On identities preserved by general products of algebras

By Z. Esix

Equational classes of automata (i.e. unoids) obtained by general product were
characterized in [1]. Here we present similar results for tree automata, i.e., arbitrary
algebras. We show that the main result K**=HSP (K)=HSP,(K)=HSPP,, (K)
in [1] remains valid in this generality, too.

First we briefly introduce the basic notions to be used. For all unexplained

notions coming from universal algebra and tree-automata theory the reader is referred
to [3] and [2).
- By a rank-type we mean an arbitrary subset R of the set of nonnegatlve
integers. A type corresponding to a rank-type R is a collection of operational
symbols F= || (F,Jk=0) such that F, if and only if k€ R. In the sequel we fix
aranktype R -and by a type always mean a type corresponding to R.

Algebras of type F constitute a similarity class ;. An algebra eAp is
a pair (A4, {fulf€F}) — (A4, F) for short —, where fy is a k-ary operation on the
nonvoid set A for any f€F,. By a class of algebras we shall mean an arbitrary
nonvoid class of algebras.

We are going to deal with certain products of algebras. Let I be a nonvoid
set linearly ordered by =. Given a system UA;=(4;, F;) (icI) of algebras, by
a general product we mean an algebra U= (4, F)=I1(Y;, plicI), where A=
=II(4,|ic]), ¢ is a family of mappings of (IT(4; lieDYX F, into I((F)liel),
and finally, the operations in 2 are defined in accordence with ¢ as follows.
Letay, ..., a, a€ A, f€F,. Then, fu(a,, ..., a)=a if and only if a;=(fu (ay;, ..., )
holds for every i€l with f,~=((p(a1, ...,ak,f))i;(pi (a1, ...,ak,f). If for every
nonnegative integer k, ¢;(ay, ..., a,,f) depends on f and ayj, ..., q; with j<i
only, then U is a so called «y,-product of the U;-s. We shall denote by P, and P,,
the operators corresponding to the formations of general and a,-products, resp. P,
will denote the formation of finite ay-products. Finite ag-products will be written
as Ty, ...,A,,¢) where I={1, ..., n} with the usual ordering. The operators
H, S and P have their usual meaning.

Also we fix a countable set X = {x,, x,, ...} of variables and treat polynomial
symbols of type F as trees built on X and F. Ty will denote the set of all trees
of type F. If UeAr and peTr then po: A®—~A is the polynomial induced by
p in A If a,a,, .. is an w-sequence of elements of A4 then pu(a,, as, ...)
denotes the value of py on a,a,,.... If AU is the general product described
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previously then we can view ¢ as a mapping of (I1(4,)i€I))*X Ty into II(Tgli€l)
in a natural way. For each index i€J we shall denote by ¢; the i-th component-
map of ¢, as well.

The notion of subtrees of a tree p as well as the height i(p) of a tree will be
used in an unexplained but obvious way. A subtree g of a tree p is called proper
if g=#p. sub (p) denotes the set of all proper subtrees of p. Also we shall in a natural
way speak about an occurence of a subtree in a tree, and about the substitution
of a tree for occurences of a subtree in a tree. If p is a tree then rt(p) denotes
the root of p.

By a relabeling we mean any mapping ¢: Tp— T, with the following properties:

(i) if peF, then p(p)eFs,

(ii) if peX then ¢(p)=p,

(iii) if p=f(p,, ..., pe) Wwith f€F,, k=0, p,,...,p.€Tr then there exist an
S'€F; such that o(p)=f"(¢(pD; ---» 9(pV)-

Now we are in the position to give the most fundamental definitions. Let
K be an arbitrary class of algebras. Then K*={K}|F is a type}, where K} is
the set of all identities p=gq (p, g€ Tr) such that @(p)=¢(g) is in the usual sence
a valid identity in KNX; for any relabeling ¢: Tp—~Tf.. An algebra WcHA%
isin K** if and only if all identities belonging to K7 are valid in . Thus, K**NA#x
is an equational class of algebras. If p,g€Ty, we write K*=p=¢g to mean that
Ki=p=q.

If we consider unoids, i.e. we take R={1}, then for any type F and p, g7y
we have p=g¢cKjy if and only if p=gq is valid in the equational class HSP, (K)N H%..
Consequently, K**=HSP, (K), or even, K*=HSP (K)=HSP, (K)=HSPPz(K)
(cf. [1]).

In general, the first statement fails to hold. Indeed, take R={l,2} and for
every type F let KN be the equational class determined by the identities
g(x)=h(x)) (g, h€F)). Supposing fC€F,, identity f(g(x)), g(xx))=f(h(x1): h(xl))
is obviously valid in HSP, (K)( A, but this identity is not in Ki. However,
we still have a somewhat weaker result:

Theorem 1. Let p, g¢ T be arbitrary trees of type F. Then p=gq is a valid
identity in an equational class HSP, (K)NX#} if and only if K*=p=¢.

Proof. Sufficiency follows by observing that general product preserves K*,
that is, P, (K)< K**. Therefore, also HSP,(K)c K**. In order to prove the
necessity of our Theorem, let X contain those valid identities p=q of the equational
class HSP,(K)N Xy for which our statement does not hold. Supposing X,
choose p=g€X in such a way that [sub (p)Usub (g)| is minimal.

Now take an algebra U=(4, F) freely generated by the sequence q,,a,, ...
in the equational class HSP, (K)N 5. First we show that if we have ra(ay, as,...)=
=sula;, as, ...) for some trees r, scsub(p)Usub(g), then r=s, i.e., the trees
r and s coincide. Assume to the contrary that there exist different trees r, s¢
¢sub (p)Usub (q) with rg(a,, as, ...)=sa(a,, az, ...). Let us fix a tree resub (p)U
Usub (g) with the property that if 7€sub(p) Usub(q) and Fu(a,, a,, ...) =ralay, a;, ...)
then A(r)=h(r), and there is a distinct tree s€sub (p)Usub (g) with rula,, a,, ...)=
=su(@y, s, ...). Given r, choose a different tree s¢sub (p)Usub (g) such that
ra(a,, @, ...)=su(ay, a,, ...), and h(ES)=h(s) whenever §€sub(p)Usub(g) and
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sula,, a,, ...)=5ulay, az, ...). Obviously, we have A(r)=h(s). If scsub(p) then
let us substitute r for any occurrence of s in p, and denote the resulting tree
by p. If s¢sub(p) then put p=p. Similar procedure when applied to g will
produce the tree §. Of course we have sub (p)Usub (q)=sub (p)Usub(g), or
even, the choise of r and s garantees that s¢sub (p)Usub(g). Thus, [sub (p)U
Usub (7)< |sub (p) Usub (g)|. Similarly, [sub (r)Usub (s)|<|sub (p)USub @\

As rula,, a;, ...)=sa(q,, as, ...), it follows that r=s is a valid identity in
HSP(K)NAp. As |sub (r)Usub (s)|<|sub (p)Usub (q)] also K*E=r=s. As
r=s 1s a valid identity in HSP, (K)NAr, also the equalities pa(ay, a,,..)=
=palay, a5, ...) and qu(a,, a,, ...)=qula,, a,, ...) are satisfied. Since p=q was
a valid 1dent1ty in HSP,(K)YNAr and A is freely generated by ay, a,, ..., also
P=q is a valid identity in HSP%(K) NAz. As [sub (p)Usub (g)|<|sub (p)Usub @,
by the choise of the identity p=gq, we obtain that K*=p=g. The construction
of the trees p and g shows that {r=s, p=4}=p=q. We have already seen that
K*=r=s, thus, K*=p=gq. This is a contradiction.

So far we have shown that the equality ro(a,, g,, ...)=s«(a,, a,, ...) is satisfied
by trees r, s€sub(p)Usub(g) if and only if r=s. Next we are going to prove that
P=q€KE. As K*=p=gq holds in this case evidently, this would again be a con-
tradiction.

Assume that p=g¢ K;. Then there is a type F’ and a relabeling ¢: Tp—Tf.
such that ¢(p)=¢(q) is not a valid indentity in the class KN X . Therefore,
there is an algebra B=(B, F')€K and elements by, b,, ...€B with

@ (P)p (b1 by, -..) # 9 (Q)g (b1, b3, ...). J

Let QZ =(C, F) be any oy-product IT(U, B, y) with ¢ satisfying the following ‘
conditions for every feF, (k=0):

@ viN=1
(i) Wz((lh)ﬂl(al, as, ...), ...(pu(ay, as, ...), f) =rt ((P(f(Pl, ooy Pk)))

if f(py, ..., ) is a subtree of p or q.

In order to show that such an ay-product exists, it is enough to see that
whenever both f(py, ..., pr) and f(ql, ..., q;) are subtrees of p or g and
(pi)‘ll(alaa2’ . ) (ql)ﬁl(ala as, ) (1_ k) then rt ((p(f(pla . 1pk)))_
=rt(¢(f(g1, -.- g)))- But this can be seen 1mmed1ately as ¢ is a mappmg and
(pi)‘ll(al’ a2’ "')_(ql)ﬁl(ah as, - ) 1mplles that Pi=4;.

As HSP,(K) is closed under ag-products, we get CEHSP, (K)NAr. On
the other hand, ¢(p)s(by,bs, ...)#@(@s(by, by, ...) implies that pe((ay, by),
(a3, by), .. )#qc((al, b)), (a,, b), ), contrary to our assumption that p=gq is
valid in HSPao(K)ﬂéfp

A set of identities A= TE is called closed if whenever A=p=q is valid for
trees p, q€Tp then p=gqgcA. Tt is known from universal algebra that 4 is closed
if and only if the following five conditions are satisfied by 4:

) x=x€4 (i=1,2,..),
(i) p=q€4d implies that g=p€4,
(iii) p=gq, g=rcd implies that p=rc4,
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@(v) if pj=q€d for all i=1,...,k (k=0) and fe¢F, then f(p,,..., )=
=f(q1’ LS qk)eA

(v) if p=g€4 and we get p” and ¢’ from p and q by substituting all
occurences of a variable x; by an arbitrary tree re Tp then p'=q’¢cA.

By virtue of the previous Theorem, if K} is closed for every type F, then
whenever p=gq 1is a valid identity in an equational class HSP, (K)ﬂ.%’p then
p=q€Kf. Conversely, if p=qg¢K} then p=gq is a valid identity in HSPao(K)ﬂ.%’}.
As K} always satisfies conditions from (i) to (v) above except (iv), a necessary and
sufficient condition for KF to be closed is to satisfy condition (iv). In this way
we get the following

Corollary. Assume that K} satisfies condition (iv) for every type F. Then
an identity p=q is valid in an equational class HSP,(K)NAr if and only if
p=q<Kz. Conversely, if we have the equivalence p=gq 1s valid in an equational
class HSP.(K)NA: if and only if p=q€K§ then Kj satisfies condition (iv).

Further on we shall need the following

Lemma, Let W=(4, F)=II(A,, ¢)|lic]) be an arbitrary infinite «,-product
of algebras W,=(4;, F) and let J=I and T<7T; be finite sets. For every
sequence a,,d,,...€A there is a finite ayproduct B=(B, F)=II(A,, y]icJ)
with J=J; and such that y,(ay,,, ay,, ..., P)=0¢i(a, az, ..., p) for any peT
and icJ.!

Proof. Put h=max {h(p)|peT}. If h=0 then our statement is obviously
valid. We proceed by induction on A. Let A£=>0 and assume that the proof is
done for A—1. For every k=0 and f¢F, set

Uy = {plpeT, h(p)=h, rt(p)=f},
V; = {plp€ U(sub (¢9)lgc T)UT, rt(p) =f}.

Let (p’ q; l)eUf XJ — say p= f(ply ceey pk): q=f(q19 “ees qk)—"be arbitrary.

If (pl(plm(al’ s, ): ’pkql(al’ as, . ) f)7£¢l(ql$2[(al, as, ): LA qu((ah as, ), f)
then choose an index iy<i with (p.g(a;, as, ...)),-0¢(q,m(a1,a2, ...))i, for some
te{l, ..., k}. Denote by I, the set of indices obtained in this way, and put J'=JUI,,
T'= U(sub (D peT)U{peT|h(p)<h}. By the induction hypothesis, there exist a
finite set J,; and an opproduct B’ =(B’, F)=I (A, Y'|icJ]) with J'=J] and
satisfying ¥ (alJ{’a“’J{’ s D=0ay, a,, ..., p) for each peT’ and icJ;.

Set J;=J; and define the o-product B=(B, F)=II(U;, y}icJ)) so that the
following two conditions are satisfied:

O Yy, .., b, =Y (by, ..., by, ) if feF, (k=0) and there exist trees
P, ---,PkETF with f(pl’ . 3Pk)€T and b _ptg'(alj s a2] 2. ) (t_l k)

(i) (b, .-, by, H=@i(cy, ..or i, f) If Q€L fEFk (k>0) and there exist trees
Dis - Dk€Ty with  f(py, ...,pk)EUf and b,=p,y, (al"x’ gy s - ) =Dy (a1, aq, ...)
(t=1,..., k).

! The ordering on J, is the restriction of the ordering on I to J;. If a€IT(A;li€I) then a €
€IT(A;]i€J,) is determined by (a,l)i=a, for any i€J,.
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Such an a,-product exist, since otherwise we would have an index i¢I together
with distinct trees p=f(py, ..., PIEUs, 4=1(q1, ..., @€V (f€ Fy, k>0, p,, g€ Tp)
such that (pyg (a1, @z, ...)); = (Gy(ar1, a5, ...)); (@ =1,...,k) for all j<i but
qoi(plg(al! as, )1 RS ] pkiu(al’ aszs )’ f) # (Pi(qlgl(al’ as, )’ (A qksu(al, asz, ): f)
Also the equalities lpi(alll, a5 v D)=0;(ay, ag, ..., p) (i€l, peT) follow in an
easy way.

Theorem 2. HSPP, (K)=HSP, (K)=HSP,(K)=K** holds for any class K of
algebras.

Proof. The last two equalities immediately follow by Theorem 1 and Birkhoff’s
Theorem. HSPP,, (K)S HSP, (K) is obvious. We claim that also HSP, (K)<=
€ HSPP;, (K). This can be seen by showing that if F is an arbitrary type and an
identity p=q (p,q<Ty) is not valid in P, (K)o then the same holds for
P (K)(NAE. But this is a trivial consequence of our Lemma.

Theorem 2 is in a close connection with the characterization theorem of met-
rically complete systems of algebras in [2]. It turns out that a system K of algebras
having finite types is metrically complete if and only if K* contains only trivial
identities. In other words this means that K is complete (that is, HSP,(K) is the
class of all algebras) if and only if K is metrically complete. :
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