
On the functional dependency and some generalizations of it 
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§ 0. Introduction 

According to E. F . CODD [6] a relation is a matrix without two identical rows. 
Rows correspond to data records and columns to the attributes that are to be stored 
of a data item. He also introduced [7] the concept of functional dependency: a set 
of columns depends on another if fixing the values in a row taken on the first de-
termines those on the second. 

Other concepts of his are the key (a set of attributes on which, all depend) 
and the candidate key (a minimal key). 

Candidate keys clearly do not contain each other [10]. 
The possible mathematical structure of functional dependencies was first in-

vestigated by W. W. ARMSTRONG. [1]. Among others he found that this structure 
is determined by the maximal dependencies (those which have maximal attribute 
subsets depending on minimal ones) and even by the dependent sides of the max-
imal dependencies. We also heavily use these "maximal dependent subsets of 
attributes" as technical tools. 

Different kinds of functional dependency have also been introduced [3], [11], 
[13], [14], and axiomatized, usually in systems similar to those investigated by 
Armstrong. 

The harder problems of the topic are usually of combinatorial nature (see [4], 
[5], [9], [15]). 

In this paper in § 1 we give the formal definition of the functional, dual, strong 
and weak dependencies and give new axioms for full / - d- and j-families. 

In § 2 we show the analogy and differences among the dependencies of different 
types and give an axiom for full w-families. 

In § 3 we deal with a question stated in [9]. 
Before starting § 1 we make some remarks concerning the practice: 
The functional, dual, strong and weak dependencies studied in this paper 

are those restrictions which allow the characterization of a relation by restrictions 
of it to certain proper subsets of the attribute set. 

Certain dependencies of a relational data base are known by its designer. We 
call these initial dependencies. In general initial dependencies imply new depend-
encies. W. W. ARMSTRONG [2] has developed a method to find the dependencies 
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implied by a given set of initial functional dependencies. He also gave a charac-
terization of the sets of initial dependencies that imply all the dependencies of a 
given full f-family and are of minimal cardinality. This characterization has a 
logical nature; we give a combinatorial equivalent of it. 

We use the following notational conventions: Q denotes the set of attributes, 
P(Q) denotes its power set. If g is a function with X as its domain and ZQX 
then g\Z denotes the function which has domain Z and for any z£Z g(z)=gtZ(z). 
c means strict inclusion. 

§ 1. Old and new axioms 

We start with the definitions of functional, dual, strong and weak dependencies 
based on [1] and [8]. 

Definition 1.1. Let A, B be subsets of Q and let R be a relation over Q. Then 
we say that B 

(i) functionally; 
(ii) dually; 

(iii) strongly; 
(iv) weakly 

depends on A in R if 

(i) (Vg,h£R)(g\A=h\A^g\B = h\B); 

(ii) (\/g,h£R)(!i3a£A)(g{a) = h(a))=>(3b£B)(g(b) = h(byj); 

(iii) (\/g,h£R)(<i3a(LA)(g(a) = h(a))=>g\B = h\B); 

(iv) Wg,h£Jl)(gtA=h\A=y(3b€B)(g(b) = h(by)); 
f d . s w 

holds respectively and denote these by A — B, A — B, A — B, A — B corre-
sponding to the type of the denoted dependency. The following example [8] illustrates the effect of the dual dependency. 

EXAMPLE. Let £ 2 = {author, title, hall, shelf}. Let we have a library with 
eighteen books, three halls and three shelves in every hall; one shelf holds two 
books. Let the relation R containing the data of the library given by the follow-
ing table: 

author title hall shelf author title hall shelf 
1 1 1 2 10 10 3 2 
2 2 1 3 11 11 3 3 
3 3 1 1 12 12 3 1 
4 4 1 2 1 4 1 . 1 
5 5 2 • 3 5 8 3 3 
6 6 2 1 4 1 1 3 
7 7 •2 • 2 7 10 3 2 
8 8 2 3 6 10 2 2 
9 9 3 •1 6 9 2 1 



On the functional dependency and some generalizations of it 297 

Thus {author, title} j* {hall, shelf} holds, and for i = l , ..., 12 the book by author 

/ and entitled i is on the ^1 + 3 - | y | j - t h shelf of the hall ([x] denotes 

the integer part and {x} the fraction part of x). The reader, knowing the author 
or the title of the required book, may find it without examining the whole library: 

for example if i is the author of the book, then it is enough to look the j^^t i j - th 

hall, and the ^1 + 3* j y j j - t h shelves of the other two halls. 

In R {author, title} {hall, shelf} holds too, but to store this functional de-
pendency is equivalent to store the table of R; the {author, title} {hall, shelf} 
dependency is more effective. 

If R is a relation over Q, {¡F, 3), y , iV) and y£{f d, s, w} corresponds 
to <3/, then we write 

9 R = { { A , B y . . A ' t B } . 

We call the sets which have the form R full y-families, where y corresponds to 9J. 
In order to investigate the various dependencies the first step is the axiomatiza-

tion of full y-families for y£ {f d, s, w}. In [1] there is a system of axioms for 
full /-family and in [8] there are for full d- and ¿-families. For the sake of com-
pleteness we reproduce them here. 

Let <&<^P(Q)Y,P{Q). Then we say that <& satisfies the f-axioms, if for all 
A,B,C,DQQ 

- (Fl) (A,A)£<&; 

(F2) -(A,B)€&, (B,C)e&=>(A,C)€&; 

(F3) {A,B)e&, C ^ A , D < g B ^ ( C , D ) e ! t \ 

(F4) (A,B)eat, (C,D)&t=*{A\JC,B\)D)$!St. 

<3f satisfies the 9-axioms if for all A, B,C,D^Q 

(Dl) ( A , A ) m 

(D2) (A,B)€&, (B,C)€&=>(A,C)€&; 

(D3) (A, B)£<8f, CQA, BQD=>(C, 

(D4) {A,B)$&, (C,D)Z<&=>(A\JC,B\JD)£<y\ 

(D5) (A, Q)&=>A = 0 . 

<& satisfies the y-axioms if for all A, B, C, DQQ and for any a£Q 

(51) ({<%},{a})eSt; 

(52) (A,B)&, (B,OQSf, B?±0^(A,C)eW; 

(53) (A,B)€&, eg A, DQ B=*(C,D)€&; 
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(54) (A,B~)£<&, (C,D)£<W=>(Ar\C,BUD)e<2/; 

(55 ) (A,B)£% (C,D)£W=>{AVC,BnD)£<y. 

We need the following technical lemma. 

Lemma 1.1. Let S^<gP(,Q)xP(Q) be such that (X, and imply 
X^0. Then & satisfies the f-axioms iff 2) = {(A,B): (B, A)fSF} satisfies the 
9-axioms. 

Proof. Trivial by the f- and 9-axioms. (D5) makes necessary the assumption 
that (X, and I V 0 imply X ^ 0 . • 

REMARK. The assumption ((X, Y)£& and imply AV0) in Lemma 1.1 
is not an important restriction: if OF satisfies the f-axioms let ¿F'=&r\{(&, X): AV 0}. 
Then J5"' obviously satisfies the f-axioms and the critical assumption as well, and 
we have that X^0 implies (X, Y)£3?'. 

In the following we give new axioms instead of the f- 9- and y-axioms and 
give an axiom that characterizes the weak full w-families which is such a full w-
family that whenever (X , Y) is an element of the family then X is not void. 

F-axiom. Let ^ Q P ( Q ) x P ( Q ) . Then we say that 3F satisfies the F-axiom 
if for any (X, Y)£P(Q)xP(Qy\3F there is an EQQ such that 

(i) XQ E and 
(ii) if (X', and X'QE then Y'<gE. 

D-axiom. Let <3QP(Q)XP(Q). Then we say that Q) satisfies the D-axiom 
if for any (X, Y)eP(Q)xP((2)\g> there is an EQQ such that 

(i) XDE^0 and Y(1E=0; 
(ii) if (X', Y')£3> and XTlE^Q then Y'C\E^0. 

S-axiom. Let £fQP(Q)XP(Q). Then we say that Sf satisfies the S-axiom 
if for any {X, Y)fP(Q)xP(Q)\9' there is an EQQ such that 

(i) Xf]£V0 and Y%E 
(ii) if ( X Y ' ) £ £ ? and X'C]E^0 then Y'QE. 

W-axiom. Let W^P(Q)xP(0). Then we say that if satisfies the W-axiom 
if for any (X , Y)£P(Q)xP(Q)\ir there is an E<gQ such that 

(i) XQE and YC\E=&; 
(ii) if (X\ Y')£ir and X'QE then 

Theorem 1.1. (i) Let ^QP(Q)XP(Q). Then J5" satisfies the f-axioms iff 
SF satisfies the F-axiom. 

(ii) Let 3>QP(Q)XP(Q). Then 3> satisfies the 3-axioms iff Q) satisfies the 
D-axiom. 

(iii) Let S?QP(Q)XP(Q). Then y satisfies the y-axioms iff Sf satisfies 
the S-axiom. 

Proof, (i) Suppose that OF satisfies the F-axiom. Then 
(Fl) If (A, then there is an EQQ such that AQE and A%E which 

is a contradiction. 
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(F2) If (A,S)e^r> (B,C)£& and (A, C)f| J5". then there is an EQQ such 
that AQE and C%E. Furthermore (A, AQE imply BQE, and using 

C g E which is a contradiction. 
(F3) If (A,B)e^, A'^A, B'QB and then there is an EQQ 

such that A'^E and B%£ and (A, B)<iSF, AQE imply that BQE. Thus, by 
B'QB, B'QE which is again a contradiction. 

(F4) If (A, (C, D)e.-F and (AUC, BUD)^^ then there is an EQQ 
such that AUCQE and BUD^E; e.g. B%E. But (A, B ) ^ and AQE imply 
that BQE, which is a contradiction. 

Suppose now that ¡F satisfies the f-axioms. Let (A, B)£P(Q)XP(Q)\.iF. 

Claim. There is an E^A such that (E, B)£P(Q)XP(Q)\^r and F ' I D F 
implies 

(Q, by (Fl). Thus, by (F3), (i2, holds. AQQ and (A, 5 ) £ P ( i 2 ) x 
XP(Q)\$', consequently there is an EQQ which is maximal w.r. to the 
properties (F, and E ^ A . 

This E clearly satisfies the restrictions of the Claim. 
Let E^2A which is guaranteed by the Claim. We state that E satisfies 

(i) and (ii) of the F-axiom. Namely, by the choice of 'F , A Q E holds. By (Fl) 
and (F3), BQE implies (F, B)dtF. Thus we have B%E. 

Let (C,D)£3F and CQE. implies £ ' = D U £ D £ , and, by the max-
imally of E, (E',B)£& holds. Since (F, £>)£#*, by (F3), and (F, F)<E#" by (Fl), 
we have (F, F ' ) € ^ . Now (F, E')£!F, and (F' , B)£.W and (F2) imply that 
(F, B)f.<F, which is a contradiction. 

(ii) Let !¥ = {(A, B): (B, A)£@}. Then, by Lemma 1.1, SF satisfies the f-axioms 
iff Q> satisfies the 3-axioms. Hence, by (i), it is enough to show that ¡F satisfies 
the F-axiom iff 3) satisfies the D-axiom. 

Suppose that ^ satisfies the F-axiom. For (A, B)£P(Q)xP(Q)\J5" let 
E(A, B) be a subset of Q such that AQE(A, B), B$E(A,B) and if both 
(A',B')^ and A' Q E(A, B) hold, then B'QE(A,B). By the F-axiom such 
an E{A,B) exists. By the definition of & whenever (A, B)£P(Q)xP(Q) then 
(A,B)eP(Q)XP(Q)\& iff (B, A)dP(Q)XP{G)\2>. 

Now it is easy to check that for (B, A)£P{Q)XP(Q)\@, Q\E(A, B) satisfies 
the Z)-axiom. 

If 3 satisfies the D-axiom, then J5" satisfies the F-axiom; this can be shown 
by the same argument. 

(iii) Suppose that i f satisfies the ¿»-axiom. Then the proof of the fact that 
Sf satisfies the y-axioms is an easy modification of the proof of (i). We deal with 
but (SI) and (S2). 

(51) if ({a}, {a^i-Sf, then there is an EQQ such that { a } n £ V 0 and 
{a}C\(Q-E)^0 which contradicts |{fl}| = l. 

(52) if (A,B)ey, (B,C)eSf, 5 ^ 0 and (A, then there is an F g i 2 
such that 

(a) ~Ai)E^0 
(b) C n ( i 3 \ F ) ? i 0 and 
(c) (F,Z))G^, F f l F ^ 0 imply that DQE. 
(a) and (c) imply BQE. By we have BC,E^&. Hence, by (B, C ) £ , 

C%E holds which is a contradiction. 

4 Acta Cybernetica V/3 
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Suppose now that & satisfies the y-axioms. Let (A, B)fP(Q)xP(Q)\y 

Claim. There is an a£A and an EQ Q such that 
(a) a € £ ; 
(b) ({a}, E)£Sf and 
(c) E'^>E implies that ({a},E')^Sf. 

If for any a£A we have ({a}, B ) f y then (A, B)(i£f by the repeated application 
of (S5):1 Hence there is an a£A such that ({a}, Now if for every b(LB 
({a}, {b})£y holds then by the repeated application of (S4) we have ({a}, B)££f. 
Thus there is a b£B such that ({a}, {6})$^. 

By (SI) and (S3) there is an EQ Q such that a£E, ({a}, E)£Sf and E is max-
imal w.r. to this property. This E is appropriate for the Claim. 

Let EQQ and a£A guaranteed by the Claim. Then by (S3) we have b$E. 
Hence and 5 D ( i 2 \ £ ) T i 0 . Now let (C, D ) f y such that C(1E^0; 
let c£CC\E. Suppose that Z>n( i2 \£)? i0 ; let d£DC\{Q\E). By (S3) we have 
({c}, {d))ty and by (SI) we have ({c}, {c})€^. ({a}, E)£Sf implies that 
({a, c}, {c})£Sf, by (S5). Hence (S3) implies that ({a}, {c})£Sf. Now ({a}, 
({c}, {d})e£f and (S2) imply that ({a},{d})£y. Thus by (S4) we have 
({a}, E{J{d})£y which is a contradiction as E'=E(J{d}z>E. 

Consequently the E guaranteed by the Claim demonstrates that if satisfies 
the S-axiom. • 

Definition 2.1. Let R be a relation over Q. We define the equality-set of R, SR 
as follows: For h, g£R let E(h,g) = {a£Q: h{a)=g(a)} and let <gR= 
= {E(h, g): h,g£R and h?±g}. 

Definition 2.2. Let si be a-set system. Then si is a A-system if for any 
A, B, C, D£si, AjiB and C^D implies that ACiB=CPiD. 

Remark. It is easy to see that si is a A-system iff for any A, B f s i , A^B 
implies that AC\B=C\si. 

Theorem 2.1 (i) Let R be a relation over (2 and let h, f , g different elements 
of R. Then E(h, g), E{h, / ) , E(g, f ) form a ¿-system. 

(ii) Let S= {EUj\ 1 iSi^j^k} such that for each {EtJ, Eu, EJfl} 
is a A -system. Then there is a relation R over Q with SR=S. 

Proof By symmetry it is enough to prove that a£E(h, g)p\E(h,f) implies 
a£E(g,f). But afE(h,g)C\E(h,f) means that g(a) = h(a)=f(a), hence a£E(gf). 

We construct by induction the rows hlt ...,hk of R. Let h1(a)=0 for each 
a£Q, and assume that n<k and the rows hlt ..., h„ have been defined s.t. for each 

E{hi,hj)=Ei J holds. We construct hn+1 as follows: 

1 A*0, since Vb€£ ({b),{b))<iSf by (SI), hence {B, by (S4) and (S5). But i f - 4 = 0 , then 
(A, B) € if by (S3). 

§ 2. The equality-set 

u (A\ ih ), if a£Eijn+1 for some 1 ^ i ^ n; 
(hi(b): b£Q & 1 i == n) + l else. 

•i, n + 1 
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Then 
(a) hn+l is well-defined. 
To prove this we have to show that a£Ei n+ir\Ej n+1 implies hi(a)=hJ(a). 

But this is obvious because EitJ, Ein+1, EJ n+1 form a ¿1-system and the induction 
hypothesis holds for i, j^n. 

(b) if 1 g / S n and Eit„+1 then hi(a)^h„+1(a). 
Suppose first that a£E J i n + 1 for some 1 1. Then, by (a) and the 

definition of hn+1, hn+1(a)—hj(a) holds. Furthermore a$Eu because 
{ETJ, EJ n+1, F i>n+1} is a J-system. Thus the induction hypothesis implies h^a)^ 
^ h j ( a ) , ' that is h-{a)7±hn+i(a). 

If Fj.n+i then we have hn+1(a)^hi(a) by the definition of hn+1. 
This completes the proof of (b). 

Now by (a) and (b) it is clear that for 1 S/Sw, E(hu hn+1)=Ei n+1 and hence 
the induction step works. Let R={h1,..., hk). Then SR=S obviously holds. • 

After Theorem 2.1 there is a natural way to axiomatize full families of de-
pendencies of any type. This follows next: 

F'-axiom. Let SFQP(Q)XP(Q). Then S7 satisfies the F'-axiom if there is 
a natural number k and an indexed set of subsets of Q, {Et j: 1 such that 

(i) If (X, Y)eP(0)XP(Q)\^ then there are 1 r s i ^ j ^ k such that XQEt j 
and Y ^ E i j . 

(ii) I i 1 S i ^ j S k and then YQEU. 
(iii) For any 1 {F,J , F,- ,, Fy>/} is a ¿-system. 

D'-axiom. Let 3)QP(Q)XP(Q). Then 2> satisfies the D'-axiom if there is 
a natural number k and an indexed set of.subsets of Q, {Eitj: 1 such 
that 

(i) If (X, Y)eP(Q)xP(Q)\3> then there are such that 
Xr\Eu*Q and YC\EU = 9. 

(ii) If (X, and X C \ E U ^ then Y Q E t j ^ Q . 
(iii) The same as (iii) of the F'-axiom. 

S'-axiom. Let £fQP(Q)XP(Q). Then ST satisfies the S'-axiom if there is 
a natural number k and an indexed set of subsets of Q, {Ei }: 1 such 
that 

(i) If (X, Y)eP(Q)XP(Q)\^ then there are such that 
X H E i j ^ V and Y ^ E i j . 

(ii) If (X , l^i^j^k and xr\Eu^9 then YQEUj. 
(iii) The same as (iii) of the F'-axiom. 

W'-axiom. Let iTQP(Q)xP{Q). Then iV satisfies the W'-axiom if there 
is.a natural number k and an indexed set of subsets of Q, {F^ : such 
that 

(i) If (X, Y)£P(Q)XP(Q)\ir then there are such that 
and YC\Eij=0., 

(ii) If (X, Y)£W, l s / ^ / s A : and XQEU then 
(iii) The same as (iii) of the F'-axiom. 

4* 
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REMARK. Observe that the F ; ¡-s in the F'-axiom are maximal dependent sets, 
i.e. if (X, and XGEU then Y<=EitJ. 

• Theorem 2.2. (i) Let <WGP(Q)XP(Q) and Y£{F,D,S}. Then satisfies 
the Y-axiom iff satisfies the Y'-axiom. 

(ii) Let Q be a finite set, | i2 | s3 . Then there is a ifGP(Q)xP(Q) such that 
if satisfies the H^axiom and if does not satisfy the W"-axiom. 

Proof, (i) Let first Y = F and suppose that aU satisfies the F-axiom. Write 
For any (X, Y)£P(Q)XP(C2)\^ take an E(X, Y)Gi2 guaranteed by 

the F-axiom. List these £(X, Y)-s as F2, ..., Ek (the indices begin with 2). For 
let E1j=Ej and for 1 let E^—E^Ej. We claim that 

{F; j : 1 demonstrates that J5* satisfies the F'-axiom. The requirement 
(i) of the F'-axiom holds by {£2, ..., Ek}G {F ( } : 1 We. left to the reader 
to check that (ii) holds too. To prove (iii) of the F'-axiom let 1 ̂ / c y c / s ? / c . 

We distinguish two cases: j 
(a) «'=1. Then EiJ = EJ; F ; , = F, and = FynF, . Thus the intersection 

of any two members of {F,,y; F i ( : Fy-,} is Ej H F ; . This means that {F; j-; F i ; ; E j ,} 
is ¿-system. 

(b) 1 </. Then ElJ = EinEJ; EiJ = EiC\El and F ^ F ^ - D F , . Thus the 
intersection of any two members of {Eu', F;_,; Ej t} is F ^ E / D F , . This means 
that {EitJ; Et,; EJt,} is a ¿-system. 

If satisfies the F'-axiom then 6-'J obviously satisfies the F-axiom. 
Now let Y=D and suppose that °y satisfies the Z>-axiom. Write 

For any (X, Y)fP(Q)xP(Q)\3 take an E(X, Y)GQ guaranteed by the D-
axiom. List these E(X, Y)-s as Er, ..., Ek. For ISiSA: let E2i_12i=Ei and if 

and EitJ is still undefined then let Ei J=&. It is easy to see that 
{E,j\ 1 = / <_/s= 2/c} shows the Z)'-axiom to hold for 2). \f<y satisfies the D'-axiom 
then it trivially satisfies the X)-axiom. 

The case Y= S is an easy modification of the proof in the case Y= F. 
(ii) For the sake of simplicity suppose that Q={a, b, c}. (In the general case 

pick two different elements a and b of Q. The role of {c} will played by £2\{a, b}). 
Let if={(A,B)£P(Q)XP(Q):AG{a}^a£B and AG {b}=>b£B}. Then if sat-
isfies the IP-axiom while if (A, B)£P(Q)XP(Q)\if then either (AG {a} and 
d$B) or (A -and b$ B). For (A, B), E~{a) taken in the 1st case and E— {¿>} 
in the 2nd one shows the IF-axiom to hold. 
• We claim that -if does not satisfy the W'-axiom. Suppose indirectly that 
$={EU: 1 is a system that shows the IP'-axiom to hold for i f . 

Then 
(1) {a}(E<r and [b}£S while ({a}, Q\{a})£P(Q)xP(Q)\if and 

({ft}, Q\{b})£P(Q) XP(Q)~\if hold. 
(2) and {c}$6a while (0, Q)£lf and ({c}, i2\{c})e / r hold. 
By (l), {a}£<f and \b}£S, that is {a}=EtJ. and {b}=E, m for some l^/ ' , 

j,l,m^k. We distinguish two cases: 
, '(a) /= / . Then \a}=EiJ and {b}=Ei m . {Eu; E,;m; Ej m} is a ¿-system, 
consequently either EJ m = 0 or Ej m = {c}. Both cases contradict (2). 

(b) |{/, j, /, /«}| = 4. We may suppose that- (/', y )=( l , 2); and. (/, m)=.(3, 4) 
while we are interested in {F; j-; F ; , ; F,m ; 'F,v ( ; EJ m; Elm). What is F2 3? 
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By (2) £2 35^0 and E 2 ^ { c } . The cases £ ! i S ={«} or {b} arise to the 
case (a). £2,3^ {b, c} while EU2; È2<3; E1S form a A -system and thus E23= {b, c} 
implies Eij3=0, contradicting 2. Similarly {a, c}. Thus {a, b}QE2t3. The possi-
bilities for E13 are the same as for £2>3 that is {a, b}Ç=Ei 3. But then b£E13f]E23 
and b$Elt2, contradicting {£ l i2; E2t3; £, i3}'s being a ¿-system. 

The proof is complete. • _ 

REMARK. Theorem 2.2 demonstrates the difference between the weak dependency 
and thé rest. 

Theorem 2.3. Let <2/QP(Q)xP(Q) satisfy the K'-axiom for some 
Y£{F, D, S, W}. Then there is a relation R over Q with <&=<&R. Conversely, 
if R is a relation over Q then °J/R satisfies the y '-axiom. 

Proof. Let £={EiJ\ 1 show that satisfies the y '-axiom. Then 
the requirement (iii) of the y '-axiom and Theorem 2.1 (ii) imply that there is a rela-
tion R- over Q such that SR—S. By the y '-axiom it is obvious that (W = (&R. 

Conversely, if J? is a relation over Q, then writing R={hi, ..., hk), Ei j = 
=E(hh hj); {Eu: 1 ^i-^j^k} shows that <&R satisfies the y '-axiom. • •• ' • 

Definition 3.1. Let be a full /-family and let AQQ. Then A is a candidate 
key for SF if {A, and for any A'czA (A ' , holds. Let J? be a relation 
over Q, then the set of candidate keys of R is the set of candidate keys of ¡fR. 

Let denote the set of candidate keys of J5". Then ^ is a Sperner system, 
i.e. (yA, Betf) (AQB=>A = B). We deal with the following question of [9]: 

(*) Let r(n) denote the smallest integer,for which any Sperner system CQP(Q) 
is the set of candidate keys of a suitable relation over the //-element set Q 
with at most r(n) rows. What can be said about /•(«)? 
In [9] it is shown that for any Sperner system there is a relation with this 

system as its set of candidate keys and that 

Proof. First we prove the upper bound. Let ^ g P ( Q ) be a Sperner system. 
•Let OS consist of the maximal sets that do not contain any members of Let 
B2, ..., Bk be the members of Si. For 1 -<j=k let ElJ = Bj and for 1 
let Eij=BinBj. Then 1 satisfies the requirements of the The-
orem 2.1 (ii), hence there is a relation R over Q with k rows such that gR == 
= {Eij: Then obviously W is the set of candidate keys of R. It is 

§ 3. Combinatorial results 

We give sharper estimations for r(ri). 

Theorem 3.1. ^ ( [w/2]) - '00 ^ ([n"2]) + l. Theorem 3.1. 
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trivial that Si is aSperner system, and thus W —([«/2]) t ' i a t ^ ~ ( [ n / 2 ] J ~ ' ~ 
Tha rest of the proof is due to L. RÓNYAI. We start with two trivial observations. 

1. Let R be a relation over Q with r rows. Then there is a relation R' over 
Q such that R' uses no more than r symbols and SR=SR>. 

2. Let R be a relation over Q with r rows and let Then there is a rela-
tion R' over Q with r' rows such that & R =$ R , . 

By 1. and 2. the number of Sperner systems which may be represented as sets 
of candidate keys of relations with r rows is no more then rr". Hence 

r ( n ) r W " > 
which implies 

^ • M w ? ] ) -
 D 

It is natural to ask the following analogon of (* ) : 
Let R(n) denote the smallest integer for which any full family ^rQP(Q)XP(Q) 

is the set of functional dependencies of a suitable relation over the «-element set 
Q with at most R(n) rows. What can be said about R(n)7 

By the proof of Theorem 2.2 (i) it is obvious that i?(«)^(the maximal number 
of subsets of £3 such that the intersection of any two of them is not a third). Thus, 

by a theorem of D. KLEITMAN [12], I ? ( N ) S C - [ [ M / 2 ] ) W H E R E C = 3 / 2 . Z . FÜREDI 

and J. PACH have shown, that this number is less then ( l + ( E • log «)/«) • 
Lastly we give the combinatorial characterization — according to § 0 — of 

the sets which are of minimal cardinality with respect to the property that they 
imply all the dependencies of a given full /-family. 

We need some definitions and a lemma. 

Definition 3.2. Let JtGP(Q). 
(i) We say that Jt has the intersection property if for any Jt' g Jt, C\Jl'eJt 

holds. 
(ii) An M f J t is irreducible if M^ fl {M'fJi\ M c M ' } (recall that c 

means strict inclusion). 
(iii) An JT^Ji generates JÍ if J(={P[JT'\ JÍ'GJV). 

Lemma 3.1. Let Ji have the intersection property and let Jf = {MfJi: M is 
irreducible}. Then an Jf'G Jl generates Jt iff Jf QJV'. 

Proof. The following proof is standard in lattice theory. If Jr' generates Ji, 
then Ji GJf' is obvious. For the converse we have to prove that J/~ generates 
Jt. Suppose indirectly that there is an X£JC\Ji such that AV fl {Y: Y£Jf & 
I c y}. Let X be of minimal cardinality with respect to this property. Ji 
means that X= fl{K: Y f J t & XcY), hence I c Y implies that there is an 
JfyGJT such that Y=f]J/

y. Let Jfx=\J{jVy: XczY and Ye J/}. Then JfxGJf 
and X= D JVx which is a contradiction, n 

REMARK. Observe that the proofs of the Theorems in [2] are essentially our 
proof of Lemma 3.1. 
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Corollary. If JL has the intersection property then there is exactly one JF QJI 
which generates J t and has minimal cardinality. 

Theorem 3.2. Let $F be a full /-family, let 38 be the set of maximal dependent 
sets for J5" and let be the set which generates SS and has minimal cardinality 
(in [1] it is shown that 38 has the intersection property). 

Then for any 3 7 ' we have the following: 3F' implies all the dependencies 
of and ¿F' has minimal cardinality with respect to this property if and only if 
f o r a n y CAM t h e r e is a n ACQQ s u c h t h a t 3R' = {(AC,C): C£<#}. 

We left the easy proof of the Theorem to the reader. We think that it is in-
teresting to compare Theorem 3.2 with the Theorem on pp. 16 of [2]. 
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