On the functional dependency and some generalizations of it

By J. DEMETROVICS and Gy. GYEPESI

§ 0. Introduction

According to E. F. CopD [6] a relation is a matrix without two identical rows.
Rows correspond to data records and columns to the attributes that are to be stored
of a data item. He also introduced [7] the concept of functional dependency: a set
of columns depends on another if fixing the values in a row taken on the first de-
termines those on the second.

Other concepts of his are the key (a set of attributes on which all depend)
and the candidate key (a minimal key). .

Candidate keys clearly do not contain each other [10].

The possible mathematical structure of functional dependencies was first in-
vestigated by W. W. ARMSTRONG. [1]. Among others he found that this structure
is determined by the maximal dependencies (those which have maximal attribute
subsets depending on minimal ones) and even by the dependent sides of the max-
imal dependencies. We also heavily use these “maximal dependent subsets of
attributes™ as technical tools. _

Different kinds of functional dependency have also been introduced [3], [11],
[13], [14], and axiomatized, usually in systems similar to those investigated by
Armstrong. )

The harder problems of the topic are usually of combinatorial nature (see [4],
[51, 19), [15]).

In this paper in § 1 we glve the formal definition of the functional, dual, strong
and weak dependencies and give new axioms for full f- d- and s-families.

In § 2 we show the analogy and differences among the dependenc1es of different
types and give an axiom for full w-families.

In § 3 we deal with a question stated in [9].

Before starting § 1 we make some remarks concerning the practice:

The functional, dual, strong and weak dependencies studied in this paper
are those restrictions which allow the characterization of a relation by restrictions
of it to certain proper subsets of the attribute set.

Certain dependencies of a relational data base are known by its de51gner "We
call these initial dependencies. In general initial dependencies imply new depend-
encies. W. W. ARMSTRONG [2] has developed a method to find the dependencies
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implied by a given set of initial functional dependencies. He also gave a charac-
terization of the sets of initial dependencies that imply all the dependencies of a
given full f-family and are of minimal cardinality. This characterization has a
logical nature; we give a combinatorial equ1va1ent of it.

We use the following notational conventions: Q denotes the set of attributes,
P(Q) denotes its power set. If g is a function with X as its domain and Z&X
then g}Z denotes the function which has domain Z and for any z€Z g(z)=g1Z(2).
C means strict inclusion.

§ 1. Old and new axioms

We start with the deﬁmtlons of functional, dual, strong and weak dependencies
based on [1] and [8].

Definition 1.1. Let A4, B be subsets of Q and let R be a relation over Q. Then
we say that B
(i) functionally;
(1) dually;
(iii) strongly,;
(iv) weakly
depends on A in R if

() (Vg, h€R)(gt A = ht A =>g1 B = h B);
() (Ve he R)((3aeA)(g(a) = h(a) = (IbEB)(g(b) = h(b);
| Gi) (Vg heR)((3a€A)(g(a) = h(@)) = gt B = ht B);
() (Vg heR)(ghA = ht A = (3bEB)(g(b) = h(bY);

holds respectively and denote these by 4 L B, A i>‘B A i B A 1 B corre-

sponding to the type of the denoted dependency
The following example [8] illustrates the effect of the dual dependency

ExampLE. Let Q= {author, title, hall, shelf}. Let we have a library with
eighteen books, three halls and three shelves in every hall; one shelf holds two
books. Let the relation R containing the data of the library given by the follow-
ing table:

author  title  hall  shelf author title  hall  shelf

1 1 1 2 1010 3 2
2 2 1 3 i1 3 3
3 3 1 1 12 12 3 1
4 4 1 2 1 4 11
5 5 2. -3 5 g§. 3 3
6 6 2 1 4 1 1 3
7 7 2 2 7 10 3 2
g 8 2 3 6 10 2 2
9 9 3 1 6 9 2 1



i

On the functional dependency and some generalizations of it 297
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Thus {author, title} 1—':» {hall, shelf} holds, and for i=1, ..., 12 the book by author

i and entitled i is on the (1+3-{%}]-th shelf of the [1_23 ]-th hall ([x] denotes

the integer part and'{x} the fraction part of x). The reader, knowing the author
or the title of the required book, may find it without examining the whole library:

for example if 7 is the author of the book, then it is enough to look the %3] th

3
In R {author, t1t1e} = {hall, shelf} holds too, but to store this funct10nal de-

hall, and the [1+3 {—}] th shelves of the other two halls.

pendency is equivalent to store the table of R; the {author, title} - 2 {hall, shelf}

dependency is more effective.
If R is a relation over Q, ¥€{F, D, ¥, W} and yc{f, d, s, w} corresponds
to %, then we write

Yy = {(4, B): A3 B).

We call the sets which have the form %y full y-families, where y corresponds to #.
In order to investigate the various dependencies the first step is the axiomatiza- .
tion of full y-families for ye{f, d, s, w}. In [1] there is a system of axioms for
full f~family and in [8] there are for full d- and s-families. For the sake of com-
pleteness we reproduce them here.
Let #C< P(Q)XP(Q) Then we say that % satisfies the f-axioms, if for all
A,B,C,DSQ

"~ (Fl) (4, 4)¢%;
(F2) (4,B)c%, (B, C)e¥ = (4, C)e%;
(F3) (4,B)W, C2 4, DS B=(C,D)¥,
(F4) (4, B)¥, (C,D)e¥ =(AUC, BUD)EY.
% satisfies the 8-axioms if for all 4, B, C, DS Q
(D1) (4, A)¢%;
(D2) (4,B)<%, (B, C)c¥ = (A4, C)eW;
(D3) (4,B)%, CS< A, BSD=(C, D)EY;.
(D4) (4, B)e¥, (C,D)e¥ =(AUC, BUD)EY;
(D5) (4, 0)¥ = 4 = 9. '
% satisfies the y-axioms if for all 4, B, C, DS Q and for any a€Q
1) ({a}, {ahe¥;
(S2) (4, B)EW, (B,C)cW, B# 0= (4, C)U; -
(S3) (4,B)%, CS A4, DS B=(C, D)%,
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(84 (4,B)¢%, (C,D)e¥=(4NC, BUD)€Y;
(85) (4,B)e%, (C,D)e¥=(4UC, BND)EY.
We need the following technical lemma. '

Lemma 1.1. Let £ S P(Q)XP(R) be such that (X, Y)€& and Y0 imply
X=0. Then & satisfies the f-axioms iff @={(4, B): (B, A)¢F} satisfies the
J-axioms.

Proof. Trivial by the {- and $-axioms. (D5) makes necessary the assumption
that (X, Y)€EZ and Y=0 imply X=0. 0O

_ REMARK. The assumption ((X Y)eF and Y#0 imply X0) in Lemma 1.1
is not an important restriction: if & satisfies the j-axioms let #' =% \{(0 X): X=0}.
Then &’ obviously satisfies the f-axioms and the critical assumptlon as well, and
we have that X0 implies (X, Y)eF (X, Y)EF'.
In the following we give new axioms instead of the §- 3- and y-axioms and
give an axiom that characterizes the weak full w-families which is such a full w-
family that whenever (X, Y) is an-element of the family then X is not void.

F-axiom. Let FCP(Q)XP(Q). Then we say that &F satisfies the F-axiom
if for any (X, Y)EP(Q)XP(Q\F there is an EC Q such that '
() XS Eand YEE;
@ii) if (X', Y)€Z and X'CE then Y’ CE.

D-axiom. Let 2SS P(Q)XP(Q). Then we say that @ sdtiqﬁes the D-axiom
if for any (X, V)EP(QXP(Q\Z there is an ECQ such that

(i) XNE=P and YNE=0;
(i) if (X', Y)2. and X'NE#0 then Y'ﬂE#Q

S-axiom. Let LS P(Q)XP(Q2). Then we say that & satisfies the S-axiom
if for any (X, Y)EP(QXP(Q\Y there is an ESQ such that

() XNE#0 and YEE

(i) if (X', Y)E¥ and X'NE=P then Y’CE

W-axiom. Let #°C P(Q)XP(Q). Then we say that ¥ satisfies the W-axiom
if for any (X, Y)EP(QXP(Q\ ¥ there is an EC Q such that -

(i) XSE and YNE=0;

(i) if (X, Y)e# and X'CE then Y NE=0.

Theorem 1.1. (i) Let F S P(Q)XP(Q). Then % satisfies the f-axioms iff
Z satisfies the F-axiom.

(i) Let 2SS P(Q)XP(Q). Then 2 satisfies the 9-axioms iff @ satisfies the
D-axiom.

(i) Let LS P(Q)XP(Q). Then & satisfies the y-axioms iff & satisfies
the S-axiom.

Proof. (i) Suppose that & satisfies the F-axiom. Then

(F1) If (4, A)¢ F then there is an ES Q such that AgE' and A& E which
is a contradiction.
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(F2) If (4, B)eZF, (B,C)eF and (4, C)¢F then there is an ECQ such
that ASE and CELE. Furthermore (4, B)¢ZF, ACE imply BCE, and using
(B, C)€ZF, CSE which is a contradiction.

(F3) If (4, B)¢F, A/ 24, BSB and (A4, B)&./' then there is an EC Q
such that A"CFE and B’%E and (4, B)¢F, ACE imply that BE E. Thus, by
B'CB, B'CE which is again a contradiction.

(F4) If (4, B)eF, (C,D)eF and (AUC, BUD)¢ & then there is an ECQ
such that AUCZE and BUDEE; e.g. BEE. But (4, B)eF and A4S E imply
that BS E, which is a contradiction. .

Suppose now that % satisfies the f-axioms. Let (4, B)EP(Q)XP(Q\F.

Claim. There is an E2A4 such that (E, BYeP(QXP(ON\F and E DE
implies (E’, B)EZF.

(Q, DeF by (Fl) Thus, by (F3), (Q, B)¢# holds. A< Q and (4, B)EP(Q)X
XP(Q)\F, consequently there is an ESQ which is maximal w.r. to the
properties (E, B)¢# and E2A. ' )

This E clearly satisfies the restrictions of the Claim.

Let EDA which is guaranteed by the Claim. We state that E satisfies
(i) and (ii) of the F-axiom. Namely, by the choice of ‘E, ASE holds. By (F1)
and (F3), BCE implies (E, B)¢Z. Thus we have BLE.

. Let (C,D)¢# and CCE. DEE implies E’=DUEDE, and, by the max-
imality of E, (E’, B)¢.# holds. Since (E, D), by (F3), and (E, E)c# by (F),
we have (E, E')¢#. Now (FE, E)eZF, and (E’', B¢ and (F2) imply that
(E, B)¢#, which is a contradiction. .
© (i) Let #F={(4, B): (B, A)€2}. Then, by Lemma 1.1, # satisfies the f axioms
iff @ satisfies the 9-axioms. Hence, by (i), it is enough to show that # satisfies
the F-axiom iff & satisfies the D4axiom. ’

Suppose that # satisfies the F-axiom. For (4, B)EP(QXP(QNF let
E(A, B) be a subset of Q such that ASE(4, B), BEE(4,B) and if both
(4, BYeF and A’CE(A4,B) hold, then B’CE(A, B). By the F-axiom such
an E(A, B) exists. By the definition of # whenever (4, B)¢P(2)XP(Q) then
(4, BYEP(QXP(ONF iff (B, AEP(QXP(Q\Z.

Now it is easy to check that for (B, A)EP(Q)XP(Q)\@ Q\E(4, B) satisfies
the D-axiom.

If @ satisfies the D-axiom, then & satisfies the F-axiom; this can be shown
by the same argument.

(iii) Suppose that & satisfies the S-ax1om Then the proof of the fact that
& satisfies the y-axioms is an easy modification of the proof of (i). We deal with
but (S1) and (S2). - :

(S if ({a}, {aD¢ &, then there is an ESQ such that {a}ﬂE#@ and
{a}N(Q—E)>0. which contradicts |{a}|=1.

(S2) if (A, B)Ey (B C)es, B#0 and (A, C)¢& then there is an ESQ
such that

(@) ANE=0

(b) CN(QA\E)=0 and :

(c) (F, D)es”, FNE#Q. imply that DSE. :

(a) and (c) imply BSE. By B0 we have BﬂE;é@ Hence by (B, C)¢s,
CZE holds which is a contradiction. )

4 Acta Cybernetica V/3
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Suppose now that & satisfies the y-axioms. Let (4, B)¢€P(Q)XP(Q\Z

Claim. There is an a€A and an ES Q such that

(a) acE,;

(b) ({a}, E)€& and

(c) ‘E’>E implies that ({a}, E')¢ &.

If for any a€A we have ({a}, B)¢& then (4, B)€& Dby the repeated apphcatlon
of (85)* Hence there is an a€A such that ({a}, B)¢&. Now if for every b€B
({a}, {b})ey holds then by the repeated application of (S4) we have ({a}; B)€<.
Thus there is a b€B such that ({a}, {b})¢ &.

By (S1) and (S3) there is an ES Q such that e€E, ({a}, E)€& and E is max-
imal w.r. to this property. This E is appropriate for the Claim.

Let ECQ and a€A guaranteed by the Claim. Then by (S3) we have b¢ E.
Hence ANE=® and BN(Q\E)=0. Now let (C, D)€% such that CNE=p;
let c€cCNE. Suppose that DN(Q\E)#0; let deDN(QN\E). By (53) we have
({c}, {dDes and by (S1) we have ({c}, {cDe¥. ({a), E)c& implies that

({a, ¢}, {cpe&, by (S5). Hence (S3) implies that ({a}, {cPc&. Now ({a}, {cDhe ¥,
({c}, {d)hes and (S2) imply that ({a}, {d})¢%. Thus by (S4) we have
({a}, EU{d})c¥ which is a contradiction as E'=EU{d}DE. '

Consequently the E guaranteed by the Claim demonstrates that & satisfies

the S-axiom. o -

§ 2. The equality-aet

Deﬁnitioﬁ 2.1. Let R be a relation over Q. We define the equality-set of R, &y
as follows: For h,geR let E(h g ={acQ: h(a)=g(a)} and let &Ex=
={E(h,g): h,g€R and hs=g}.

Definition 2.2. Let o/ be a-set system. Then &/ is a A-system if for any
A, B, C,Desd, A#B and C=D implies that ANB=CND.

Remark. 1t is easy to see that of is a A-system iff for any A, B/, A#=B
implies that ANB=N«.

Theorem 2.1 (i) Let R be a relation over Q2 and let A, f, g different elements
of R. Then E(h, g), E(h, f), E(g, f) form a A-system.

(i) Let &={E; ;: 151<15k} such that foreach l1=i<j</=k, {E, i Ei Ej i}
is a A-system. Then there is a relation R over @ with &£z=§.

Proof. By symmetry it is enough to prove that ac E(h, g)NE(h, f) implies
acE(g, f). But acE(h,g) N E(h, f) means that g(a)=h(a)=f(a), hence acE(gf).
" We construct by induction the rows hy, ..., h, of R. Let h,(@)=0 for each
ac Q, and assume that n<k and the rows Ay, ..., A, have been defined s.t. for each
l=i<j=n, E(h;, h))=E;; holds. We construct 4,,, as follows:

(@) = {h,(a), if a€E; 4, for some .1=i=n;
P lmax (hy(b): beQ & 1=i= n)+l else.

© 1450, since VbEB ({b},{b})H €& by (S1), hence (B, B)e.9’ by (S4) and (S5). Butif A=, then :
(4, B)E & by (S3).
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Then

(@) h,., is well-defined.

To prove this we have to show that aEE‘ w+1(VEj »4y implies ha)=h;(a).
But this is obvious because E; ;, E; 541, Ej ns1 form a A-system and the 1nduct1_on
hypothesis holds for 7, j=n.

(b) if 1=i=n and a4 E; ,i; then h(a)#h,;,(a). '

Suppose first that a€E;,,, for some 1=j<n41. Then, by (a) and the
deﬁnitlon of h,,+1, h,1(@=h;(a@) holds. Furthermore a4FE;; because
{Ei. ;s Ej nt1s Ei,nsa} is a A-system Thus the 1nduct10n hypothesis implies #;(a) =
#h (a), that is A;(a)#h, 1 (a).

' If ag U,zjzs Ej,nyithen we have h,,,(a)#h;(a) by the definition of 4,,,.
This completes the proof of (b).

Now by (a) and (b) it is clear that for 1<z<n Eh,, h,,+1) E; .+, and hence

the 1nd}10t10n step works. ‘Let R={hy, ..., Iu}. Then &r=& obviously holds. [J

After Theorem 2.1 there is a natural way to axiomatize full families of de- .
pendencies of any type. This follows next:

F'-axiom. Let FCSP(Q)XP(Q). Then F satisfies the F'-axiom if thereis
a natural number k and an indexed set of subsets of @, {E; ;: 1=i<j=k} such.that

() If (X, Y)EP(Q)XP(2\F then there are 1=i<j=k such that XCE,;
and YEE, ;.

i) If (X, Y)eZF, 1=si<j=k and XCE, ; then YEE, ;.

(iii) For any l=i<j<I=k, {E,;, E;,, E;,;} is a 4-system.

D’-axiom. Let 2SS P(Q)XP(Q). Then 2 satisfies the D’-axiom if there is
a natural number k and an indexed set of subsets of @, {E; ;: 1—l<_]<k} such
that

) If (X, Y)EP(Q)XP(Q)\@ then there are 1<z<]sk such that
XNE; ;#0 and YNE;;

(11) If (X, Y)€9, 1<l<_]<k and XﬂE,,;fﬂ then YEE, ;#0.

(iii) The same as (iii) of the F’-axiom.

S’-axiom. Let LS P(Q)XP(L). Then & satisfies the S’-axiom if there is
a natural number k and an indexed set of subsets of Q, {E; ;: 1=i<j=k} such
that

O XY )EP(Q)XP(Q)\.V then there are 1=i<j=k such that
XNE; ;#0 and YEE, ;.

Gi) If (X, Y)€&, 1=i<j=k and XNE,; ;%0 then YE E“

(iii) ‘'The same as (iii) of the F’-axiom.

W’-axiom. Let WCSP(Q)XP(Q). Then W satisfies the W’'-axiom if there
is.a natural number. k and an indexed set of subsets of Q, {E; ;:'1=i<j=k} such
that

Q) If (X Y)EP(QXP(Q\W then there are 1<l<]$k such that XCE”
and YNE; ;=0..

(ii) If (X Y)ew,. 1<1<]Sk .and XCE” then YNE; ;=9.

(iii) The same as (iii) of the F’-axiom.
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REMARK. Observe that the E; ;-s in the F’-axiom are maximal dependent sets,
ie. if (X, Y)éF and XCE; then YCE ;

Theorem 2.2. (1) Let @/CP(Q)XP(Q) and ‘Ye{F, D, S} Then % satisfies
the Y-axiom iff ¥ satisfies the Y’-axiom.

(ii) Let Q be a finite set, |Q2|=3. Then there is a # S P(Q)XP(R) such that
¥ satisfies the W-axiom and ¥ does not satisfy the W’-axiom.

Proof. (1) Let first Y=F and suppose that & satisfies the F-axiom.. Write
Y=gF. For any (X, Y)EP(QXP(Q\F take an E(X, Y)SQ guaranteed by
the F-axiom. List these E(X, Y)-s as E,, ..., E; (the indices begin with 2). For
l<j=k let E,;=FE; and for l<i<j§k let E;;=E/NE;. We claim that
{E; j: 1=i<j=k} demonstrates that & satisfies the F’-axiom. The requirement
(1) of the F’-axiom holds by {£,, ..., E,}S{E; ;: 1<l<j5k} We left to the reader
to check that. (i1) holds too. To prove (ii1) of the F’-axiom let 1<t<]<l<k

We distinguish two cases: )

(a) i=1. Then E; =E;; E, ,-E, and E; ;=E;NE, Thus the intersection
of any two members of {E, i E,,, sayis E;NE;. This means that {E; ;; E;; E;}}
18 A-system.

- (b) I<i. Then E;;=ENE; E,-,,inﬂE, and E;,=E;NE,. Thus the
intersection of any two members of {E;;; E;; E;,} is E ﬂE ﬂE, This means
that {E; ;; E;,; Ej,} is a A-system.

If & satlsﬁes the F’-axiom then % obviously satisfies the F-axiom.

Now let Y=D and suppose that % satisfies the D-axiom. Write % =9.
For any (X, )EP(QXP(QN\Z take an E(X, Y)S Q guaranteed by the D-
-axiom. List these E(X, Y)-s as E,, ..., E;. For I=i=k let Ep—y,5=E; and if
l<z<j§2k and E;; is still’ undeﬁned then let E; ;=0. It is easy to see that
{E; ;: 1=i<j=2k} shows the D’-axiom to hold for 9. If U satisfies the D’-axiom
then it trivially satisfies the D-axiom. .

The case Y=S is an easy modification of the proof in the case Y=F.

(i) For the sake of simplicity suppose that Q={a, b, c}. (In the general case
pick two different elements a and b of Q. The role of {c} will played by Q\ {a, b}).
Let # ={(4, BYe P(QXP(Q): AS {a}=a€B and AE {b}=bcB). Then W sat-
isfies the W-axiom while if (4, B)EP(Q)XP(Q\# then cither (4C {a} and
@¢ B) or (AC {b}-and b¢ B). For (4, B), E={a} takenin the Ist case and E= {b}
in the 2nd one shows the W-axiom to hold. o

-We claim that . %" does not satisfy the W’ -axiom. Suppose indirectly that

{E, e l<l<j<k} isa system that shows the W’-axiom to hold for #".

Then

(1) {a}¢& and {b}Eé" while  ({a}, Q\{a})EP(Q)XP(Q)\"/// - and
{5}, Q\{b})EP(Q)XP(Q)\"/l/ hold.

- (2) 9¢& and {c}¢ & while (0, QW and’ ({c}, Q\{c})E"IV hold.

By (1), {a}¢& and {b}cé&, thatis {a}=E;; and {b}= E,,,, for some 1=i,
_],1 m=k. We distinguish two cases: .

‘(a) i=I. Then {a}=E;; and {b}= E; {E; ;s Eim; ,,,} is a 4- system
consequently either E; , =0"or E; »={c}. Both cases contradict ). :

®) |{i, j, l.m}|=4."-We may suppose that " (i, jy=(1,2). and. (/, m}= (3 4)
while we are interested in {E; ;; E,,,, Eimi Eig; Ej s Emy. What is E, 5?
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By (2) E2 ;%0 and E,g={c}. The cases E, ;={a} or {b} arise to the
case (a). E, g5 {b, ¢} while E, s, E; 35 E, 5 form a d-system and thus E, ,={b, c}
implies £, 3—13 contradicting 2. Similarly E2 37 {a, ¢}. Thus {g, B} S £, 5. The possi-
bilities for E,,, are the same as for E; 4 that is {a, bB}S F, ;. Butthen b€E; 3ﬂE2 3
and b¢ E, ., contradicting {E1 2 E2 3s E1s)’s bemg a A-system

The proof is complete. [

ReEMARK. Theorem 2.2 demonstrates the difference between the weak dependency
and the rest. :

Theorem -2.3. Let @gP(Q)XP(Q) ‘satisfy the Y’-axiom for some
Ye{F, D, S, W}. Then there is a relation R over Q with #=%,. Conversely,
if R is a relation over Q then % satisfies the Y’-axiom.

Proof. Let &={E; ;: 1=i<j=k} show that ¥ satisfies the Y’-axiom. Then
the requirement (iif) of the Y’-axiom and Theorem 2.1 (ii) imply that there is a rela-
tion R over Q such that &=&. By the ¥’-axiom it is obvious that ¥ =%.

Conversely, if R is a relation over @, then writing R={hy, ..., i}, E; ;=
-—E(h,, hy); {E; ;: 1=i<j=k} shows that @y satisfies the Y’-axiom. O -

§ 3. Combinatorial results

Definition 3.1. Let # be a full ffamily and let AS Q. Then A is a candidate
key for F if (4, )€¢F and for any A'"C A4 (A’ Q¢ F holds. Let R be a relation
over , then the set of candidate keys of R is the set of candidate keys of %.

Let % denote the set of candidate keys of #. Then ¥ is a Sperner system,
1.e. (VA4, BE¥) (AS B=>A=B). We deal with the following question of [9]:

(*) Let r(n) denote the smallest integer for which any Sperner system CZ P(Q)
is the set of candidate keys of a suitable relation over the n-element set €2
with at most r(n) rows. What can be said about r(m?

In [9] it is shown that for any Sperner system there is a relation with thlS
system as its set of candidate keys and that

V;(EE = =2

We give sharper estimations for r(n).

() =0 = ([ )t

Proof. First we prove the upper bound. Let < P(Q) be a Sperner system.
‘Let & consist of the maximal sets that do not contain any members of-%. Let
B, ..., B, be the members of #. For 1<j=k let E, ;=B; and for l<i<jsk
let E ;=B;NB;. Then {E,j l=i<j=k} satisfies the requirements of the The-
orem 2.1 (u), hence there is a relation R over © with k rows such that Er=
={E; ;: 1=i<j=k}. Then obviously ¥ is the set of candidate keys of R. ‘It "is

" Theorem 3.1.
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trivial that & is a Sperner system, and thus I‘%|§([n/2]] that is k=([n /2]]+1.

The rest of the proof is due to L. RONYal. We start with two trivial observations.

1. Let R be a relation over Q with r rows. Then there is a relation R” over
Q such that R’ uses no more than r symbols and &r=~&R-.

2. Let R be a relation over Q with r rows and let r’>r. Then there is a rela-
tion R’ over Q withr’ rows such that &z=4&%..

By 1. and 2. the number of Sperner systems which may be represented as sets
of candidate keys of relations with r rows is no more then r*”. Hence

r(n)y®n > 2enfzp)

r(m > [[nr;Z ] =

It is natural to ask the following analogon of (%):

Let R(n) denote the smallest integer for which any full family & S P(Q)XP(£)
is-the set of functional dependencies of a suitable relation over the n-element set
 with at most R(n) rows. What can be said about R(n)?

By the proof of Theorem 2.2 (i) it is obvious that R(n)=(the maximal number
of subsets of ©Q such that the intersection of any two of them is not a third). Thus,

which implies

[

by a theorem of D. KLEiTMAN [12], R(n)éc-([n72]] where c¢=3/2. Z. FUREDI

and J. PacH have shown, that this number is less then (1+(c-logn)/n) ([n72]]‘

Lastly we give the combinatorial characterization — according to §0 — of
the sets which are of minimal cardinality with respect to the property that they
imply all the dependencies of a given full ffamily.

We need some definitions and a lemma.

Definition 3.2. Let /# S P(Q).
(i) We say that .# has the intersection property if for any A 'S M, "M €M
holds. '
(ii) An Me M is irreducible if M#=N{M’'€M: MC M’} (recall that C
means strict inclusion).
(i) An & S M generates M if M={NN": /'S N}

Lemma 3.1. Let .# have the intersection property and let N = {McH: Mis
irreducible}. Thenan A#'CS A generates A iff &/ S A,

Proof. The following proof is standard in lattice theory. If 47’ generates .#,
then A& S’ is obvious. For the converse we have to prove that 4 generates
. Suppose indirectly that there is an X€#\ A" such that X=N{Y: Ye ¥ &
Xc Y} Let X be of minimal cardinality with respect to this property. X¢ A4
means that X=N{Y: Y€/ & XcCY}, hence XCY implies that there is an
N, E AN such that ¥Y=NA,. Let #=U{AH,: XCY and YE.///} Then ./V'C./V
and X =A, which is a contradiction. O

REMARK. Observe that the proofs of the Theorems in [2] are essentially our
proof of’ Lemma 3.1. :
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Corollary. If .# has the intersection property then there is exactly one A4 S.#
which generates .# and has minimal cardinality.

Theorem 3.2. Let & be a full f-family, let 2 be the set of maximal dependent
sets for & and let € be the set which generates # and has minimal cardinality
(in [1] it is shown that # has the intersection. property).

Then for any #’C & we have the following: &’ implies all the dependencies
of # and & has minimal cardinality with respect to this property if and only 1f
for any C¢% there is an A, S Q such that F'={(4,, C): Ce¥}.

We left the easy proof of the Theorem to the reader. We think that it is in-
teresting to compare Theorem 3.2 with the Theorem on pp. 16 of [2].
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