, i.e., sequences of symbols formed through
syntactic rules, the universes of which we will define below through mutual re-
cursion, i.e., simultaneously. Then we will define type assignment, i.e., a relation
between an element and its type(s). We note that types assigned to elements re-
strict the use of operators that apply to elements, as for instance the product of
two elements requires that they have the same type as a domain. In this way we
will limit the universes of types and elements to so-called well-formed types and
elements. Similar restrictions will give us so-called well-defined types and elements:
these will make sure that, for instance, the application of δ is limited to inverse-
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finite elements only. Finally, we will define the concept of a congruence relation on
types and elements and we show how the typing relation can be extended with it in
a natural way: if an element is of a type t, then it should be of any type congruent
with t. We note that, in turn, this gives rise to an extension of the universes of
well-formed and well-defined types and elements.

We start our development with the simultaneous definition of types and ele-
ments, informally at first.

We assume a countable set A of basic type symbols. We also assume a countable
set B of basic element symbols disjoint with A. The sets T (A,B) and E(A,B) of
type terms (or just: types) and element terms (or just: elements) respectively, are
given informally by the following mutually recursive grammars: a term p is a type
if it is produced by the following grammar

p ::= a | 0 | 1 | [p→ q] | p1 × · · · × pn |
F(p) | σ(v1∼w1, . . . , vm∼wm)

with a ∈ A, p, pi, q ∈ T (A,B), vj ,wj ∈ E(A,B), n > 1 and m > 0, with i ≤ n and
j ≤ m. A term v is an element if it is produced by

v ::= b | 0(p) | 1(p) | id(p) | v ◦ w | 〈u1, . . . , un〉 |
πi(p1, . . . , pn) | γ(v) | δ(w) | ι(v1∼w1, . . . , vm∼wm)

with b ∈ B, p, pi ∈ T (A,B), v,w, vj ,wj , ui ∈ E(A,B), n > 1 and m > 0, with i ≤ n
and j ≤ m.

When A and B are clear from the context, we abbreviate T (A,B) by T and
E(A,B) by E.

In addition, we let the set T (A) of elementary types be as follows: a term p is
an elementary type if it is produced by

p ::= a | 1 | [p→ q] | p1 × · · · × pn | F(p)

with a ∈ A and p, q, pi ∈ T (A). Note that 0 is not an elementary type and that an
elementary type does not depend on any elements.

The types 0 and 1 are called zero and one, respectively. The type [p → q] is
the function type induced by p and q. The type p1 × · · · × pn is the product type
induced by pi. We stress that the product type is a family of constructs (one for
every n > 1) and that the ellipsis (· · · ) is not part of the type, but rather part of
the metalanguage that is used to define the grammar. Thus p × q and p × q × r
are types (provided p, q and r are types) and p × · · · × q is not a type. The
type F(p) is the finite power type induced by p. For elements vj ,wj ∈ E, the type
σ(v1∼w1, . . . , vm∼wm) is the subtype induced by vj and wj . Again, this is a family
of constructs (one for each m > 0) and the ellipsis is not part of the type.

Note that 0(p) and 1(p) define distinct elements for every p ∈ T ; each is called
zero and one, respectively. When p is clear from the context (and when there
is no danger of confusing them with their type counterparts) 0(p) is sometimes
abbreviated by 0 and 1(p) is sometimes abbreviated by 1. The element id(p) is



The Logic of Aggregated Data 231

the identity on p and we have such an element for every type p. We sometimes
abbreviate id(p) by id. The names of the rest of the elements follow the names
of their functional counterparts defined in Sections 1 and 2. So the element v ◦ w
is called the composition of v and w and is sometimes abbreviated by vw. The
ellipsis in 〈u1, . . . , un〉 is not part of the element, but part of the metalanguage. So
〈u,w〉 and 〈u,w, v〉 are elements (provided u, w and v are elements) and 〈u, . . . ,w〉
is not. Also, for every n > 1 with 1 ≤ i ≤ n and every pi ∈ T , each πi(p1, . . . , pn)
is a distinct element. When n and pi are clear from the context, we abbreviate
projection by πi. We use α(v,w) as an alternative notation for γ(v) ◦ δ(w). We
note that ι(v1∼w1, . . . , vm∼wm) is a family of constructs, one for each m > 0.

Formally now:

Definition 1. Given a countable set A of basic type symbols and a countable set
B of basic element symbols disjoint with A, the sets T (A,B) and E(A,B) of types
and elements respectively are defined as

T (A,B) =
⋃
k≥0

Tk and E(A,B) =
⋃
k≥0

Ek,

where Tk and Ek are defined recursively as

T0 = A ∪ {0, 1},
E0 = B, and

Tk = Tk−1 ∪ {[p→ q], p1 × · · · × pn,

F(p), σ(v1∼w1, . . . , vm∼wm) |
p, q, pi ∈ Tk−1, vj ,wj ∈ Ek−1, n > 1 and m > 0,

with i ≤ n and j ≤ m}, and

Ek = Ek−1 ∪ {0(p), 1(p), id(p), v ◦ w, 〈u1, . . . , un〉,
πi(p1, . . . , pn), γ(v), δ(w), ι(v1∼w1, . . . , vm∼wm) |
p, pi ∈ Tk−1, v,w, vj ,wj , ui ∈ Ek−1, n > 1 and m > 0,

with i ≤ n and j ≤ m},

for all k > 0. We let TE(A,B) be the set of all types and elements, i.e., TE(A,B) =
T (A,B) ∪ E(A,B).

The set T (A) of elementary types is defined as

T (A) =
⋃
k≥0

T ′k,

with T ′k defined recursively as

T ′0 = A ∪ {1}, and

T ′k = T ′k−1 ∪ {[p→ q], p1 × · · · × pn,

F(p) | p, q, pi ∈ T ′k−1 and n > 1}

for all k > 0.
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Note that Definition 1 makes sense since Tk−1 ⊆ Tk, Ek−1 ⊆ Ek and T ′k−1 ⊆ T ′k
for all k > 0. Note also that T (A) ⊆ T (A,B).

Given a term (an element or a type) y ∈ TE(A,B), the notions of a subterm of
y and a proper subterm of y (i.e., a subterm of y not equal to y) are defined in the
usual way, i.e., by induction on the structure of y according to Definition 1 above.
We denote by y′ ≤ y that y′ is a subterm of y, and by y′ < y that y′ is a proper
subterm of y. Note that a type can be a subterm of an element and vice versa, due
to, e.g., the projection construct and the subtype construct, respectively.

We stress that the elements in Definition 1 are untyped. This means that we do
not yet have a relation between an element and a type that prevents constructing
elements that make no sense. In other words, Definition 1 introduces elements
and types that are intuitively incorrect. An example is the element 0(1) ◦ 1(1):
intuitively, its subterms 0(1) and 1(1) represent the (unique) functions of type
[0→ 1] and [1→ 1] respectively. However, the domain 0 of the first is incompatible
with the codomain 1 of the second, which is required for a correct composition. We
will correct this in a minute, when we introduce well-formed types and elements.
Also, we note that Definition 1 introduces function types that represent the empty
set, such as the type [p→ 0]: if p represents a nonempty set, then no element should
have type [p→ 0]. More generally, since σ(v∼w) might yield the empty set, we have
to be careful about assigning an element to a type of the form [p→ σ(v∼w)]. The
elementary types are ‘safe’ in this respect: if no basic type represents the empty
set, then no elementary type represents the empty set.

The general concept of a typing relation that assigns one or more types to an
element is given next. Elements that receive a type in this way are called well-
formed, and types that are built from well-formed elements are well-formed. For
reasons explained earlier in this section, we base a typing relation on an equiva-
lence relation, such that elements are assigned to equivalent types, and equivalent
elements receive identical types. Finally, we assume that basic element symbols are
assigned a ‘safe’ type, through a given mapping.

Definition 2. Let A and B be a set of basic type symbols and a set of basic element
symbols respectively. Let t : B → T (A,B) be a mapping such that t(b) = [p → q]
with q ∈ T (A). Let ≡ be an equivalence relation on types and elements; more
specifically, let ≡ ⊆ T (A,B)2 ∪E(A,B)2. The typing relation induced by t and ≡,
denoted by ::t,≡ ⊆ E(A,B)× T (A,B), is defined as the smallest relation such that
the following conditions hold:

(i) if t(b) = s and s is well-formed, then b :: s,

(ii) if p is well-formed, then 0(p) :: [0→ p], 1(p) :: [p→ 1] and id(p) :: [p→ p],

(iii) if v :: [q→ r] and w :: [p→ q], then v ◦ w :: [p→ r],

(iv) if ui :: [p→ pi], 1 ≤ i ≤ n, then 〈u1, . . . , un〉 :: [p→ (p1 × · · · × pn)],

(v) if pi is well-formed for every i with 1 ≤ i ≤ n,
then πi(p1, . . . , pn) :: [(p1 × · · · × pn)→ pi],

(vi) if v :: [p→ q], then γ(v) :: [F(p)→ q],
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(vii) if w :: [p→ r], then δ(w) :: [r→ F(p)],

(viii) if vj ,wj :: [p→ qj ], 1 ≤ j ≤ m,
then ι(v1∼w1, . . . , vm∼wm) :: [σ(v1∼w1, . . . , vm∼wm)→ p],

(ix) if v :: s, s ≡ s′ and s′ is well-formed, then v :: s′, and

(x) if v :: s, w ≡ v and w is well-formed, then w :: s,

where in (i), b :: s is a shorthand notation for (b, s) ∈ ::t,≡ and similarly for (ii) —
(x), and where the set of well-formed types is the smallest set such that

(xi) every a ∈ A is well-formed, and 0 and 1 are well-formed,

(xii) if p and q are well-formed, then [p→ q] is well-formed,

(xiii) if pi is well-formed for every i, 1 ≤ i ≤ n, then p1 × · · · × pn is well-formed,

(xiv) if p is well-formed, then F(p) is well-formed, and

(xv) if vj ,wj :: [p→ qj ], 1 ≤ j ≤ m, then σ(v1∼w1, . . . , vm∼wm) is well-formed.

An element v is well-formed if v :: s for some s. The sets of well-formed types and
well-formed elements are denoted by T (A,B, t,≡) and E(A,B, t,≡), respectively.
We let TE(A,B, t,≡) = T (A,B, t,≡) ∪ E(A,B, t,≡).

It follows from Definition 2 that if v :: s, then s is well-formed. Moreover, if
[p → q] ≡ s implies that s = [p′ → q′], then we have that v :: s implies that
s = [p→ q] for some well-formed types p and q. Note that all elementary types are
well-formed, i.e., we have T (A) ⊆ T (A,B, t,≡). Also note that if ≡1 ⊆ ≡2, then
T (A,B, t,≡1) ⊆ T (A,B, t,≡2) and E(A,B, t,≡1) ⊆ E(A,B, t,≡2). Moreover, we
have the following properties, which we will need in the next section.

Proposition 1. For k ≥ 0, let ≡k be equivalence relations with ≡k ⊆ ≡k+1. Then

T (A,B, t,
⋃
k≥0

≡k) =
⋃
k≥0

T (A,B, t,≡k)

and
E(A,B, t,

⋃
k≥0

≡k) =
⋃
k≥0

E(A,B, t,≡k).

Proof. We only show the second; the first is analogous. To see that⋃
k≥0

E(A,B, t,≡k) ⊆ E(A,B, t,
⋃
k≥0

≡k)

let v ∈
⋃
k≥0E(A,B, t,≡k). Then v ∈ E(A,B, t,≡k) for some k ≥ 0. Hence

v ∈ E(A,B, t,
⋃
k≥0≡k) since ≡k ⊆

⋃
k≥0≡k. To show the reverse, let ≡ denote⋃

k≥0≡k. Let v ∈ E(A,B, t,≡), i.e., let v :: s. To derive v :: s from the cases (i) —
(x), it is clear that (ix) and (x) cannot be used an infinite number of times, i.e., there
is a finite list of equations wi ≡ vi and a finite list of equations sj ≡ s′j from which we
can conclude that v :: s. But then, since ≡k ⊆ ≡k+1, there is a k such that wi ≡k vi
and sj ≡k s′j . That means that v ∈ E(A,B, t,≡k) ⊆

⋃
k≥0E(A,B, t,≡k).
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We stress that Definition 2 can be rewritten into the more constructive form of
Definition 1 by indexing both the sets of well-formed types Tk as well as the typing
relation; the latter by letting :: =

⋃
k≥0 ::k, ::0 = ∅, and ::k be defined cf. conditions

(i) — (x). We think, however, that Definition 2 is more readable as it is.
The intuitive meaning of a well-formed term is that all of the operators it

consists of are correctly applied with respect to the typing relation, in particular
composition, product and the formation of subtypes and inclusions. Note that every
type a ∈ A is well-formed, that 0 and 1 are well-formed, that an element b ∈ B
is well-formed if b :: [p → q] with well-formed p and elementary type q, and that
0(p), 1(p) and πi(p1, . . . , pn) are well-formed whenever p and pi are well-formed,
respectively.

Finally, note that Definition 2 excludes type assignments such as u :: [σ(u∼u)→
p], at least if [σ(u∼u) → p] is the only type that is associated with u. In general,
type assignments such as 1(0) :: [σ(1(0)∼1(0))→ 1] might be allowed though, viz.
through condition (ix), provided that [0 → 1] ≡ [σ(1(0)∼1(0)) → 1], since we
already have 1(0) :: [0→ 1] by condition (ii).

To understand the dynamics of Definition 2, in particular with respect to the
given equivalence relation, consider the following example.

Example 1. Let A = {a, a′} and let B = {b}. Let t(b) = [a → a′]. Consider the
lists of types and elements below.

σ(b∼b) ι(b∼b)
σ(b∼bι(b∼b)) ι(b∼bι(b∼b))
σ(b∼bι(b∼bι(b∼b))) ι(b∼bι(b∼bι(b∼b)))
· · · · · ·

Note that every type is a member of T (A,B) and every element is a member of
E(A,B). Also note that every element in the right column is a subterm of the type
one row lower in the left column. To help the intuition of the reader, part of the
situation is depicted below.

σ(b∼b)
ι(b∼b)

// a
b
// a′

Now let ≡I be the identity on TE(A,B). According to conditions (xi) and (xii)
of Definition 2 respectively, a, a′ and [a → a′] are well-formed, and so b :: [a → a′]
by condition (i). Hence by condition (xv), σ(b∼b) is well-formed, and ι(b∼b) ::
[σ(b∼b) → a] by condition (viii). Thus we have that bι(b∼b) :: [σ(b∼b) → a′]
by condition (iii). However, the prerequisites of (xv) and (viii) respectively do not
apply to the type σ(b∼bι(b∼b)) and the element ι(b∼bι(b∼b)) in the second row
of the table above: note that it requires that the types [a→ a′] and [σ(b∼b)→ a′]
be equivalent. However, conditions (ix) and (x) are impotent in this respect. This
means that only the first row above constitutes of a well-formed type (i.e., a member
of T (A,B, t,≡I)) and a well-formed element (a member of E(A,B, t,≡I)). Note
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that if we let ≡ = ≡I ∪ {(σ(b∼b), a), (a,σ(b∼b))}, then the types and elements in
both the first and the second row are well-formed with respect to T (A,B, t,≡) and
E(A,B, t,≡) respectively, but the type and element in the third row are not.

We need to further restrict well-formed elements and types, in particular be-
cause the dimensional structure δ(w) induced by w is meaningful only if w can be
interpreted as a inverse-finite function (see [8], or the Preliminaries). Also, for a
class parameter γ(v), both γ(v) and v should be interpreted as functions that have
a monoid as a codomain (again, see [8], or the Preliminaries). Well-formed elements
and types thus formed will be called well-defined. We give the definitions.

Definition 3. Let A and B be a set of basic type symbols and a set of basic ele-
ment symbols respectively. Let t and ≡ be a mapping and an equivalence relation
respectively, cf. Definition 2. Let M be the set {mon, invfin, inj, hom} of the modal-
ities named monoid, inverse-finite, injection and homomorphism, respectively. Let
u ⊆ (A×{mon})∪(B×{invfin, inj, hom}) be a relation. The modality denomination
induced by u, denoted by .u ⊆ TE(A,B) ×M , is defined as the smallest relation
such that the following conditions hold:

(i) if (a,mon) ∈ u, a ∈ A, then a . mon,

(ii) if (b,m) ∈ u, b ∈ B, then b . m,

(iii) 0(p) . inj and id(p) . inj,

(iv) if v . inj, then v . invfin,

(v) if pi . mon, 1 ≤ i ≤ n, then p1 × · · · × pn . mon,

(vi) if v,w . m, then v ◦ w . m,

(vii) if ui . m, 1 ≤ i ≤ n, then 〈u1, . . . , un〉 . m,

(viii) ι(v1∼w1, . . . , vm∼wm) . inj,

(ix) if u :: [1→ p] then u . inj, and

(x) if y . m and y ≡ y′, then y′ . m,

where in (i), a . mon is shorthand for (a,mon) ∈ .t,≡,u and similarly for (ii) —
(x); where in (ii), (vi) and (vii), m ∈ {invfin, inj, hom}; and where in (x), m ∈
{mon, invfin, inj, hom}.

A type p if well-defined, if p is well-formed and each proper subterm of p is
well-defined. An element u is well-defined, if u is well-formed, each proper subterm
of u is well-defined, and the following conditions hold:

(xi) if u . hom and u :: [p→ q], then p . mon and q . mon,

(xii) if u = δ(w), then w . invfin, and

(xiii) if u = γ(v) and v :: [p→ q], then q . mon.

The set of well-defined types is denoted T (A,B, t,≡, u) and the set of well-defined
elements is denoted E(A,B, t,≡, u); their union is TE(A,B, t,≡, u).
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Definition 3 syntactically embodies some knowledge we have about monoids,
inverse-finite functions, injections and homomorphisms, respectively. For instance,
condition (iv) expresses that every injection is inverse-finite, and condition (v)
expresses that monoids are closed under products of types. Conditions (vi) and
(vii) express that injections, inverse-finite functions and homomorphisms are closed
under compositions and products, respectively.

Note that if γ(v) is well-defined, then we can, e.g., conclude that γ(v) :: [F(p)→
q] with q . mon, as desired.

It is possible to extend the modalities of Definition 3 with notions that may
have other significance to statistics, or to statistical metadata in particular. For
instance, we could introduce modalities corresponding to the notion of an object
type [8] and an object type relation [8], and add the condition to Definition 3 that
an object type relation v (i.e., any element v that is denominated as an object type
relation) with type [p → q] is well-defined if both p and q are denominated as an
object type. Also, given a meaningful denomination corresponding to the notion
of a statistical variable, we could add the condition to Definition 3 that a type
σ(v∼w) is an object type if v and w are variables. Though these additional notions
could prove useful (and we have introduced the mechanisms for formalizing them
in Definition 3) we stress that they play no significant role in the theory developed
in this article. That changes if we added the notion of a classification system as a
type modality, since we then would have to add the rules of a Boolean algebra (see
[7, 8]) to our notion of a congruence of elements and types (to be defined later in
the article).

Also, it may seem odd that we rather superficially introduced the notion of a
monoid, since we left out the corresponding monoid operation and unit. Again,
these could be added to our grammar of elements, and then we could add the
monoid laws to our notion of congruence (defined later). However, as far as struc-
tural metadata is concerned, that would become significant once we also added the
notion of sum (called row-wise combination in [8]) because only the congruence
laws involving sum need the monoid operation. We stress again however that the
mechanisms to formally add the notion of a monoid have been introduced here (or
will be introduced shortly), but we decided to leave them them out of the theory
for the sake of simplicity and brevity.

With respect to well-defined types and elements, we have a corollary similar to
Proposition 1.

Corollary 1. Let, for k ≥ 0, ≡k be equivalence relations with ≡k ⊆ ≡k+1. Then

T (A,B, t,
⋃
k≥0

≡k, u) =
⋃
k≥0

T (A,B, t,≡k, u)

and
E(A,B, t,

⋃
k≥0

≡k, u) =
⋃
k≥0

E(A,B, t,≡k, u).

Proof. Analogous to the proof of Proposition 1.
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The last notion that we define in this section is the general notion of a congru-
ence on well-defined types and elements, given a typing relation and a denomina-
tion. Intuitively, a congruence relates terms that should be considered equal; in the
next section we give the (business) rules that motivate on what grounds terms are
equal and we define one particular congruence relation with them.

Definition 4. Given sets of basic type and basic element symbols A and B; a
mapping and an equivalence relation t and ≡ respectively, cf. Definition 2; and
a relation u cf. Definition 3; a relation ∼= ⊆ T (A,B, t,≡, u)2 ∪ E(A,B, t,≡, u)2

is a congruence, if ∼= is an equivalence relation that is closed by the constructs of
Definition 1, i.e., for all well-defined terms x, y and z we have

(i) x ∼= x,

(ii) if x ∼= y, then y ∼= x,

(iii) if x ∼= y and y ∼= z, then x ∼= z,

and we have

(iv) if p ∼= p′ and q ∼= q′, then [p→ q] ∼= [p′ → q′],

(v) if pi ∼= p′i for all 1 ≤ i ≤ n, then p1 × · · · × pn ∼= p′1 × · · · × p′n,

(vi) if p ∼= p′, then F(p) ∼= F(p′),

(vii) if vj ∼= v′j and wj ∼= w′j for all 1 ≤ j ≤ m, then
σ(v1∼w1, . . . , vm∼wm) ∼= σ(v′1∼w′1, . . . , v

′
m∼w′m),

(viii) if p ∼= p′, then 0(p) ∼= 0(p′), 1(p) ∼= 1(p′) and id(p) ∼= id(p′),

(ix) if v ∼= v′ and w ∼= w′, then v ◦ w ∼= v′ ◦ w′,

(x) if ui ∼= u′i for all 1 ≤ i ≤ n, then 〈u1, . . . , un〉 ∼= 〈u′1, . . . , u′n〉,
(xi) if pi ∼= p′i for all 1 ≤ i ≤ n, then πi(p1, . . . , pn) ∼= πi(p′1, . . . , p

′
n),

(xii) if w ∼= w′, then δ(w) ∼= δ(w′),

(xiii) if v ∼= v′, then γ(v) ∼= γ(v′), and

(xiv) if vj ∼= v′j and wj ∼= w′j for all 1 ≤ j ≤ m, then
ι(v1∼w1, . . . , vm∼wm) ∼= ι(v′1∼w′1, . . . , v

′
m∼w′m),

where it is understood that the left and the right hand sides of equations (iv) –
(xiv) yield well-defined terms. We say that ∼= is a congruence on T (A,B, t,≡, u)2∪
E(A,B, t,≡, u)2.

Note that we thus require that the left and the right hand sides of two terms
that are congruent are well-defined. Also note that we don’t require that the left
and the right hand sides of a congruence, in the case both are elements, have a
common type according to the typing relation ::t,≡. In fact, the congruences we
will establish in the next section will not have this property in general. Instead,
they will satisfy the following: if v ∼= w, v :: s and w :: s′, then s ∼= s′.

In the following section, Definition 4 is used to construct a particular congru-
ence, equating pairs of terms that are presumed equivalent, cf. the equations of
Sections 1, 2 and 3. For instance, we want to include into the congruence we have
in mind, all well-defined terms of the form idv ∼= v and σ(v∼v) ∼= id.
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5 A formal language for structural metadata

In this section we incorporate into our language the rules discovered in Sections 2
and 3. We define a family of congruences, based on a family of notions of well-
definedness, and give a closure property to define a final congruence and a final
notion of well-definedness. We show that these final notions satisfy natural and
desired properties.

Definition 5. Let A, B, t, ≡, and u be given, cf. Definition 4. The relation
Con(t,≡, u) ⊆ T (A,B, t,≡, u)2 ∪E(A,B, t,≡, u)2, called the congruence generated
by t, ≡ and u, is defined as the smallest congruence ∼= that contains the pairs below:

p1 × · · · × 0× · · · × pn ∼= 0 (0a)

v ∼= 0(q), provided v :: [0→ q] (0b)

v ∼= 1(p), provided v :: [p→ 1] (0c)

idv ∼= v (0d)

vid ∼= v (0e)

u(vw) ∼= (uv)w (1)

πi〈v1, . . . , vn〉 ∼= vi (2’)

〈v1w, . . . , vnw〉 ∼= 〈v1, . . . , vn〉w (3’)

α(α(v,w), u) ∼= α(v, uw) (4)

uα(v,w) ∼= α(uv,w), provided u . hom (5)

〈α(v1,w), . . . ,α(vn,w)〉 ∼= α(〈v1, . . . , vn〉,w) (6’)

α(v,w)w ∼= v, provided w . inj (7)

vι(v∼w) ∼= wι(v∼w) (8)

σ(uv, uw) ∼= σ(v,w), provided u . inj (11)

ι(uv∼uw) ∼= ι(v∼w), provided u . inj (12)

σ(v∼w, v∼w) ∼= σ(v∼w) (13)

ι(v∼w, v∼w) ∼= ι(v∼w) (14)

σ(v∼d1, v∼e1) ∼= 0, provided d, e ∈ B with d 6= e (15)

ι(v∼d1, v∼e1) ∼= 0, provided d, e ∈ B with d 6= e (16)

σ(v∼v) ∼= p, provided v :: [p→ q] (17)

ι(v∼v) ∼= id(p), provided v :: [p→ q] (18)

σ(v1∼w1, . . . , vm∼wm) ∼= σ(〈v1, . . . , vm〉∼〈w1, . . . ,wm〉) (23)

ι(v1∼w1, . . . , vm∼wm) ∼= ι(〈v1, . . . , vm〉∼〈w1, . . . ,wm〉) (24)

σ(v1∼w1, . . . , vm+1∼wm+1) ∼= σ(vm+1ι
m
1 ∼wm+1ι

m
1 ) (25)

ι(v1∼w1, . . . , vm+1∼wm+1) ∼= ιm1 ι(vm+1ι
m
1 ∼wm+1ι

m
1 ) (26)

σ(v1∼w1, . . . , vm∼wm) ∼= σ(vφ(1)∼wφ(1), . . . , vφ(m)∼wφ(m)) (27)
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ι(v1∼w1, . . . , vm∼wm) ∼= ι(vφ(1)∼wφ(1), . . . , vφ(m)∼wφ(m)) (28)

α(v,w)ι(u∼z) ∼= α(vι(uw∼zw),wι(uw∼zw))ι(u∼z) (29)

α(v,w) ◦ d ∼= α(vι(w∼d1),wι(w∼d1)) ◦ d, (30)

where φ is any permutation of {1, . . . ,m} and ι(v1∼w1, . . . , vm∼wm) is abbreviated
by ιm1 .

When t, ≡ and u are clear from the context, we let v ∼= w be an abbreviation
of (v,w) ∈ Con(t,≡, u).

In Definition 5, the intention of laws (0a) — (0e) should be clear from the
Preliminaries. Observe that laws (0b) and (0c) comprise many different situations:
0(1) ∼= 1(0), id(1) ∼= 1(1) and 1(q)w ∼= 1(p), provided w :: [p → q], are some
instances of them. Note that laws (0d) and (0e) correspond to the left and right
identities for composition, as mentioned in the Preliminaries. Laws (1) — (7)
correspond to Equations 1 to 7 at the end of the Preliminaries. Laws (8) — (30)
correspond to equations with identical numbers from Sections 2 and 3.

Note that, by Definition 4, for Definition 5 to make sense, it is required that
both the left and the right hand side of each equation yield well-defined terms.
Also note that, for reasons of brevity, shorthand notation is used in some of the
laws, leaving out, e.g., arguments of the id, 0 and πi elements, as for instance in
laws (0d), (0e), (16) and law (2’). Finally note that each equation that involves
elements either has identical types on the left and the right hand side, or it can be
deduced from ∼= that they have identical types. So, for instance, in law (16), the
left hand side has type [σ(v∼d1, v∼e1) → p] (provided, e.g., v :: [p → q]) which
reduces to [0→ p] by law (15).

We stress that many of the laws of Definition 5 are families of laws, for instance
law (0a) for each n and for each position of 0 in the left hand side, and law (2’) for
each n and i, and for each πi(p1, . . . , pn), i.e., for each combination of p1, . . . , pn,
and for each suitable combination of v1, . . . , vn. Note that there is no need to
extend law 29 to a family of laws, i.e., one that contains ι(u1∼z1, . . . , um∼zm) and
ι(u1w∼z1w, . . . , umw∼zmw) instead of ι(u∼z) and ι(uw∼zw), because of laws (24)
and (3’).

Observe that laws (25) and (26) are formulated in a slightly different, but equiv-
alent, way compared to the versions formulated in Section 3. Also observe that law
(14) is formulated differently, viz. using law (26) applied to ι(v∼w, v∼w), together
with (0e).

Note the conditions of laws (15) and (16): by d 6= e we mean that d and e are
unequal as terms, i.e., d and e are different basic element symbols. It might be
tempting to extend these conditions by dropping the requirement d, e ∈ B, i.e.,
by requiring that d and e be any suitable well-defined terms.2 This would yield a
problematic semantics though: take for instance d = vd′ and e = ve′ with d′, e′ ∈ B
with d′ 6= e′. Now even if we adopt as a requirement that different basic element
symbols of type [1 → p] represent different values from the set associated with p

2One might be equally tempted to require that d 6∼= e, instead of d 6= e. This would be
technically challenging, and equally wrong.
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(which we will do in Section 6), then we cannot conclude that vd′ and ve′ represent
different values, in much the same way that from x 6= y we cannot conclude that
f(x) 6= f(y).

Finally, we deduce that laws (13), (14), (17) and (18), in combination with
laws (27) and (28), and laws (0d) and (0e), express that arguments of ι and σ form
a set of pairs v∼w from which pairs of the form v∼v can be excluded. To see that,
we consider the following expansion:

ι(v∼w, v∼v, v∼w) ∼= ι(v∼w, v∼v)ι(vι(v∼w, v∼v)∼wι(v∼w, v∼v))
∼= ι(v∼w)ι(vι(v∼w), vι(v∼w)) ◦

ι(vι(v∼w)ι(vι(v∼w), vι(v∼w)),

wι(v∼w)ι(vι(v∼w), vι(v∼w)))
∼= ι(v∼w)idι(vι(v∼w)id,wι(v∼w)id)
∼= ι(v∼w)ι(vι(v∼w),wι(v∼w))
∼= ι(v∼w, v∼w)
∼= ι(v∼w),

where we used, respectively, laws (26) from left to right twice, law (18), law (0e),
law (26) from right to left, and finally law (14).

Note that we have that ≡1 ⊆ ≡2 implies that Con(t,≡1, u) ⊆ Con(t,≡2, u).
This is used in Proposition 2 below.

Next we define the closure of a family of congruences that is built up using
Definitions 2 and 3, together with Definition 5.

Definition 6. Let A, B, t, ≡, and u be given, cf. Definition 5. Let ≡I be the
identity on TE(A,B). The relation ∼= ⊆ T (A,B)2 ∪ E(A,B)2 is defined as

∼= =
⋃
k≥0

∼=k

with ∼=0 = ∅, and
∼=k = Con(t,≡I ∪ ∼=k−1, u)

for k > 0.

The closure construction of Definition 6 gives us the final notions of congruence
and of well-definedness. This is stated below.

Proposition 2. Let ∼=k and ∼= be as in Definition 6. Then we have

(i) ∼=k ⊆ ∼=k+1 for all k ≥ 0, and

(ii) ∼= = Con(t,≡I ∪ ∼=, u),

i.e., ∼= is the smallest congruence on T (A,B, t,≡I ∪∼=, u)2 ∪E(A,B, t,≡I ∪∼=, u)2

that satisfies the laws of Definition 5.
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Proof. Property (i) is shown by induction on k, using the remark just above Def-
inition 6. To prove inclusion of (ii) from right to left, it suffices to show that ∼=
is a congruence on T (A,B, t,≡I ∪ ∼=, u)2 ∪ E(A,B, t,≡I ∪ ∼=, u)2 that satisfies the
laws of Definition 5. Since Con(t,≡I ∪ ∼=, u) is the smallest such congruence, we
have Con(t,≡I ∪ ∼=, u) ⊆ ∼=. By Corollary 1 and (i) we have that ∼= is a relation
on T (A,B, t,≡I ∪∼=, u)2 ∪E(A,B, t,≡I ∪∼=, u)2. To prove that ∼= is a congruence,
we need to show properties (i) — (xiv) of Definition 4. All are proven similarly:
to show (iii) for instance, let x ∼= y and y ∼= z. Then x ∼=i y and y ∼=j z for some
i, j ≥ 0. Hence x ∼=k y and y ∼=k z with k = max(i, j). Since ∼=k is a congruence,
we have x ∼=k z and hence x ∼= z. To show that ∼= satisfies the laws of Definition 5,
let x, y ∈ TE(A,B, t,≡I ∪ ∼=, u) be a pair of types or elements that satisfy one
of the laws. By Corollary 1 and (i), x, y ∈ TE(A,B, t,≡I ∪ ∼=k, u) for some k.
Hence x ∼=k+1 y and hence x ∼= y. The inclusion of (ii) in the converse direction is
immediate by the remark just above Definition 6.

The following properties show the soundness of the construction of Definition 6
and earlier definitions. They show that the typing relation behaves as expected:
that elements are all assigned function types, that the typing relation of Definition 2
and the modality denomination of Definition 3 are closed by congruence in a natural
way.

Proposition 3. Let r, p, q, s, s′, x, y, v,w ∈ TE(A,B, t,≡I ∪ ∼=, u). Then we have

(i) If r ∼= [p→ q], then r = [p′ → q′] with p ∼= p′ and q ∼= q′,

(ii) If v :: s, then s = [p→ q] for some p and q,

(iii) If v :: s, then v :: s′ if and only if s ∼= s′,

(iv) If v :: s and w ∼= v, then w :: s,

(v) If y . m and y ∼= y′, then y′ . m.

Proof. The proofs of (iii) — (v) are immediate by Proposition 2(ii) and by substitu-
tion of ≡I ∪∼= for ≡ in Definition 2(ix) and (x), and in Definition 3(x), respectively.
The proof of (ii) is immediate by (i) and the fact that in (i) — (viii) of Definition 2,
a type assignment of the form v :: [p → q] is concluded. To prove (i), note that
the only laws from Definitions 4 and 5 from which r ∼= [p → q] can be concluded,
are laws (i) — (iv) of Definition 4. Induction to the length of the derivation of
r ∼= [p→ q] shows property (i).

6 A sketch of semantics

In this section we give a sketch of the sets-and-functions semantics of the language
developed in the previous two sections, relating the material developed there with
that of Sections 2 and 3.

We assume possibly empty, countable and disjoint sets A and B of basic type
and basic element symbols, a mapping t : B → T (A,B) cf. Definition 2, and a
relation u ⊆ (A× {mon}) ∪ (B × {invfin, inj, hom}) cf. Definition 3.
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Let, for every a ∈ A, I(a) be a nonempty set, let I(0) = ∅, the empty set,
and let I(1) = {∗}, an arbitrary but fixed one-element set.3 If (a,mon) ∈ u,
then we assume that I(a) comes with a proper associative and commutative binary
operation + and with a proper identity 0, i.e., we then treat I(a) as a commutative
monoid, cf. [8].

Let the set D0 be the collection of all I(a) together with I(0) and I(1), i.e.,
D0 = {I(a) | a ∈ A} ∪ {∅} ∪ {{∗}}.4 Let D′ be the smallest set that contains D0

and that is closed by the formation of arbitrary Cartesian products, finite power
sets, subsets, and set exponentiation, i.e., D0 ⊆ D′, and

(i) if x1, . . . , xn ∈ D′, then x1 × · · · × xn ∈ D′,
(ii) if x ∈ D′, then Fx ∈ D′,

(iii) if x ∈ D′ and y ⊆ x, then y ∈ D′, and

(iv) if x, y ∈ D′, then xy ∈ D′.

Finally, let D′′ =
⋃
D′ and let D = D′ ∪ D′′.5 We note that I is a mapping

A ∪ {0, 1} → D0. We extend I to a mapping TE(A,B, t,≡I ∪ ∼=, u)→ D next.
Following the grammar of the informal definition of types and elements prior to

Definition 1, we let I(p) and I(v), with p and v well-defined, be compositional in
the way expected:

I(p) ::= I(a) | I(0) | I(1) | I(q)I(p) | I(p1)× · · · × I(pn) |
FI(p) | σ(I(v1)∼I(w1), . . . , I(vm)∼I(wm))

and

I(v) ::= I(b) | I(0(p)) | I(1(p)) | I(id(p)) | I(v) ◦ I(w) |
〈I(u1), . . . , I(un)〉 | πni (I(p1), . . . , I(pn)) |
γ(I(v)) | δ(I(w)) | ι(I(v1)∼I(w1), . . . , I(vm)∼I(wm)),

where I(0(p)) is 0I(p), I(1(p)) is 1I(p), I(id(p)) is the identity on I(p), and I(b) is a
function that respects the elementary typing mapping t and the relation u, i.e., I(b)
is an element of I(q)I(p) if t(b) = [p → q], that is inverse-finite, an injection or a
homomorphism, whenever (b, invfin) ∈ u, (b, inj) ∈ u, or (b, hom) ∈ u, respectively.
Note that we thus assume that I, t and u ‘work together’ well; for instance, if
(b, inj) ∈ u, then the cardinalities of I(p) and I(q) must be such that an injection
I(p)→ I(q) indeed exists. Also, if b, b′ are different elementary type symbols with
t(b) = t(b′) = [1→ q], then we assume that I(b) 6= I(b′).

We claim that I is well-defined and has the expected properties.

Proposition 4. The mapping I is well-defined and sound, i.e., we have

(i) I : TE(A,B, t,≡I ∪ ∼=, u)→ D,

3We use I to indicate interpretation.
4We use D to indicate data.
5D′′ =

⋃
D′ means that D′′ = {d | d ∈ x and x ∈ D′}
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and for all well-defined types p and q and all well-defined elements v and w, we
have

(ii) if v :: [p→ q], then I(q)I(p) is nonempty and contains I(v),

(iii) if p . mon, then I(p) is a commutative monoid,

(iv) if v . invfin, then I(v) is inverse-finite, and similarly for the cases v . inj and
v . hom, and

(v) if v ∼= w, then I(v) = I(w), and if p ∼= q, then I(p) = I(q).

The proof of Proposition 4 is left to the reader.

7 Examples

In this section we give some examples that show the expressiveness of the language
defined in the previous sections. We start with showing how to incorporate families
of variables, indexed by a list of categories, into the language.

Example 2. In some statistics within a statistical office families of likewise vari-
ables are used, e.g., to record the answers to questions in a questionnaire. In the
DSC there is no possibility to record the meaning of these variables in one stroke.
Instead one must give definitions for each of the variables individually, even if these
definitions show minimal differences. Thus the administrative burden is increased,
as well as the risk of errors and inconsistencies. Especially in the case in which a
family of variables is indexed by a list of categories, ideally it should suffice to give
just one definition, in which any particular category can be substituted. We show
how ths can be achieved in our language.

Let x be a list of product categories, like shoes, pants, shirts, etcetera. Let,
for each category d ∈ x, vd be the variable turnover generated by the sales of d.
Thus we consider the variables turnover generated by the sales of shoes, turnover
generated by the sales of pants, etcetera. Since each of these variables is assumed
to be measured on a business, and to record a quantity of money, we let p be the
object type business, q be the value type quantity of money and we thus assume
that vd :: [p→ q] for each d.

Now consider the type r of product categories (i.e., we assume that I(r) = x).
We let each product category be a constant wd of type [1 → r]. Finally, we let
v be an element of type [r → [p → q]]. The intuitive meaning of v is: given a
value of type r, it returns an element of type [p → q]. Hence it behaves as an
r-indexed family of variables of type [p → q]. Now let the intuitive meaning of
v be turnover generated by the sales of [...], where [...] indicates the substitution
point of a particular product category. It is natural now to let vd = v ◦ wd. Note
that the composition makes sense and is well-formed. Note also however that
v ◦ wd :: [1→ [p→ q]] 6= [p→ q]. This can be solved by adding to our congruence
in Definition 5 the law [1 → [p → q]] ∼= [p → q] (or even: [1 → p] ∼= p) which
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makes sense because the sets both sides of the equation represent are in a one-to-
one correspondence, i.e., they are isomorphic. Note however that Proposition 4(v)
no longer holds in that case, but we claim that a weaker version involving such an
isomorphism does.

Next, we study the way subset inclusion can be used to organize variables ac-
cording to the object types they best apply to.

Example 3. Let p be the object type business, let q be the value type of economic
activities, like agriculture, mining, construction, etcetera, and let v : [p → q] be
the variable main economic activity. We assume that each economic activity is
reflected as a constant [1→ q], so we have, e.g., agr,min, con :: [1→ q]. The object
type farm can now be defined as to contain those businesses whose main activity
is agriculture, i.e., formally as σ(v∼agr1(p)). The fact that each farm is a business
is reflected by ι(v∼agr1(p)) :: [σ(v∼agr1(p)) → p]. The variable w of number of
livestock applies to farms and not so much to the full object type of business, so it is
natural to treat it as a variable of type [σ(v∼agr1(p))→ r] where we let r be a value
type corresponding to categories including [0..99], [100..999] and [1000..4999], say.
Note that we now are in a position to define the object type small farm based on the
number of livestock, as, e.g., σ(w∼[0..99]1(σ(v∼agr1(p)))), where [0..99] :: [1→ r].
Note that in the formal expression of small farm, all the necessary components to
understand the object type are present: from right to left it reads that a small farm
is a business, whose main activity is agriculture and whose number of livestock is in
[0..99]. Next we can define additional variables on the object type small farm and
give further specializations. We leave this to the reader.

Finally, we show how inclusion can play a role in combining two datasets that
both have a variable suitable for matching.

Example 4. Let d1 be a dataset containing two variables: one is age of a person,
denoted by v :: [p → r], and the other is income of a person in 2015, denoted
by w1 :: [p → q]. A second dataset d2 contains gender of a person, denoted by
u :: [p → o], and income of a person in 2016, denoted by w2 :: [p → q]. So
formally, we let d1 = 〈v,w1〉 and d2 = 〈u,w2〉; note that both expressions make
sense. Suppose we want to construct a third dataset with variables age, gender and
income for those persons whose income in 2015 equals that of 2016. In terms of
the given datasets, the expression for the required dataset would read

〈π1d1,π1d2,π2d2〉ι(π2d1∼π2d2),

which, by law (2’) is congruent to

〈v, u,w2〉ι(w1∼w2),

which, in turn, is congruent to

〈v, u,w1〉ι(w1∼w2),

by laws (3’) and (8).
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8 Conclusion

In this article we have defined a typed formal language for structurally modeling
statistical data. The language includes a natural congruence relation, which pro-
vides a mechanism for identifying models of statistical data that are synonymous.
We have given the language a sound compositional sets-and-functions semantics
and we have proven some natural and desired properties of the language.

Technically, the main contribution of the article is the construction of a congru-
ence relation in the scope of a typed language, in which types depend on ‘values’, or
on elements as they are called here. Incorporating dependent types in a language
has as a consequence that semantic techniques such as equational logic [16] don’t
work anymore. To make it work still, a particular closure operation needs to be
constructed.

From a statistical perspective, the main contribution is the introduction of a
notion of subtyping that is constructive, in contrast to similar notions from the
UML with its generalization-specialization arrow, or from the Resource Descrip-
tion Framework (RDF) [11] based languages such as the Web Ontology Language
(OWL) [17] or RDF Schema [4], with its notion of subClassOf. We mean by con-
structive that our notion of subset inclusion incorporates the conditions for the
inclusion, in contrast to the other notions. This means that with UML, OWL
or any such language we know of, while we can express that a man is a person,
we cannot express that this is the case because of a property called gender. We
feel that this is an important and natural addition for use within the statistical
process, because of the relationship between categorical variables (such as gender)
and the subclasses they define (viz. men and women). Moreover, the conditions
for subclasses give us the mechanisms for deciding, e.g., given an arbitrary person,
whether or not he (she) is a man.

In a theoretical sense we think of subset inclusion as an instance of the so-
called axiom of comprehension from set theory [6]. In its most general form it
states that for any condition on x there exists a set which contains exactly those
elements x which fulfill this condition (see [6, p. 31]). The fact that the axiom
of comprehension6 is indeed a basic axiom from set theory, and is independent
from the other axioms, strengthens our belief that subset inclusion is also basic
and expressive. Thus we view our construct as the proper translation of the axiom
of comprehension to the vocabulary of variables and data sets used in statistics:
variables and data sets give us the means to express the proper conditions meant
above.

A question left untouched in this article is whether or not it is decidable, given
two terms v and w, whether or not v ∼= w. It is crucial that decidability is estab-
lished, for instance because the typing relation depends on it, cf. Proposition 3(iii):
if, for instance, we want to compose two elements, in general this means that we
need to make sure that the domain of the one is congruent with the codomain of the

6or rather: the axiom schema of subsets, which according to [6], is left of the general axiom of
comprehension within Zermelo-Fraenkel set theory.
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other. At this moment, we don’t know whether ∼= is decidable, but we conjecture
that it is.

One of the usual means for establishing decidability of a congruence defined on
terms (i.e., to decide so-called word problems in an algebra), is to try to define a
term rewriting system [2, 12], in which terms are rewritten according to equations
(such as the ones defined in Definition 5) that are given a rewriting direction: either
left-to-right, or right-to-left. Terms that cannot be rewritten any further are called
normal forms; the rewriting mechanism thus turns the problem of deciding v ∼= w
into checking whether or not the normal forms corresponding to v and w are equal
or not. For this to work, the rewriting system must be (strongly) normalizing
and confluent: every sequence of rewrite steps must eventually terminate with a
normal form (i.e., infinite such sequences are not allowed), and, loosely speaking, the
application of one rewrite rule does not block the application of another. Usually,
completion is needed to gain both, in which rewrite rules are added to a system
of already established rewrite rules; a procedure that may finish successfuly or
unsuccessfully, or run forever (i.e., completion is semidecidable). At the moment
we are investigating whether a proper rewriting system can be formulated. Special
care must be taken to take into account the conditions on some of the congruence
laws of Definition 5 involving . and ::, and the fact that some of the laws are in
fact families of laws. This means that we will have an infinite actual number of
rewrite rules, but we claim that this system can be reformulated into an equivalent
one with a finite number of rules. Finally, because of the typing relation, a suitable
nonstandard notion of a typed term rewriting system must be formulated.

During the formulation of the laws of Definition 5, we were surprised to learn
that the ‘interaction’ between subset inclusion and aggregation is confined to two
(one of which rather obscure) laws, viz. laws (29) and (30). This means that in
general, aggregation and inclusion are hard to interchange: if we select some rows
from a dataset and then aggregate, then in general we cannot arrive at the same
result doing it the other way around in most cases. This fact, we feel, is crucial in
the formulation of metadata models (or normal forms in the sense above for that
matter) that claim to incorporate both inclusion and aggregation.
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