Acta Cybernetica 24 (2019) 131-155.

A Preparation Guide for Java Call Graph
Comparison: Finding a Match for Your Methods*

Zoltan Sagodi® and Edit Pengd®

Abstract

Call graphs provide a basis for numerous interprocedural analyzers and
tools, therefore it is crucial how precisely they are constructed. Develop-
ers need to know the features of a call graph builder before applying it to
subsequent algorithms. The characteristics of call graph builders are best
understood by comparing the generated call graphs themselves. The com-
parison can be done by matching the corresponding nodes in each graph and
then analyzing the found methods and calls.

In this paper, we developed a process for pairing the nodes of multiple call
graphs produced for the same source code. As the six static analyzers that we
collected for call graph building handles Java language elements differently,
it was necessary to refine the basic name-wise pairing mechanism in several
steps. Two language elements, the anonymous and generic methods, needed
extra consideration. We describe the steps of improvement and our final
solution to achieve the best possible pairing we are able to provide, through
the analysis of the Apache Commons-Math project.

Keywords: call graph, Java, static analysis

1 Introduction

Static source code analyzers play an important role in producing high-quality soft-
ware that satisfies the requirements of today’s industrial development. They help
programmers eliminate flaws and rule violations early on by automatically analyz-
ing the subject system and highlighting its potentially erroneous parts. Usually, the
source code is converted into an Abstract Syntax Tree! (AST) - like representation,

*This research was supported by the EU-funded Hungarian national grant GINOP-2.3.2-15-
2016-00037 titled “Internet of Living Things”. This research was supported by the project “In-
tegrated program for training new generation of scientists in the fields of computer science”, no
EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and
co-funded by the European Social Fund.

®University of Szeged, Department of Software Engineering, E-mail:
{sagodiz,pengoe}@inf.u-szeged.hu

1 Abstract Syntax Tree represents the syntactic structure of the source code in a hierarchical
tree-like form

DOI: 10.14232/actacyb.24.1.2019.10

132 Zoltan Sagodi and Edit Pengd

which is the basis for further transformations, optimizations, and operations, for
example, call graph creation. The capabilities of such analyzer tools depend on the
complexity of the internal representations and algorithms they use.

Call graphs are directed graphs representing control flow relationships among
the methods of a program. The nodes of the graph denote the methods, while an
edge from node a to node b indicates that method a invokes method b. Call graphs
are essential building blocks of interprocedural control and data flow modeling.
They can be used during control flow analysis, program slicing, program compre-
hension, bug prediction, refactoring, bug-finding, verification, security analysis, and
whole-program optimization [8, 13, 35, 37]. The accuracy of call graphs influences
the results of the subsequent analyses, consequently, careful consideration is needed
during the selection of the construction method. The most obvious difficulty that a
static call graph builder has to face is the handling of polymorphic calls and other
cases when the target of a call depends on the runtime behavior of the program.
There are plenty of call graph builder algorithms that address this challenge and
try to make assumptions about what methods could be called. They have extensive
literature, including detailed comparisons [14, 15, 20, 21, 24, 32]. There are other
factors that can cause differences in the output of two call graph creator tools, for
example, the handling of different kinds of initializations or anonymous classes.

In the future, we plan to compare and characterize call graph builders based
on how they handle such factors. However, the first step towards this goal is to
make the produced call graphs comparable. To compare the call graphs that were
generated by different tools for the same source code, we have to match the nodes
— i.e. the methods — that correspond to each other and then evaluate what types of
methods and calls were found by each tool. However, matching the methods to each
other is challenging, since it is not certain that all tools will find the same methods
or they might name them differently. Using the line information for refining the
pairing mechanism can also cause difficulties. Although node pairing is the basis
of call graph comparison, we found no satisfactory description about it in previous
works. Therefore, we decided to summarize the problems we encountered and our
attempts at solving them. Section 2 provides the related work, whilst Section 3
introduces the investigated call graph builders. Section 4 illustrates the obstacles
of the method pairing mechanism and our step-by-step improvements with results.
In Section 5, our approach is compared with a topology based solution. Finally, we
draw our conclusions and outline future work in Section 6.

2 Related work

The way to compare the capabilities of call graph builder tools is through com-
paring the call graphs they generate. Due to the increasing number of extremely
large graphs and their wide area of usability, there are many algorithms and met-
rics available for comparing general directed and undirected graphs [19, 22, 34].
However, these methods cannot be directly applied to call graphs, especially if they
were produced by different analyzer tools. Call graphs are directed graphs whose

A preparation guide for Java call graph comparison 133

nodes correspond to the methods in the source code. Even if the structure of two
call graphs is isomorphic, they can be considered entirely different because of the
labeling of the nodes. Therefore, to make them comparable, first we have to find a
mapping, which is the aim of this paper.

There are several proposals for comparing labeled graphs if a mapping is already
present. Champin and Solnon defined a similarity with respect to a given mapping
between two graphs that have multiple labels both on their nodes and edges [7].
A graph is described by the set of all of its features, e.g. the set of node-label
and edge-label pairs. The similarity measure is calculated based on a simplified
version of Tversky’s formula [33]. They also proposed an algorithm for finding the
best mapping for reaching the maximum similarity, which provides a qualitative
description of the differences between the two graphs.

There are algorithms available exactly for comparing labeled graphs that share
the same node set [38]. In case of call graphs that were produced by different tools
and algorithms this condition cannot be ensured. The simplest way to compare
graphs with the same node set is to handle the adjacency matrices as vectors and
calculate an edit distance, in other words, the number of different edges [12, 30|.
Wicker et al. introduced a dissimilarity measure for graphs like these based on
their eigenvalues and eigenvectors [38], which takes into account the global graph
structures as well.

The precision and structure of the call graphs greatly depends on the algorithms
that the builder tools used. If several call targets are possible for a given call site,
more examination is needed to determine which edges should be connected. There
are context-dependent and context-independent solutions; naturally, the choice in-
fluences the result. Context-dependent methods are more accurate, but in return
they use more resources. To mitigate the resource demands of such methods, the
analysis of the programs often starts only from the main method or a few entry
points instead of starting from every method of the analyzed source code. This,
however, will likely lower the accuracy of the method. Context-independent meth-
ods for object oriented languages can be improved with the following algorithms:
CHA [9], RTA [4], XTA[32], VTA [31]. In case of the comparing these call graph
building strategies [1, 14, 15], node matching is usually not an issue because the
algorithms are implemented in the same environment and language elements are
handled similarly. The nodes of the produced call graphs are the subset of each
other’s node set with the same naming convention, therefore, the main difference
comes from the number of edges.

In this paper, we considered the results of static analyzer tools, meaning that
we worked with the so called static call graphs. However, call graphs can be com-
posed with dynamic tools as well from actual executions of the analyzed program.
Lhotéak [20] compared static call graphs generated by Soot [29] and dynamic call
graphs created with the help of the *J [28] dynamic analyzer. He built a framework
to compare call graphs, discussed the challenges of the comparisons, and presented
an algorithm to find the causes of the potential differences in call graphs. The pa-
per does not describe the difficulties of matching the nodes of the call graphs that
were provided by different sources. The reason could be that Soot is a bytecode

134 Zoltan Sagodi and Edit Pengd

analyzer, therefore its output is close to the output of a dynamic analyzer. This
also means that our work could be easily extended by including such dynamic call
graphs.

Murphy et al. [24] carried out a study about the comparison of five static call
graph creators for C in 1996. The outputs of the analyzers were compared to a
baseline call graph created by the GCT test coverage tool, which was based on the
GNU C compiler. They identified significant differences in how the tools handled
typical C constructs, like macros. Mapping the graphs was made more complicated
depending on which files were involved in the analysis. They applied a filtering
mechanism to solve this. Other difficulties of the matching mechanism were not
discussed, although C functions are clearly identified by their name only.

Naturally, it is possible to compare two graphs by considering only the struc-
ture of the graph without label information. Many similarity measures are based
on iterative calculations. These methods repeatedly refine an estimated initial sim-
ilarity value of the graph nodes by using an update formula. The update formulas
consider the similarity of the edges and the neighboring nodes. When a termination
condition is met the iteration finishes and a similarity matrix is produced. Nikoli¢
proposed an iterative solution [25] called neighbor matching that addresses the in-
sufficiencies of the previously existing approaches [5, 23, 39, 16]. An in - and out -
similarity is defined for the update formula. To determine the in-similarity an op-
timal matching of in-neighbors has to be constructed. The calculation is analogous
in case of the out-similarity. The introduced node similarity calculation was eval-
uated on isomorphic subgraph matching and on a social network, and concluded
that it is more accurate than the previous approaches. Nikoli¢ provided a C++
implementation of the proposed method. In Section 5 we compare the results of
this topology based graph similarity tool with our pairing mechanism.

3 Analyzed tools

We studied numerous static analyzer tools for Java to decide whether they could
generate — or could be easily modified to generate — call graphs. We aimed for widely
available, open-source programs from recent years, which could analyze complex,
real-life Java systems. The diversity of the tools was another important aspect
of our selection criteria. We involved tools that provide a direct interface for call
graph creation, whilst, in other cases, the graph had to be extracted directly from
the inner representation of the analyzer. The investigated analyzers can also be
categorized by whether they work on source or byte code, which, of course, affects
their results. Most of the tools are command line based, although an Eclipse plug-
in based solution was also examined. The selected analyzers support several call
graph-creation algorithms, which greatly influences the characteristics, the accuracy
and the size of the generated graph. It is the application that determines what type
of call graph is the most useful, sometimes a small and less accurate call graph is
better, while, in other cases, a large and precise one is needed. The goal of this
paper is not to compare the output of these call graph-builder algorithms, but to

A preparation guide for Java call graph comparison 135

pair the corresponding graph sections, which is the basis for further comparative
studies. Therefore, we considered the algorithm only as an attribute of the given
tool.

Table 1 summarizes the most important properties of the examined call graph
builder tools. The grey lines correspond to two of the discarded tools that we
tested in more detail. In both cases, the reason for the exclusion was their lack
of robustness. For example, JavaParser [18] did not give enough information to
reconstruct the caller-callee relationships between compilation units without ma-
jor development. Call Hierarchy Printer[6] (CHP) failed to finish the analysis of
projects larger than a few thousands lines of code. The selected tools, the analyzed
sources, and the results are available as an online appendix?.

The description of the six tools that were selected for the comparison is presented
below.

Table 1: Summary of examined call graph creator tools

built-in multiple
version maintained input robustness call-graph algorithms
construction available
commit da8leeb
JCG on Oct 24 2018 v byte code v v X
SPOON 7.0.0 4 source code 4 X X
WALA 1.5.1 v byte code v v v
OSA 1.0.0 v source code v X X
Soot 3.2.0 v byte code v v v
Eclipse Oxygen.2 BN
JDT (4.7.2) v source code v X X
commit 3316b4a
CHP on Mar 26 2015 X both X X X
JavaParser 3.5.16 v source code X X

3.1 Java Call Graph

The Java Call Graph (JCG) [17] is an Apache BCEL [3] based utility for construct-
ing static and dynamic call graphs. It can be considered a small project as it only
has one major contributor, Georgios Gousios, whose last commit (at the time of
this writing) is from October, 2018. It supports the analysis of Java 8 features and
requires a jar file as an input. A special feature of the analyzer is the detection
of unreachable® code. As a result, the call graph does not include calls from code
segments that are never executed.

3.2 SPOON

SPOON [27] is an open-source, feature-rich Java analyzer and transformation tool
for research and industrial purposes. It is actively maintained, supports Java up

2http://www.inf.u-szeged.hu/ pengoe/research/StaticJavaCallGraphs/
3Unreachable code will never be executed as there is no control flow path to it from the entry
point of the program.

136 Zoltan Sagodi and Edit Pengd

to version 9, and while several higher-level concepts (e.g., reachability) are not
provided "out of the box", the necessary infrastructure is accessible for users to
develop their own. SPOON performs a directory analysis* of the source code and
builds an AST-like metamodel, which is the basis for these further analyses and
transformations. We extracted the call graph of our project by traversing this
internal representation and collecting every available invocation information. The
library is well-documented and provides a visual representation of its metamodel,
which helped us in thoroughly studying its structure.

3.3 WALA

WALA [36] is a static and dynamic analyzer for Java bytecode (supporting syntactic
elements up to Java 8) and JavaScript. Originally, it was developed by the IBM
T.J. Watson’s Research Center; now it is actively developed as an open-source
project. WALA has a built-in call graph generation feature with a wide range
of graph building algorithms. We used the ZeroOneContainerCFA graph builder
for our experiments, as it performs the most complex analysis. It provides an
approximation of the Andersen-style pointer analysis [2] with unlimited object-
sensitivity for collection objects. The generator has to be parameterized with the
entry points from which the call graphs would be built. To make the results similar
to the results of the other tools, we treated all the methods as entry points (instead
of just the main methods). For other configuration options, we used the default
settings provided in the documentation and example source codes.

3.4 OpenStaticAnalyzer

OpenStaticAnalyzer (OSA) [26] is an actively maintained, multi-language static
analyzer framework developed by the Department of Software Engineering at the
University of Szeged. It calculates source code metrics, detects code clones, per-
forms reachability analysis, and finds coding rule violations up to Java 8. Other
languages such as Python and C# are supported as well. Besides the directory
analysis of the source code, OSA is also capable of wrapping the build system
(maven or ant) of the project under examination. This can make the analysis more
precise as generated files will be handled too. Similarly to the above mentioned
SPOON implementation, we extracted the call graphs by processing the AST-like
inner representation of OSA.

3.5 Soot

Soot [29] is a widely used language manipulation and optimization framework de-
veloped by the Sable Research Group at the McGill University. It supports analysis
up to Java 9 and works on the compiled binaries. Although its official website® has

4The static analyser processes recursively every Java file in a given root folder
Shttps://www.sable.mcgill.ca/soot/soot_download.html

A preparation guide for Java call graph comparison 137

the latest release from 2012, the project is active on GitHub, from where we ac-
quired the 3.2.0 release, which was the latest version then. Like WALA, Soot also
has a built-in call graph creator functionality. For the analysis of library projects
the CHA algorithm was used for call-graph construction, while in case of standalone
projects we used the SPARK framework, which employs a points-to analysis algo-
rithm.

3.6 Eclipse JDT

The Eclipse Java development tools (JDT) [10] is one of the main components of
the Eclipse SDK [11]. It provides a built-in Java compiler and a full model for
Java sources. We created a JDT based plugin for Eclipse Oxygen that supports
even Java 10 code, to extract the call graph from the extensive, AST-like inner
representation.

4 Refining the pairing mechanism

There are numerous elements that could cause differences in call graphs, as tools
process language elements differently. In this section, we discuss what attempts we
made to handle these differences and what were the benefits and downsides to each
approach. In this article, the pairing mechanism is illustrated through the Apache
Commons Math 3.6.1° project (208,876 KLOC). We are only using one project
as an example, since our aim is to showcase the process itself, not to compare
data. More analyzed projects are presented in the online appendix mentioned in
Section 3.

4.1 Overview of process

The following four subsections correspond to the process of developing a unified
representation for Java method names. Figure 1 provides an overview of this devel-
opment process. It was previously stated that the call graph creator tools produce
the graphs in slightly different formats. Therefore, we had to implement a specific
graph loader for each tool to handle the aspects of its method naming convention.
A basic name pairing (1.) was introduced to treat the fundamental differences of
the representations. However, anonymous language elements needed extra consid-
eration for which the anonymous transformation method (2.) was developed. As
the figure indicates this heuristical approach is not part of the final approach. We
found that the anonymous transformation method could be improved by using line
information (3.). This introduced a challenge in the handling of generic source code
elements which had to be dealt with (4.). No other Java language elements were
identified that impaired the pairing mechanism.

Shttp://commons.apache.org/proper/commons-math/

138 Zoltan Sagodi and Edit Pengd

| No unification |

I

’ 1. Basic name pairing ‘

’ 2. Anonymous transformation

3. Handling anonymous elements
with line information

|

’ 4. Handling generic elements ‘

J

‘ Final approach ‘

Figure 1: Development process

4.2 Basic name pairing

In Java, methods can be distinguished by fully qualified names, which include
the package name, the class name, the name of the method, and the list of the
parameter types. The return value is not required for the identification, however,
we encountered one case where it is indeed needed. According to the Java standard,
overridden methods can differ in return type if the return-type-substitutability is
satisfied, for example, the child class specializes the return type to a subtype.
Some tools represent both the specialized and the not-specialized methods for a
child class, although they only connect edges to one of them. Therefore, these rare
cases could be easily detected.

Call graph comparison is based on identifying and matching the corresponding
methods in each graph regardless of their representation. At first, we only used
the method names produced by the static analyzers as basis of the method pairing.
However, this was not enough because some fundamental features are represented
differently, for example, some of the tools denote constructor methods with the class
name, whilst others tag them with the name <init>. Therefore, we developed a
common representation for the Java methods and as a first step of the comparison
we transformed every call graph to this unified representation. Only the constructor
methods, initializer blocks and other not-so-significant representational differences
were subject to the name unification process. Instance initializer blocks are exe-
cuted every time an instance of that class is created. They can be used to initialize
class members. The Java compiler copies initializer blocks into every constructor.
Therefore, initializer blocks can be used to share a block of code between multi-
ple constructors. Byte code analyzer tools, such as WALA, represent initializer
blocks as part of the constructor methods. However, source code analyzers such
as SPOON represent the initialization blocks and the constructor methods with

A preparation guide for Java call graph comparison 139

separate nodes for the given class. Our basic name pairing method aggregates the
nodes of initializers blocks with every constructor of that class, making it pairable
with the constructor methods found in the compared graph. This functionality can
be turned off with a command line option, if the user wishes.

Figure 2 - 4 help in understanding the process of basic name pairing. Figure 2
shows a sample code containing constructors and initializer blocks. The reason we
only included these two language elements in the sample code is because during
basic name pairing only they require special consideration. The call graphs of
the sample code are portrayed in Figure 3. These are produced by two of the
tools, SPOON and WALA. The grey nodes belong to SPOON’s graphs, the white
ones belong to WALA’s graph. As described in the previous paragraph, SPOON
represents initializer blocks with separate nodes, while WALA treats them as part
of the constructor methods, which causes a slight discrepancy between the two
graphs. For this reason, during our pairing mechanism we aggregate the nodes of
the initializer blocks with constructor nodes to ensure that none of them remain
without a pair. A method name unification is also performed on each of the nodes.
The results of the aggregation and the unification process can be seen in Figure 4.
The borders of the rectangles indicate which nodes are paired between the two
graphs. Two nodes are paired if their names match character by character.

class Test {
Integer 1ij;
public Test () {}
public Test(String s){}

¢ i = new Integer (89);
) }
Figure 2: The basic name pairing in action: sample code
‘ Test.Test(java.lang.String) ‘ ’Test.<init>(Ljava/ lang/String) ‘
Test. Test() Test. <init>()
‘ Test. <initblock> () ‘
java.lang.Inteéer.Integer(int) ‘ ’java.lang.lnteger.<init>(I) ‘

Figure 3: The basic name pairing in action: input graphs

Table 2 summarizes the results of this initial attempt on the Commons Math
project. The diagonal elements in bold show the number of different methods found

140 Zoltan Sagodi and Edit Pengd

| Test<init~() ¥

:Test.<initb10ck>()i Tost.—imit= ()
S 1 est.<anit>() !

< D

| java.lang.Integer.Integer (int) | | java.lang.Integer.<init>(int) |

Figure 4: The basic name pairing in action: produced pairings

by each static analyzer tool. Every other cell in a row is a percentage that displays
what percentage of the given tool’s methods was found by the tool in the column.

Table 2: Results of the basic name pairing

Soot OSA | SPOON JCG | WALA JDT
Soot 4,022 | 51.24% | 52.76% | 57.46% | 57.36% | 50.97%
OSA 24.4% | 8,446 | 100,00% | 96.39% | 80.88% | 91.13%
SPOON | 24.77% | 98.5% 8,551 | 96.55% | 81.24% | 89.81%
JCG 23.22% | 81.81% | 83.24% | 9,951 | 75.82% | 75.98%
WALA | 27.47% | 81.33% | 83.02% | 89.83% | 8,399 | 83.09%
JDT 21.41% | 80.37% | 80.43% | 78.95% | 72.87% | 9,577

Looking at the table, it becomes apparent that the column of Soot contains
quite low values. Soot found half of the methods compared to the other analyzers,
therefore, its highest possible percentage is at about 50% - 60%. The reason for this
discrepancy lies in the algorithmic differences between the tools, however, analyzing
this is not the subject of the current paper.

4.3 Anonymous transformation

The basic name pairing cannot handle every Java language feature. One of them
is the anonymous source code elements.

An anonymous class is an inner class without a name. It is useful when the
programmer needs one instance of a class or interface with only certain overridden
methods, so the actual subclass creation can be avoided. Lambda methods can
be considered anonymous, however, most analyzers denote them with their inter-
face name. Anonymous source code elements have a non-standardized, compiler
generated name, meaning that static analyzers can name the same code element
differently. Inner classes have a ’$’ sign in their name appended right after the
name of the outer class. The ’$’ sign is followed by the name of the inner class.

A preparation guide for Java call graph comparison 141

In case of anonymous classes, a number is present after the ’'$’ sign, however, the
numbering is not consistent among the compilers and analyzer tools. Both global,
project-wise numbering, and class level numbering is possible. The order of the
numbering can also make a difference in the output of the tools. It is clear that
our basic pairing approach that was introduced in the previous subsection is not
sufficient for pairing anonymous code elements.

The transformation simply means that during the name unification process we
replace the varying number after the ’'$’ sign with a constant string. This means
that multiple anonymous elements in a class will be aggregated into one, which is
the explanation of smaller method numbers in the diagonal of Table 3. For example,
if a class has multiple anonymous classes, all of them will be transformed for the
unified anonymous class, causing a loss in the accuracy of the pairing. For projects
that do not rely on anonymous classes very much - i.e. in a class there is at most
one anonymous element - this heuristical approach is acceptable.

class AnonymousTest{
public void print (){
/7.
}
}

class Test{
public static void main(String args[]){

AnonymousTest tl1 = new AnonymousTest (){
@0verride
public void print (){
/7.
31
AnonymousTest t2 = new AnonymousTest (){
@0verride
public void print (O{
/).
33

Figure 5: Sample code containing two anonymous classes

Figure 5 shows an example code containing two anonymous classes. Figure 6
portrays a call graph constructed from this code (left side) and the class-level
aggregation of anonymous code elements after the anonymous transformation (right
side). If this code snippet is part of a larger project, then the two anonymous classes
may not have the same numbering in all of the produced call graphs. However, after
the aggregation the unified anonymous nodes can be paired.

Table 3, that is constructed similarly to Table 2, shows the results of the method
pairing improved with anonymous transformation. The green cells highlight those
percentages that are higher compared to Table 2.

142 Zoltan Sagodi and Edit Pengd

‘ Test.main(java.lang.String|]) ‘ ‘ Test.main(java.lang.String|]) ‘
|
| Test$1.<init>() | | Test$2.<imit>()| | TestSUNIFIED. <init>()|
|
‘ AnonymousTest. <init>() ‘ ‘ AnonymousTest. <init>() ‘

Figure 6: The process of anonymous transformation. The original graph is on the
left, the transformed version is on the right side

Table 3: Results of the anonymous transformation

Soot
Soot 3897
OSA 24.23%
SPOON | 24.54%
JCG 22.56%
26.75%

8406 |

9776 75.39%
89.75% 8212

4.4 Employing line information

We concluded that the previous heuristical solution should and could be improved,
so that anonymous source code elements could be paired independently. It was a
self-evident idea to include the line information in order to improve the accuracy of
the method matching. However, we soon found out that the line information does
not provide a perfect solution for the problems of method pairing because it is not
as consistent among static analyzers as it was expected.

One obvious difficulty is that some of the tools process the source files them-
selves, while others work on the already compiled class files. Source code analyzers
provide line information to the beginning and end of the method declaration. Byte
code analyzers give the line information for the first statement of the method in
question. In case of an empty method, the line information of the ending of the
method declaration is present. This difference can be overcome by interval test-
ing. Moreover, not every method has line information because they are compiler
generated or they are part of the Java library. In other cases, only some of the
tools can provide line information for a method. In addition to these difficulties,
we realized that in a few cases tools provide the line information of the beginning
of the class definition for some methods. These are inherited methods, whose re-
turn type was specialized by the child class (as it was described in the beginning of
Section 4.2). As a consequence, some methods that certainly differ have the same
line information.

Seeing these difficulties, it is clear that we cannot rely on line information

A preparation guide for Java call graph comparison 143

blindly, because it would misguide the pairing mechanism. Therefore, the usage
of line information was restricted only for anonymous and generic source code el-
ements, whilst, for traditional methods, the name-wise pairing was used. The
challenge of anonymous elements has already been discussed. In their case, we
used only the line information for matchmaking. Generic elements raised a new
type of issue that is introduced in the next section.

Figure 7 depicts the pseudocode of the line information based anonymous pair-
ing. The condition on line 23 is true if the package names of the two methods are
equal, and the class and method names only differ after the $ sign (anonymous

1 /*
2 The method returns true if two nodes (methods) considered equal
according to their line information
3 +/
4 func checkLineInfo (ml,m2)
5 if ml.endLine NOT valid
6 ml.endLine=ml.startLine
7 end
8
9 if m2.endLine NOT valid
10 m2.endLine=m2.startLine
11 end
12
13 return (ml.startLine <= m2.startLine AND ml.endLine >= m2.endLine
) OR (ml.startlLine >= m2.startLine AND ml.endLine <= m2.
endLine)
14 end
15
16 /+
17 This method returns true if the given nodes (methods) are
constdered equal otherwise false
18 +#/
19 func anonymousPairing(ml, m2) //mil and m2 are anonymous methods
20 begin
21 isEqual=false
22 if line-info available
23 if m1 differs m2 only in anonymous names
24 if checkLineInfo(ml, m2)
25 for i in ml.parameterCount
26 if ml.param[i] NOT equals m2.param[i]
7 return false
28 end
29 end
30 isEqual=true
1 end
32 end
3 end
34 return isEqual
5 end

Figure 7: The pseudocode of the line information based anonymous pairing

144 Zoltan Sagodi and Edit Pengd

part). On line 24 we check if the two methods are the same according to the line
information. Byte code analyzers provide the line information of the first statement
of the examined method, while source code analyzers detect the method declara-
tion. Moreover, some tools consider the comment in front of a method as part of its
declaration, making the line-information of a method even more diverse. Method
checkLineInfo depicts how the interval checking of the line information of two
methods is done. If a tool does not provide end line number for the methods it will
be initialized with the number of the start line. The equality of the parameter lists
is examined on line 25-29, although, it is not necessary if we consider the provided
line information valid.

Table 4 shows the improvement of results compared to the basic name-wise
pairing that is summarized in Table 2. In case of Soot and WALA we can see a
slight decrease in the number of methods. It is because these tools - erroneously -
provided the same line information for some anonymous methods, therefore, they
could not be handled separately. The approach best improved the pairing of the
JDT as this is the most reliable tool for providing line information.

Table 4: Results of the transformation based on line information (anonymous)

Soot OSA SPOON JCG WALA
Soot 3,976 56.97% | 56.87%
OSA 24.4% 8,446 | 100,00% | 96.39% | 80.88%
SPOON | 24.77% 98.5% 8,551 96.55% | 81.24%
JCG 22.76% | 81.81% | 83.24% 9,951 75.19%
WALA 27.12% 89.76% 8,336

4.5 Strategy for handling generic elements

As the previous subsection indicated, generic source code elements need extra con-
sideration during the pairing mechanism. Java generic classes and methods were
introduced in JDK 5.0. They allow programmers to specify a set of methods and
a set of types with only one method and class declaration, respectively. A single
generic method can be called with arguments of various types. One important trait
of generic classes is that they can be parameterized differently during instantiation.
Generic type parameters can be bounded, which restricts the types that are allowed
to be passed.

Static analyzers represent generic elements in the call graph in various ways.
Table 5 shows the diversity of representations after the method name unification. It
can be seen that the tools represent them with varying accuracy. Sometimes generic
parameters are represented by the prototype that is present in the declaration,
optionally involving the type restriction too (e.g., SOOT). In other cases, the type
of the actual parameter is used, that is, the tool represents the same generic method

A preparation guide for Java call graph comparison 145

with multiple nodes but with differing generic parameters.

Table 5: Various representations of a generic method

Declared | <T, K extends Child2> Generic2<Child2, Generic1<Child2> >
method | methodGen(K c, Genericl<K> g, Class<?>...objects)
Usage methodGen(new Child2(), new Generic1<Child2>(), Integer.class)

Representations
JCG methodGen(Child2,Genericl, java.lang.Class[])
WALA Generic2 methodGen(Child2,Genericl, java.lang.Class)
OSA Generic2 methodGen(Child2,Genericl, java.lang.Class)
Soot Generic2 methodGen(Child2,Genericl, java.lang.Class[])

SPOON | methodGen(XK extends Child2,Genericl,java.lang.Class[])
IDT Generic2<Interface,Genericl>
methodGen (K,Genericl<Interface>, java.lang.Class<7>[])

The ideal solution would be to pair the corresponding generic methods to each
other, but because of the variety of the notations, matching them only through
the basic pairing process caused inaccuracies. Although the package, class, and
method names are the same, even the number of parameters are the same, the type
of the parameters can differ. Unlike in the case of anonymous methods, it is not
always possible to decide whether a generic method is generic or not, based on its
name alone. Therefore, the line information is needed to decide if two methods
with the same name and number of parameters correspond to the same generic
method. If the line information is the same as well, then the two nodes apply to
the same generic method. This heuristical assumption has a threat to validity if
the tool provides false line information. What is more, the pairing is not possible
if no line information is given. The pseudocode of the pairing algorithm for generic
elements is shown in Figure 8. The checkLineInfo method is the same as in
Figure 7. The heuristical method for matching the generic parameters is on line
11-15. As our pairing approach currently does not utilize the class hierarchy of the
analyzed project, only a conservative matching is allowed with generic wildcards
such asK,T,E. .. and with java.lang.0bject, which is a base class for every other
class. The reason for this conservative solution is that we want to avoid accidental
matching of overridden methods. The manual validation proved this approach to
be sufficient. Combining line information with generic elements caused another
type of problem, which is summarized in Figure 9.

Figure 9 shows two static analyzers, Tool 1 and Tool 2 (denoted by grey ellipses)
and methods they detected during analysis (denoted by white ellipses). The ana-
lyzed source code contains a generic method, <T> void goo(T t) and two normal
methods, void foo(int a, int b) and void foo(int a). Tool 1 represents goo
in the call graph only with one node. As there is no restriction on the type, the tool
denotes the parameter type as an Object. In contrast to this, Tool 2 associates
three nodes to method goo based on the type of the actual parameters it was called
with. All goo nodes have the same line information. The matching of the foo

146 Zoltan Sagodi and Edit Pengd

N =

/*
This method returns true %f the given nodes (methods) are
considered equal otherwise false

w

*/
func anonymousPairing(ml, m2)
begin
isEqual=false
if line-info available
if checkLineInfo(ml, m2)
for i in ml.parameterCount
if (m1l.param[i] equals m2.param[i] OR
ml.param[i] is java.lang.Object OR
m2.param[i] is java.lang.Object OR
mi.param[i] is GENERIC_WILDCARD OR
m2.param[i] is GENERIC_WILDCARD)
isEquals=true
else
isEquals=false
break
end
end
end
end
return isEqual
end

TR WN R O OO UERE WNRFR O OO U

P N N N N G G VA G G S G S G

Figure 8: The pseudocode of the line information based generic pairing

methods is obvious, as both of them are represented with one node each. This is
not the case with the pairing of method goo. The left side of the figure shows a
possible matching of the nodes of Tool 1 to the nodes of Tool 2. The pairing of
goo is denoted with a dashed line, as other matches would be possible if it was
allowed to pair one method to multiple others. The right side of the figure shows
the opposite direction: the matching of the nodes of Tool 2 to the nodes of Tool 1.
It can be seen that all goo nodes will be paired to the same node in the graph of
Tool 1, because there is no other option. As a consequence, there is asymmetry in
the results depending on the direction from which we start pairing the nodes.

This described pairing anomaly can be resolved in multiple ways. One solution
is to use the results as they are, without any further modifications. This approach
emphasizes the differences between the tools’ capabilities. Another option is to keep
only those node-matchings that can be found from both directions. Finally, we can
collect every possible pairing from both directions and put them into a union. The
union pairing was the solution we decided to use. Table 6 summarizes the results
of this approach. The structure of the table is similar as before, the green cells
highlight the higher percentages compared to Table 4. There is a decrease in the
number of methods because we counted the corresponding generic methods as one.

A preparation guide for Java call graph comparison 147

goo(int)

'
!
/
'
!
!
!
. .

goo(Array)

goo(String)

Figure 9: Pairing anomaly

Table 6: Results of the transformation based on line information (anonymous and
generic elements)

Soot

Soot 3,969
OSA 24.38%
SPOON | 24.75%
JCG 22.76%

96.39%
96.55%
9,928 | 75.18%
89.74% | 8,332

100,00%
8,545

4.6 Remaining differences

Table 6 shows that we could not achieve 100% pairing for the tools, a significant
number of nodes remained unmatched. We manually investigated the root causes
for this, in order to find possible ways to improve our pairing mechanism. However,
our in-depth examination revealed that most of the unmatchings cannot be resolved.
The reasons for the differences can be categorized as follows:

e A tool detects a method type that other tools do not represent, therefore
some nodes will not have images in the other tools’ graph.
— Soot represents much more static initializer nodes then other tools.

— WALA places more Java library nodes and calls into the generated call
graphs.

— SPOON represents Java static field initialization with a unique node.

e The methods that can be found in the bytecode slightly differ from the meth-
ods of the source code.

148 Zoltan Sagodi and Edit Pengd

— Bytecode analyzers (JCG, WALA, Soot) find compiler generated acc-
ess$XXX methods, which cannot be paired with improper line informa-
tion.

— Source code analyzers detect only default constructors for Enum classes.
Byte code analyzer tools represent the valid constructors with an Inte-
ger and a String parameter.

— In the compiled sources, the methods of inner classes have an extra
parameter, a reference to the outer class. This parameter is missing
from the findings of the source code analyers.

e There are algorithmic differences in the handling polymorphic calls.

— Tools that employ less accurate analysis techniques represent more in-
terface and base class methods instead of the methods of the subclasses.

— JCG represents inherited methods as the method of the child class, while
other tools represent them as part of the base class.

e Methods that do not have at least one method call are excluded. OSA and
SPOON have this feature.

e Line information for anonymous and generic methods is missing.

We concluded from our findings that our pairing mechanism could only be improved
with more reliable line information.

4.7 Edge similarity

Based on the implemented node pairing mechanisms, the pairing of the edges was
also performed. Two edges are considered to be a pair if their endpoints are matched
with each other. If one or both nodes of an edge are unmatched, then the edge itself
is considered to be pairless too. This subsection discusses how the improvement of
the node pairing affects the number of edges that can be paired with each other.

Table 7 and Table 8 present the call edge comparison results of the Commons
Math project. Their structure is similar to the previous tables’: the diagonal
elements contain the number of calls detected by each tool, while every other cell
in a row shows how many percent of the tool’s calls were found by the tools in the
columns. Table 7 corresponds to the basic name pairing mechanism and Table 8
shows the results achieved by using our final approach. Higher percentages are
highlighted with green. A slight decrease can be observed in the number of call
edges. As Table 2 and Table 6 show, some of the nodes were aggregated, and,
because of this, a few duplicated edges were eliminated.

As expected, there are improvements in the number of successfully paired call
edges, although the change is not really significant. Even if we take into account
that there are possibly pairable methods, there are considerably low pairing ratios.
This suggests that there are vital differences in the topology of the call graphs as
well. The sampling of the unmatched call edges supports this assumption, however,
a more in depth examination is needed to make further conclusions.

A preparation guide for Java call graph comparison 149

Table 7: Edge similarity using the basic name pairing method

Soot OSA SPOON | JCG WALA | JDT

Soot 28,542 | 12.46% | 12.72% | 14.01% | 13.39% | 11.57%
OSA 17.73% | 20,059 | 99.83% | 88.92% | 58.03% | 83.25%
SPOON | 17.71% | 97.67% | 20,501 | 87.70% | 57.98% | 82.28%

JCG 17.52% | 78.14% | 78.77% | 22,826 | 53.18% | 66.94%
WALA | 23.36% | 71.14% | 72.65% | 74.19% | 16,363 | 62.08%
JDT 17.1% 86.52% | 87.4% 79.16% | 52.63% | 19,302

Table 8: Edge similarity using the final approach

Soot0 OSA0 SPOONO | JCGO WALAO | JDTO
Soot0 28,485 13.72% | 13.28%

OSA0 17.72% | 20,057 | 99.83% 88.9% 58.03%
SPOONO | 17.7% 97.67% | 20,499 87.68% | 57.98%
JCGO 17.13% | 78.14% | 78.77% 22,817 | 52.83%
WALAO | 23.18% 73.86% | 16,319

5 Comparison with a topology-based algorithm

In this Section we describe a comparison with the neighbor matching algorithm
introduced in Section 2. Our goal was to study how a neighborhood-based algorithm
performs in terms of accuracy and computational time compared to our approach.

5.1 Utilizing the topology-based method

We downloaded the C++ implementation 7 of Nikoli¢’s work [25]. Only output
formatting modifications were applied. We transformed the call graphs that were
built by the six call graph creator tools so the iterative tool could take them as an
input. The iterative tool requires only the call edge information, no node labeling
is needed.

Like other iterative graph similarity algorithms, this one also produces a sim-
ilarity matrix over the nodes of the compared graphs. Nikoli¢’s innovation was
the normalization of the similarity values between 0-1, so that the higher values
indicate greater similarity. We computed and processed the similarity matrices of
the examined projects for each call graph creator tool pair.

"http://www.matf.bg.ac.rs/ nikolic/software.html

150 Zoltan Sagodi and Edit Pengd

5.2 Evaluation of results

To interpret the similarity values as pairings of nodes we searched for the maxi-
mum values in each row and column. Although this seems like a straightforward
solution the similarity values were rather noisy, meaning that in many cases there
were multiple similarity values around the maximum of a row or a column. Let us
consider the similarity matrix of Soot and SPOON produced from their call graphs
for the Commons Math project. If we pick a method by random there is a high
chance that its pair defined by the maximum will be a noisy result. For exam-
ple, in case of the org.apache.commons.math3.util.FastMathLiteralArrays.
loadExpFracB() method which was detected by SPOON and has valid line infor-
mation the highest similarity value is around 0.6. This corresponds to the follow-
ing method: org.apache.commons.math3.transform.FastFourierTransformer
$MultiDimensionalComplexMatrix.<init>(java.lang.0bject). It is clear that
this pairing is invalid. To reduce the tremendous noise, we decided to take a pair-
ing into consideration only when it is supported by both the column and row point
of view, meaning that the value is both a column and a row maximum (ceratin
matchings). If we examine the previous Soot-SPOON comparison this way we re-
duced the number of pairings reported only by the iterative approach from 12255
to 252. As it can be calculated from Table 6, our attempt detects 2120 pairings in
the SPOON - Soot call graph comparison. There are 77 matches of the iterative
tool for the SPOON - Soot comparison, which were also detected by our algorithm.
If we consider the uncertain maximums as well, this number is 239. These matches
were found valid, meaning that out of the 252 certain pairs of the Soot - SPOON
comparison about 30% is valid.

Our main interest was to analyze the validity of pairings detected only by the
iterative method. There were 2100 unique pairings out of the 15 pairwise com-
parisons of the 6 call graphs created for the Commons Math project. The manual
investigation showed that 2036 of them were invalid, whilst 64 were valid, which
is about 3%. The valid matchings had a specific characteristic. All of them were
generated constructors of anonymous classes. Byte code analyzer tools represent
these constructors with precise parameter lists containing references to the outer
class and to the local fields used in the body of the anonymous class as well, while
source code analyzers detect only the parameters that can be found in the sources.
Naturally, without proper line information and with differing parameter lists, our
node pairing mechanism is doomed to fail on these type of methods. The error
could be resolved if the source code position of these constructor methods would be
associated at least with the declarataion of the anonymous class, and by loosening
our requirement for entirely equal parameter lists. It has to be noted that even the
manual validation failed in a very few cases, when there was no line information for
one member of the pair and the outer class contained multiple anonymous classes.

A preparation guide for Java call graph comparison 151

5.3 Summarization

The manual investigation showed that the results are similar for the other projects
as well. In case of the Joda-Time project®, only 3 pairings were valid out of 754.
We concluded from our findings that on average the validity of the pairings that are
found only by the iterative method less than 10%. Section 4.7 indicates that there
are significant differences in the number and type of detected call edges, which can
be a reason for the noisiness of this topology-based method.

The comparison with a topology-based method revealed a very specific weak
point of our pairing mechanism. Although the problem is limited to a little subset
of the nodes, it still has to be addressed in the future. If the static analyzer
tools would provide line information for these anonymous initializers, for instance
by associating them with the position of the declaration of the anonymous class,
our approach could pair them. It would be a straightforward idea to combine our
approach with this iterative method to resolve the described problem. However, the
expansion would not be trivial, especially if we consider that our pairing mechanism
took 12 minutes, while the iterative algorithm finished the Commons Math project
over 17 hours.

Despite the problems of anonymous constructors, this comparison assured us
that we find no matches that a neighbor-based algorithm would not and we miss
a high percentage of noisy results that the iterative method reports. Moreover,
the computation time of our pairing mechanism does not scale with the size of the
input graphs as badly as that of the iterative method. On small sample graphs
both implementations finish within seconds, however in case of projects with a few
thousands lines of code the iterative method needs hours compared to the couple
of minutes that our approach requires.

6 Conclusions

In the future, we plan to compare the capabilities of static call graph creator tools.
This could be done by comparing what methods and calls are present in the gener-
ated call graphs. If the nodes of the call graphs are matched, then comparing the
calls is a straightforward task. That is the reason why we paid so much attention
to the unifying process of the methods. This paper was a necessary preliminary
work for the upcoming quality comparison of the tools.

We collected and, where necessary, modified six Java static analyzer tools to
generate call graphs for multiple large projects. By investigating the resulting
graphs, we realized that the unification of method names is needed, in order to be
able to match the corresponding nodes to each other. The unification process - and
hence the pairing mechanism - has been refined in several steps. We highlighted
two common language elements, the anonymous and generic methods that needed
careful consideration and made the improvement of the process necessary. Multi-
ple solutions were proposed. One heuristical - but less accurate - approach for

8https://github.com/Jodalrg/joda-time

152 Zoltan Sagodi and Edit Pengd

anonymous elements is the anonymous transformation. However, with line infor-
mation they could be handled better, along with the generic code elements. We
performed a manual validation of the different pairing strategies on a sample code,
containing all features of Java 8. The source and the results are available in the
online appendix. The results of the large projects were also manually investigated.
Our solution was compared to a topology based node pairing algorithm as well.

In our final solution, we used the basic name-wise pairing for normal methods,
line information-based pairing for anonymous methods and a combined solution for
generic methods. In this combined solution, if two methods have the same package,
class and method name, have the same number of parameters and have the same
line information, it is assumed that they correspond to the same generic method
declaration. The analyzers may represent the same generic method with different
number of nodes in their call graphs. This asymmetry was solved by collecting
every possible pairing between these nodes.

The manual validation proved that better pairing could be achieved if we could
acquire more accurate line information of the methods. However, the reason for
matchless nodes lies in the differences of the static call graph creators themselves,
therefore, the matching of some nodes is impossible.

References

[1] Ahmad Bhat, Sajad. A practical and comparative study of call graph construc-
tion algorithms. TOSR Journal of Computer Engineering, 1:14-26, 01 2012.
DOI: 10.9790/0661-0141426.

[2] Andersen, Lars Ole. Program analysis and specialization for the C program-
ming language. Technical Report May, 1994. 10.1.1.109.6502.

[3] Apache BCEL Home Page.
https://commons.apache.org/proper/commons-bcel.

[4] Bacon, David F. and Sweeney, Peter F. Fast Static Analysis of C++ Vir-
tual Function Calls. SIGPLAN Not., 31(10):324-341, October 1996. DOL:
10.1145/236338.236371.

[5] Blondel, Vincent, Gajardo, Anahi, Heymans, Maureen, Senellart, Pierre, and
Van Dooren, Paul. A measure of similarity between graph vertices: Applica-
tions to synonym extraction and web searching. SIAM Review, 46:647-666, 12
2004. DOI: 10.2307/20453570.

[6] Call Hierarchy Printer GitHub Page.
https://github.com/pbadenski/call-hierarchy-printer.

[7] Champin, Pierre-Antoine and Solnon, Christine. Measuring the similarity of
labeled graphs. In Ashley, Kevin D. and Bridge, Derek G., editors, Case-Based
Reasoning Research and Development, pages 80-95, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

A preparation guide for Java call graph comparison 153

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Christodorescu, Mihai and Jha, Somesh. Static analysis of executables to
detect malicious patterns. In Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, SSYM’03, pages 12-12, Berkeley, CA, USA,
2003. USENIX Association.

Dean, Jeffrey, Grove, David, and Chambers, Craig. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In Tokoro, Mario
and Pareschi, Remo, editors, FCOOP’95 — Object-Oriented Programming,
9th European Conference, Aarhus, Denmark, August 7-11, 1995, pages 77—
101, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

Eclipse JDT Home Page.
http://www.eclipse.org/jdt/.

Eclipse JDT Home Page.
www.eclipse.org/eclipse/.

Eshera, M. A. and Fu, K. A graph distance measure for image analysis. IEFE
Transactions on Systems, Man, and Cybernetics, SMC-14(3):398-408, May
1984. DOI: 10.1109/TSMC.1984.6313232.

Feng, Yu, Anand, Saswat, Dillig, Isil, and Aiken, Alex. Apposcopy: Semantics-
based detection of android malware through static analysis. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2014, pages 576-587, New York, NY, USA, 2014. ACM.
DOI: 10.1145/2635868.2635869.

Grove, David and Chambers, Craig. A framework for call graph construction
algorithms. ACM Trans. Program. Lang. Syst., 23(6):685—746, November 2001.
DOI: 10.1145/506315.506316.

Grove, David, DeFouw, Greg, Dean, Jeffrey, and Chambers, Craig. Call Graph
Construction in Object-oriented Languages. In Proceedings of the 12th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’97, pages 108-124, New York, NY, USA, 1997.
ACM. DOI: 10.1145/263698.264352.

Heymans, Maureen and Singh, Ambuj K. Deriving phylogenetic trees from the
similarity analysis of metabolic pathways. Bioinformatics, 19 Suppl 1:1138-46,
2003.

Java Call Graph GitHub Page.
https://github.com/gousiosg/java-callgraph.

JavaParser - for processing Java code Homepage.
https://javaparser.org/.

Koutra, Danai, Parikh, Ankur, Ramdas, Aaditya, and Xiang, Jing. Algorithms
for graph similarity and subgraph matching. 02 2019.

154

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

Zoltan Sagodi and Edit Pengd

Lhotak, Ondrej. Comparing call graphs. In ACM SIGPLAN/SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, pages 37—42,
2007.

Lhotak, Ondfej and Hendren, Laurie. Context-Sensitive Points-to Analysis: Is
It Worth It? In Mycroft, Alan and Zeller, Andreas, editors, Compiler Con-
struction, pages 4764, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Macindoe, O. and Richards, W. Graph comparison using fine structure anal-
ysis. In 2010 IEEE Second International Conference on Social Computing,
pages 193-200, Aug 2010. DOI: 10.1109/SocialCom.2010.35.

Melnik, Sergey, Garcia-Molina, Hector, and Rahm, Erhard. Similarity flood-
ing: A versatile graph matching algorithm and its application to schema
matching. pages 117 — 128, 02 2002. DOI: 10.1109/ICDE.2002.994702.

Murphy, Gail C., Notkin, David, Griswold, William G., and Lan, Erica S. An
Empirical Study of Static Call Graph Extractors. ACM Trans. Softw. Eng.
Methodol., 7(2):158-191, April 1998. DOIL: 10.1145/279310.279314.

Nikoli¢, Mladen. Measuring similarity of graph nodes by neighbor
matching. Intell. Data Anal., 16(6):865-878, November 2012. DOL:
10.3233/IDA-2012-00556.

OpenStaticAnalyzer GitHub Page.
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer.

Pawlak, Renaud, Monperrus, Martin, Petitprez, Nicolas, Noguera, Carlos, and
Seinturier, Lionel. Spoon: A Library for Implementing Analyses and Trans-
formations of Java Source Code. Software: Practice and Ezperience, 46:1155—
1179, 2015. DOL: 10.1002/spe . 2346.

Sable *J Home Page.
http://www.sable.mcgill.ca/starj/.

Sable/Soot GitHub Page.
https://github.com/Sable/soot.

Sanfeliu, A. and Fu, K. A distance measure between attributed re-
lational graphs for pattern recognition. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-13(3):353-362, May 1983. DOL
10.1109/TSMC. 1983.6313167.

Sundaresan, Vijay, Hendren, Laurie, Razafimahefa, Chrislain, Vallée-Rai,
Raja, Lam, Patrick, Gagnon, Etienne, and Godin, Charles. Practical vir-
tual method call resolution for java. SIGPLAN Not., 35(10):264-280, October
2000. DOI: 10.1145/354222.353189.

A preparation guide for Java call graph comparison 155

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Tip, Frank and Palsberg, Jens. Scalable propagation-based call graph con-
struction algorithms. In Proceedings of the 15th ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA 00, pages 281-293, New York, NY, USA, 2000. ACM. DOLI:
10.1145/353171.353190.

Tversky, Amos. Features of similarity. Psychological Review, 84(4):327-352,
1977. DOI: 10.1037/0033-295X.84.4.327.

Ullmann, J. R. An algorithm for subgraph isomorphism. J. ACM, 23(1):31-42,
January 1976. DOI: 10.1145/321921.321925.

Wagner, Tim A., Maverick, Vance, Graham, Susan L., and Harrison,
Michael A. Accurate static estimators for program optimization. SIGPLAN
Not., 29(6):85796, June 1994. DOI: 10.1145/773473.178251.

WALA Home Page.
http://wala.sourceforge.net/wiki/index.php/Main_Page.

Weiser, Mark. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering, ICSE 81, pages 439449, Piscataway, NJ,
USA, 1981. IEEE Press.

Wicker, Nicolas, Nguyen, Canh Hao, and Mamitsuka, Hiroshi. A new dissim-
ilarity measure for comparing labeled graphs. Linear Algebra and its Applica-
tions, 438(5):2331 — 2338, 2013. DOI: 10.1016/j.1aa.2012.10.021.

Zager, Laura A. and Verghese, George C. Graph similarity scoring and
matching. Applied Mathematics Letters, 21(1):86-94, jan 2008. DOI:
10.1016/j .aml . 2007.01.006.

