
Software Specification Methods and Attribute Grammars

GUENTER RIEDEWALD, PETER FORBRIG

1. Introduction

An important problem of modern computer science is the development of qual-
ity software. The necessary design of large systems in the 1980s requires other methods
than the design of smaller systems in the 1960s and becomes more and more an engi-
neering problem.

There are many different methods to cope with this problem. These methods
range for example from data driven program development by Jackson [Jac 75] to
information hiding or data encapsulation by Parnas [Par 72].

Computer science calls for programming development systems, which support
the programming development process by the computer itself.

After a short suvery of the fundamentals of software specification we want to
illustrate the use of attribute grammars in commercial data processing. It will be pre-
sented how the well known methods of data driven programming and data encap-
sulation, usually classified as contrary concepts, can be combined by using attribute
grammars with abstract data types.

Such attribute grammars represent specifications in a clearly readable form. The
grammatical definition formalism is used only to the necessary extend. Many imple-
mentation details are encapsulated in abstract data types.

2. Software Specification

2.1. Life Cycle Model

We will use the life cycle model for demonstrating the problems of software de-
sign in different stages of its development. Our point of view is demonstrated in Fig-
ure 1.

The arrows in Figure 1 represent possible relations between components of the
life cycle.

The first problem in software design is to define the exact task of a programming
system. In all other phases of development the corresponding specifications have to be
compared and verified with this requirement specification.

90 G. Riedewald—P. Forbrig

7
Requirement Specification

Documentation

\\\ '
\ \ Problem Specification

The task of the software is described in the language of the cus-
tomer. An important aspect is the in-/output behaviour.

<Y Pro]

The structure of the software and the interfaces of the components
are fixed.

Program Specification
\ / I The data structures and their relations are described.

\ / Y * \ I /Implementation Specification

^ J J ^ T h e software is coded in a computer language and implemented.

Maintenance •«- Use of the Software The application
of the software
is still saved.

The programming system undertakes the desired task.

Application of the Software is Finished

Figure 1- Life Cycle Model of Software

Figure 1 also demonstrates that the development of software is not finished after
its implementation. Maintenance of software is of utmost importance. Experiences in
software engineering have shown, that maintenance costs can be higher than all ear-
lier development costs.

If programming systems are not developed in a good manner according to main-
tenance, the application of the software becomes more and more complicated.

According to Figure 1 software maintenance can influence all specifications of
a project. The simplest modifications may have an influence on implementation only.
More complex changes are even more difficult and it is possible, that not all specifi-
cations are updated in the right way.

In this case different descriptions contain contradictions and the application of
the project is very difficult.

The same problems may occur during adaptation of software for further cus-
tomers, which is. necessary from the economic point of view.

Therefore, modern software engineering requires methods proving the different
descriptions of software and tools generating one specification from the other auto-
matically or in a dialogue with the sotware engineer.

Software Specification Methods and Attribute Grammars 91

2.2. Specification Methods

2.2.1. Fundamentals of Specification Methods

Nowadays, some methods well known from semantic definition of programming
languages can be found in software specification reports. This is not surprising be-
cause an exact semantic definition of a programming language will also define the
semantics of all its programs. Therefore, it is logical to use well known sematic defini-
tion methods for describing software.

Beside specification in natural languages, algebraic, logical and denotational
specifications are the fundamentals of many methods.

To illustrate the principles of these methods we will use a simple example, the
modified telegram problem. The original problem was already studied in [Heh 83],
[Jac 75], [Noo 75] and [Rec 84].

2.2.2. Natural Language Specification

Specifications in natural languages are easily understood, whereas formal lan-
guages are more difficult to understand. But natural languages have the disadvantage,
that they are ambiguous. Therefore it is very difficult to write down a precise speci-
fication in a natural language.

Natural Language Specification of a Simple Telegram Problem

A program is required to process a stream of telegrams. This stream is available as
a sequence of words and spaces. The stream is terminated by the occurrence of the
empty telegram. Each telegram is delimited by the symbol * * The tele-
grams are to be processed to determine for each telegram the number of words with
more than twelve and the number of words with less than twelve characters. The
telegrams together with the statistics have to be stored on an outputfile by eliminating
all but one space between the words. The longest possible word has twenty charac-
ters. For simplicity telegram streams containing telegrams with words longer than
twenty characters are omitted.

2.2.3. Logical Specification

Algebraic specifications conceive programs as being abstract data types arid
therefore heterogeneous universal algebras. According to.the static character of
algebras the specification of a program means to define the structure of input and
output data and the ralations between them. For this purpose sorts representing data
types, operation symbols describing the "rough" structure of data and auxiliary oper-
ation symbols describing "details" of data are introduced.

Properties of operations assigned to operation symbols in concrete algebras, and
therefore properties of data, are described by axioms (systems of term equations).

92 G. Riedewald—P. Forbrig

Auxiliary operation symbols and axioms are also used for describing the depend-
encies between input and output data.

We can get a shorter description using a method known from the definition of
programming languages (see e.g. [Rie 85]). Then the input telegram stream is con-
sidered as a program. The concrete semantic meaning is the output telegram stream.
In this case the structure of the input telegram streams is defined only. By axioms all
input streams are grouped into equivalence classes. Each class represents the abstract
semantic meaning of the elements of the class. Therefore the axioms must be such that
a class contains all input telegram streams differing only by the number of spaces
between the words. Furthermore a class must be defined containing all erroneous
input telegram streams.

Fundamental work was done by Goguen and Thatcher [Gog 74] and also by
Guttag [Gut 75]. The shown approaches are not the only ones. Other possible alge-
braic approaches are proposed for example by Guttag and Horning [Gut 78] using
routines or by Mallgren [Mai 80] using event algebras.

Algebraic Specification of the Simple Telegram Problem Sorts

c - Character Data Type
w = Word Data Type
WS - Word Sequence Data Type
T = Input Telegram Data Type
TS = Input Telegram Sequence Data Type
s — Input Telegram Stream Data Type
OT - - Output Telegram Data Type
OTS — Output Telegram Sequence Data Type
OS — Output Telegram Stream Data Type
p Program Data Type
N — Integer Data Type
B - Boolean Data Type

Operation Symbols

Formally only operation symbols are defined here. But our comments will al-
ready give an interpretation to increase the readability of the definitions.

char: — char
{char £{A, ..., Z, a, ..., z, 0, ..., 9}
constructs the corresponding character.}

dig: - dig
{dig £{0, ..., 9}}

bool: — bool
{bool € {true, false}}

sword: C W
{Constructs a simple word consisting of one character only.}

word: fVXC — W
{Constructs a word by concatenating a word and a character.}

Software Specification Methods and Attribute Grammars 93

sseq: W - WS
{Constructs a simple word sequence consisting of one word only.}

seq: WSXW - WS
{Constructs a word sequence by concatenating a word sequence, a space
and a word.}

eseq: WS - WS
{Constructs a word sequence by appending one space to a word sequence.}

tel: WS -+ T
{Constructs from a word sequence a telegram by appending * * * " . }

stseq: T TS
{Constructs a simple telegram sequence consisting of one telegram only.}

tseq: TSXT - TS
{Constructs a telegram sequence by appending one telegram to a tele-
gram sequence.}

stream: TS — S
{Constructs from a telegram stream an input stream by appending

the empty telegram.}
outtel: WSXNXN OT

{Constructs an output telegram by composing a word sequence with the
integers for short and long words.}

sotseq: OT -> OTS
{Constructs a simple output telegram sequence consisting only of one
output telegram.}

outseq: OTSX OT - OTS
{Constructs an output telegram sequence by appending one output tele-
gram to an output telegram sequence.}

outstream: OTS - OS
{Constructs from an output telegram sequence an output telegram
stream.}

prog: SXOS^P
{Composes an input telegram stream and an output telegram stream to a
program.}

length: W-+N_
{For a given word the number of characters is delivered.}

succ: N — N
add: NXN —• N
eq: NXN — B
le: NXN B

{These are the well known successor, addition, equal and less or equal
operators.}

Auxiliary operation symbols

isword:
isws:
istel :
ists:
iss:

W ^ B
WS - B

T — B
TS-B

S-+B

94 G. Riedewald—P. Forbrig

isotel:
isots:
isos:
isprog:

isderts:

isderws:

is:

isshort:

OT
OTS

OS p

B
B
B
B

{These operators deliver the value true if the corresponding word, word-
sequence, telegram, telegram sequence, telegram stream, output telegram,
output telegram sequence, output telegram stream or program are well
formed; otherwise false is delivered.}

TSXOTS - B
{If the output telegram stream is derivable from the telegram stream true
is delivered otherwise false}

WSXWS^B
{If the first wordsequence is derivable from the second one then true
otherwise false is delivered.}

V/XW- B
{If the two words are identical the operation delivers true otherwise
false.}

W - B
{If the number of characters of the word is less or equal twelve then true
otherwise false is delivered.}

Axioms:

{JSTs means a variable of sort S.}
isprog (stream (XT S) , outstream (A'ors))=iss (stream (XS)T)

& isos (outstream (XOTS))
& isderts (X T S , X0TS)
{A program is well formed if the input telegram stream and the output telegram
stream are well formed and the output telegram sequence is derivable from the
input telegram sequence.}

iss (stream (Z r s))=its (XTS)
{A telegram stream is well formed if the corresponding telegram sequence is well
formed.}

ists (tseq (XTS, Ar
T))=ists (X r s) & istel (XT)

ists (stseq (AV))=istel (XT)
{A telegram sequence is well formed if it consists of a telegram sequence and a
telegram and both are well formed. It is also well formed if it consists of one well
formed telegram only.}

istel (tel (AVs))=isws (Xw^)
{A telegram is well formed if the corresponding word sequence is well formed.}

isws (eseq (AVs))=isws (AVS)
isws fseq {Xws, Ay))=isws (^Vs) & is word (Xw)
isws (sseq (AV)=isword (Xw)

{A word sequence is well formed if it consists of a well formed word sequence
followed by a space. It is also well formed if it consists of a word sequence and
a word and both are well formed.
If it consists of a word only and this word is well formed the word sequence is
well formed too.}

Software Specification Methods and Attribute Grammars 95

isword (length (Xw), succ20 (0))
{A word is well formed if its length is less than or equal to twenty.}

length (sword (Xc))=succ (0)
length (word (Xw, X c)=add (length (X w ,) succ (0))

{The length of the simple word consisting only of one character is one and the
length of a word consisting of a word followed by a character is the length of
this word plus one.}

isos (outstream (To r s))=isots (X0TS)
{An output telegram stream is well formed if the corresponding output telegram
sequence is well formed.}

isots (sotseq (Xor))=isotel (XOT)
isots (otseq (XOTS, X0T))=isots (X0TS) & isotel (XpT)

{An output telegram stream is well formed if it consists of one well formed output
telegram only. It is also well formed if it consists of an output telegram sequence
and an output telegram and both are well formed.}

isotel (outtel (sseq (Xw,) XN, 7^)=isshort (Xw) & eq (X, succ (0))
& isword (Xw) & eq (YN, 0)
{If the output telegram consists of one short word only then the number of short
words is one and the number of long words is zero.}

isotel (outtel (sseq (Xw), XN, 7W)=(~| isshort (Xwj) & isword (Xw)
& eq(XN, 0) & eq m (YN, succ (0))
{If the output telegram consists only of one word, which is a well formed word
but not a short word, then the mumber of short words is zero and the number of
long words is one.}

isotel (outtel (seq {Xws, Xw), add (XN, succ (0)), YN)-
isotel (outtel {Xws, XN, YN) & isshort (Xw) & isword (Xw)
{If an output telegram consists of a word sequence and a short word and the
telegram of the word sequence is a well formed output telegram then the number
of short words of the whole telegram is equal to the number of short words of this
telegram plus one. The number of long words is the same in both telegrams,

isotel (outtel (seq (Xws, Xw), XN, add (YN, SUCC (0)))=
isotel (outtel (Xws, XN, YN) & ("1 isshort (Xw))
& isword (Xw)

isotel (outtel (eseq (Xws), XN, Fw))=false
{An output telegram cannot contain more than one space between the words.}

isotel (outtel (seq (X w s , Xw), 0, 0))=false
{An output telegram composed of a word sequence and a word cannot have zero
short and zero long words.}

isshort (AV)=le (length (Xw), succ12 (0))
{A word is short if it has less than or equal to twelve characters.}

isderts (stseq (tel (AVs)), sotseq (outtel (Yws, XN, YN))=
, isderws (Xws,

isderts (tseq (XTS, tel (AVs)), otseq (X0TS, outtel
isderts (XTS, XOTS) & isderws (Xws, Yws)

isderts (tseq (XTS, XT), sotseq (Z0T))=false
isderts (stseq (XT), otseq (XOTS, XOT))=false

{An output telegram stream is derivable from a telegram stream if both consists
of one telegram only and the corresponding word sequences are derivable. It is

96 G. Riedewald—P. Forbrig

also derivable if both streams consist of a telegram stream and a word sequence
and they are derivable correspondingly. But an output stream is not derivable from
an input stream if one of them is a sequence and the other one is a simple se-
quence.}

isderws (sseq (Xw), sseq (iV))=is (Xw, Yw)
isderws (seq (AVs, Xw), seq (Yws, IV))=isderws *VS)

& is (X w , Yw)
isderws (eseq (AVS), 1VS)=isderws (Xws, Yws)
isderws (seq (AVs> Xw), sseq (IV)=false
isderws (sseq (Xw), seq (IVS , IV)=false

{An output word sequence is derivable from an input word sequence if both
consist of one word only and these words are identical. It is also derivable if both
sequences consist of a word sequence and a word and the word sequences are
derivable and the words are identical. If an output word sequence is derivable
from an input word sequence then the output sequence is also derivable from the
input word sequence followed by a space. If one sequence is a simple sequence
and the other is a sequence then the output sequence is not derivable from the
input sequence.}

Because of readability the axioms for "is" are omitted. They can be built straight-
forward. "eq", "le", "succ" and "and" are assumed to be standard operations.

2.2.3. Logical Specification

Logical specifications are based on predicate calculus. Well known approaches
are the axiomatic approach introduced by Hoare [Hoa 69] to define the semantics
of programming languages and the logical programming using the programming
language PROLOG [Kow 74].

Hoare's axiomatic approach

To define the semantics of a programming language Hoare uses specifications.
A specification is a string of the form

{¿}P{B},
where p is a part of a program, and A and B are formulas which can be interpreted as
assertions. Therefore the above specification could be read as:

"If A is valid before execution of p and p is finished then B is valid after execu-
tion of p (partial correctness)."

To specify a programming language one needs a finite system of specifications
consisting of axioms and rules of inference.

In the case of our simple telegram problem we consider a stream of input tele-
grams as a program. The semantics of this program is defined by the corresponding
stream of output telegrams. Such a "program" consists of elements from the set

C = {"A",..., "Z", "a",..., "z", "0", ..., "9", " # " , " * * * * " }
(# represents one space,
^ * * represents the end of a telegram)

Software Specification Methods and Attribute Grammars 97

and of the (invisible) concatenation operator which concatenates a part of an input
stream with an element into a new part of an input stream.

For the definition of the semantics we need some auxiliary variables:

output — Part of the output stream corresponding to the treated part of the input
stream,

length — Actual number of characters in the actually treated word,
short — Actual number of short words in the actually treated telegram,
long — Actual number of long words in the actually treated telegram,
telno — Number of already treated telegrams.

length = — 1 means the last telegram of the input stream was treated, length = 0
means the end of a word was treated. The quintuple (output, length, short, long, telno)
represents "evaluation" states of our "programs". That means a component of a
given input stream of telegrams transforms a given quadruple into a new one. Partic-
ularly, a given input stream of telegrams transforms the quintuple (empty, 0, 0, 0, 0)
into a quintuple with the sought output telegram stream as its first component.

In the following system of axioms and rules of inference we omit axioms and
rules for formulas supposing that all formulas are well defined.

Axioms:

A = output = o & length = /&/ sr 0

B = output = o.c & length = 1 + 1

ce{"A", ..., "Z", "a", ..., V , "0",.. . , "9"}

The last telegram has not been treated. Therefore the output stream is concate-
nated with the new element c. ("." means concatenation)

{ ¿ l } # { i ? l }

{A2} #{£2}

{,43} #{£3}

Al = 12<lengths 20 & long= / & output= o
B1 - length=0 & long= / + 1 & output=o. #
A2=0<lengths 12 & short=s & output=o
J32=length=0 & s h o r t = i + 1 & output=o. #
A3-lengths 0
53=length=0

These axioms count the number of short and long words in the actually treated
telegram. The last axiom secures that only one space occurs between words of the
output stream.

{/41}* * * *{51}

{,42}* * * * {52}
7 Acta Cybernetica VIII/1

98 G. Riedewald—P. Forbrig

,41 = (short =»0 or long>0) & length=0 & output=o
&te lno=i

51 = short=0 &long=0 & t e l n o = / + l
&output=o. .short. # .long. #

^42=short=0 & long=0 & length=0 & output=0
& telno notequal 0

jB2=output=o. .0. # .0. # & length = — 1

In the first axiom the actual telegram is finished. For this telegram the number of
short and long words is concatenated to the output stream.

In the second axiom the last telegram is treated and output contains the output
telegram stream.

Rule of inference:
{P)p\{Q\}, {Q\}p2{Q}

{P}p\p2{Q}

where p i is a part of an input stream and

p2e{"A",..., "Z", "a",..., "z", "0",..., "9", " # " , " * * * *"}.

This rule enables the composition of specifications and thereby the construction
of specifications for input streams of telegrams.

Specification of the simple telegram problem using predicate calculus

For the definition of the simple telegram problem we use now a finite system of
Horn clauses (see e.g. [Loy 84]). A Horn clause is a string of the form

B^A1,...,A„, (*)

where B, Alt ..., A„ are atoms.
An atom consists of a n-ary predicate symbol followed by a list of n terms inserted

in paranthesis. Let x1,...,xK be the only variables occurring in the terms of
B, Au ..., A„. Then (*) means

(Vx1,...,xk)(A1&...&An=>B).

By usual interpretation of formulas we get: _
For all values of the variables JC1; ..., xk such that all Ak are valid B is valid too
(Ai and B are assertions arising from A{ and B respectively).

For the definition of facts one uses a special kind of Horn clauses:

B

Horn clauses for the simple telegram problem (For simplicity we omit the de-
finition of some clauses referring to natural numbers and the concatenation operation
in terms.):

To achieve better readability of the clauses we will first give an interpretation of
the atoms.

Software Specification Methods and Attribute Grammars 99

sum (X, Y,Z) — Z is the sum of X and Y.
greater (X, Y) — X is greater than Y.
lessequal (X, Y) — X is less than or equal to Y.
character (X) — X is a character,
word {X, L) — X is a word of length L.
telegram (X , Y) — Y is the output telegram corresponding to the input

telegram X.
telegramstream

(X, Y) — Y is the output telegram
[telstr (X, F)] stream corresponding to the input telegram steream.

character (X) - . Xd{"A", ..., "Z" , "a", ..., "z", "0", ..., "9"}
word {X, 1) — character (X).
word (AT, LI) — character (X), word (Y, L), sum (L, 1, XI).
telegram (# X, F)—telegram (X, F).
telegram (X # F , X # Z # , S # L 1 #) - word (X , L0),

tel(F, Z # S # L #) ,
greater (L0, 12),
lessequal (L0, 20),
sum (L, 1, LI).

telegram (X # F, X # Z # S 1 # . L #) - word (X, L0),
tel (Y,Z#S#L#),
lessequal (L0, 12),
sum (S, 1, SI).

tel # 0 # 0 #) — .
tel (X, F)- telegram (X, F).
telegramstr * * * * # 0 # 0 #) - .
telegramstr (XI, YO) - telegram (X, F),

telegramstr (I, O).
telegramstream (XI, YO) — telegram (X, F)

telegramstr (I, O).

For a given input telegram stream Ti the corresponding output telegram stream
is determined (if it exists) beginning from the goal telegramstream (Ti, F). This is
done by constructing a prove for the goal with the Horn clauses. The variables of the
Horn clauses are suitably substituted. The determined value of the variable F in the
goal is the sought output telegram stream.

2.2.5. Denotational Specification

The objective of denotational specification is to think of programs as being func-
tions which transform input values into output values. However unlike a program
which specifies how to compute the function, the denotational specifications merely
indicate which function the program should compute.

The fundamentals of this theory were developed by Scott and Strachey [Sco 71]
to define the semantics of programming languages. They were further developed by
Stoy [Sto 77].

7»

100 G. Riedewald—P. Forbrig

To specify our simple telegram problem we will use the meta-language of the
Vienna Development Method, (see e.g. [Bj0 78])

Analogously to the axiomatic approach the starting point is to consider an input
telegram stream as a program. The semantic meaning of this program is the corre-
sponding output telegram stream. Now, the denotational approach requires the de-
finition of syntactical and semantical domains and the definition of functions deter-
mining the semantic meaning of program parts. Furthermore, we need some functors
for "pasting together" semantic functions.

Denotational Specification of the Simple Telegram Problem Syntactic Domains:

Program = Prog.
Prog: :Stream Endword.
Stream=Tel | Telseq.
Tel::Wordseq Endword.
Telseq: rStream Tel.
Wordseq= Word | Words.
Word: :Charstr Spaces.
Words: rWordseq Word.
Charstr=Character | Characters.
Character=A\...\Z\a\... |z|0|... |9.
Characters: rCharstr Character.
Spaces=Space| Spaceseq.
Space = # .
Spaceseq::Spaceseq Space.
Endword = * * * * .

Sematic Domains:
OUTTELSTREAM: :OUTTEL*
OUTTEL: :WORD* END SPACE INT SPACE INT SPACE
WORD: ¡CHARACTER* SPACE
CHARACTER = {A, ..., Z, a, ..., z, 0 , . . . , 9}
INT={0, 1,2,3, ...}
S P A C E = #
END= * * * * *

Elaboration Functions:
type: eval-program: Program — OUTTELSTREAM
type: eval-orog: Prog - OUTTELSTREAM
type: eval-stream: Stream - OUTTELSTREAM
type: eval-tel: Tel - OUTTEL
type: eval-wordseq: Wordseq — OUTTEL
type: eval-word: Word - INTxINT
type: eval-charstream: Charstream — INT
type: eval-characters: Characters — INT

eval-program (p) A eval-prog (p)
{The result of the function eval-program (p) is the result of the function eval-
prog (/>).}

Software Specification Methods and Attribute Grammars 101

eval-prog (mk-prog (s, e))A

let z>l=eval-stream (5)
v2=

in vl.v2

{A program p consists of a stream s and an end word e. The result of eval-prog
(p) is equivalent to the result of eval-stream (s) concatenated by the empty
telegram.}

eval-stream (st) A

cases st: mk-tel (WJ, e) eval-wordseq (WJ),
mk-telseq (s, t) -»-let vl = eval-stream (s),

«2=eval-tel (t)
in vl.v2

{If the stream st consists of a word sequence ws and the end word e the result of
eval-stream (st) is the result of eval-wordseq (WJ).
But if st consists of a stream s and a telegram t eval-stream (st) is equal to the
concatenation of the results of eval-stream (s) and eval-tel (t).}

eval-tel (mk-tel (WJ, e)) A eval-wordseq (ws)

{A telegram consists of a word sequence ws and an end word e. The result of
eval-tel (?) is equal to the result of eval-wordseq (ws).}

eval-wordseq (ws) A

cases wj: mk-word (w) — let (x, >>)=eval-word (w)
in

mk-words (sw, w) - • l e t
(u, v)=eval-word (w),

* * # z # = eval-wordseq (JW)

{If the word sequence ws consists of one word w only the result of eval-wordseq
(wj) is the composition of w and the result of eval-word (w).
If wj consists of a wordseqimce JW and a word w the result of eval-wordseq (WJ)
is a composition of the results of eval-word (W) and eval-wordseq (JW).}

eval-word (mk-charstr (cs, s))A
if eval-charstr (cs)s 12

then (1, 0)
else
if eval-charstr (cs)s 20

then (0, 1)
else undefined

{A word consists of a character stream cs and a space sequence s. The result of
eval-word (w) is equal to (1,0) or (0,1) depending on the result of eval-chararstr

102 G. Riedewald—P. Forbrig

eval-charstr (cs) A

cases cs: mk-character (c) — 1,
mk-characters (c)—eval-characters (c)

{If the character stream cs consists of a character c the result of eval-charstr (cs)
is equal to one.
If cs consists of characters c then the result of eval-charstr (CJ) is equal to the
result of eval-characters (c).}

eval-characters (mk-characters (cs, c))A

let x—eval-charstr (cs)
in x+1

{Characters ca consist of a character stream cs and a character c. The result of
eval-characters (ca) is equal to the result of eval-charstr (cs) plus one.}

2.2.6. Relations Between Fundamentals of Problem, Program
and Implementation Specification

A selection of some references related to the topic is given in Figure 2.
According to the methods for problem and program specification there are many

tools for implementation specification, which are also influenced by mathematics.
Figure 2 also presents a classification of some of these tools.

There is no fixed way from program specification to programming. The software
engineer can choose all programming methods for every specification.

But modern methodologies of software engineering try to unify the descriptions
during the whole life cycle. Especially the implementation specification attains a
higher level of abstraction and has the form of program or. problem specification.

There is a good success in logical programming (e.g. PROLOG), in programming
by grammars (e.g. CDL, HFP) and in programming on a very high level (e.g.
MODEL).

All modern methods have in common, that the software engineer is not con-
fronted with all implementation details. In many cases he does not know them.

He can concentrate upon the main design principles. The details are generated
automatically (artificial intelligence) or are already implemented (abstract data
types).

In our opinion programming by grammar will be more important in future. Watt
and Madsen [Wat 81] have shown for example, that algebraic, logical and denota-
tional specification can be expressed by extended attribute grammars.

2.2.7. Grammatical Specification of the simplified telegram problem

First, we will informally introduce the notion of attribute grammars on the basis
of grammars of syntactic functions [Rie 83].
An attribute grammar is a contextfree grammar

G = (V, T, S, P)

Software Specification Methods and Attribute Grammars 103

Program Specification

Natural
Languages

Algebraic Spec.

Burstall 81
Ganzinger 82
Gogolla 82
Goguen 77
Guttag 75
Reichel 80
Riedewald 79,
Liskov 75
Wulf 76

85

Other Methods

Logical Spec.

Apt 82
Bibel 75
Colmerauer 78
Hoare 69
Kowalski 74
Pereira 80
Robinson 77
Szeredi 77
Warren 82

Denotational Spec.

Allison 83
Bj orner 82
Cleavelend 80
Jones 82
Lucas 82
Manna 74
Scott 71
Stoy 77
Tennent 75

Algorithmic
Languases

A L G O L 60/68
COBOL 61
F O R T R A N 54
PASCAL 71

Programming
with Abstr.
Data Types

Logical .
Programming

Programming
on Very
High Level

ADA 79 P L A N N E R 69 L U C I D 77
A L P H A R D 76 P R O L O G 75 M O D E L 83
BLISS 73
CLU 73
SIMULA 67

Implementation Specification

VAL 79

Programming
by Grammars

C D L 76
ELSA 83
H F P 81

Other Methods

Figure 2. Classification of Problem, Program and Implementation Specification
Methods and Tools

F-vocabulary, T-set of terminals, N-set of nonterminals
V=NUT,' 5-start element, P-set of production rules

augmented with parameters, auxiliary syntactic functions and semantic functions.
Auxiliary syntactic functions are necessary to describe the static semantic.

The rules have the form

f(pi,.--,pi,)::=f1(pi\..:,p/n})..-fr(pi'>..-,pfn'f) . ,

(Pi1 ,-,p"l,)...Hk (p ï " p %) .

104 G. Riedewald—P. Forbrig

Hlt..., Hk£ {auxiliary syntactic functions} U {semantic functions}, set of para-
meters, x, y, r, k£ set of integers.

The telegram problem can be specified in different ways by a grammar. The
following two methods are possible:
1. The input and output telegram streams are described by parameters. The start

symbol has the input telegram stream as input parameter and delivers the output
telegram stream as the value of the output parameter.

2. The input telegram stream is described by a context-free grammar and this gram-
mar is augmented by parameters and functions in such a way that the start element
of the grammar delivers the output telegram stream as the value of the parameter
of of the start symbol.

The first method would result in a grammar very similar to our specification
using Horn clauses. Therefore we will omit this example here. The interested reader
will very easily get such a grammar.

Let us demonstrate the second method in full detail.

Grammatical Specification of the Simple Telegram Problem
(using the second method)

I. Semantic functions

— CATC (|SI, \S2, t S)
This function concatenates S2 to 51 and delivers S.

— CAT3(|S1, JS2, JS3, tS)
This function delivers 51 S2. # S 3 . # in S.

— COUNT (|L, \Longl, \Short\, \ Long, \ Short)
IF L < 12 THEN Long Long I; Short:= Shortly \

ELSE Long := Longl +1; Short := Shortl
FI

— ADD (M, |B, \C)
C:=A+B

II. Auxiliary Syntactic functions

— OVERLENGTH (IL)
The actions of the parser are influenced by this function. The application of the
corresponding rule is possible if L is less or equal to 20 only.

III. Production rules

1. Program (f Outstream): :=Telegramstream (t Out)
" # " Endsymbol
CAT3 (10«/,\ "0", TO",\Outstream).

2. Telegramstream (t O): :=Telegram (t 0).

Software Specification Methods and Attribute Grammars 105

3. Telegramstream (tO)::=Telegramstream (\01)
Telegram (i02)
CAT2 (iOl, |02 , tO).

4. Telegram (fO)::= Wordsequence (fOl, tShort, tLong)
Endsymbol
CAT3 0O1, \ Short, [Long, \0).

5. Wordsequence(fO, \Short, \Long)::=
Word (tO, f Length)
OVERLENGTH (\Length)
COUNT 0Length, 1"0", |"0", \Short, \Long).

6. Wordsequence (fO, \ Short, \Long)::=
Wordsequence (fOl, \ Short I, \Long\)
Word (t02, f Length)
OVERLENGTH (¡Length)
COUNT (¡Length, \Shortl, \Long\,

t Short, \Long
CAT2(|01, \02, tO).

7. Word(\Word,\L)-.:— Charactersequence (ffFoni, \L)
Spacesequence.

8. Charactersequence (\C, t"l")::=Character (fC).
9. Charactersequence (\Char, 1 Length): :=

Charactersequence (\Charl,] Length I)
Character (\Char 2)
CAT2 (\Char\, \Char2, \Char)
ADD (\Length\, fLength).

10. Character(f"A")::="A".

35. Character (f "Z") : :="Z" .
36. Character (t " f l ") : := 'V .

51. Character (t 'V ') : :="2" .
52. Character (t"0"): :="0".

62. Character (f"9") : :="9".
63 Endsymbol::= .
64. Spacesequence : : = " # " .
65. Spacesequence ::= Spacesequence " # " .

2.3. Programming with Production Rules

The relations of methods, which were developed independently for using pro-
duction rules in programming, are the result of current research.

Figure 3 shows some interesting relations between attribute grammars and logical
programming.

The world wide interest in logical programming and the relations of Figure 3
support our opinion to study applications of attribute grammars in software engi-
neering. ? '

106 G. Riedewald—P. Forbrig

Programming with Production Rules

Programming with
Attribute Grammars

Attribute Grammars
Knuth 68

Two-Level Grammars
van Wijngaarden 68

I
I

Grammars of Syntactic
Functions

Riedewald 71

Affix Grammars
Köster 71

Programming with
Logical Rules

Thè Semantics of
Predicate Logic as
Programming Language

Kowalski 74

PROLOG
Roussel 75

Grammars and Predicate Logic
Koch 81

A Version of PROLOG
Based on the Notion
of Two-Level
Grammar

Mahiszynski 82

Beyond PROLOG:
Software
Specification
by Grammar

Wilson 82

I I

Implementation of
an Attribute
Grammar with PROLOG

Logrippo,
Skuce 83

Figure 3. Some Relations Between Programming Methods Using Production Rules

2.4. Some Software Development Methods and Tools with
Different Use of Data and Information

. We want to discuss some other arguments supporting the application of attrib-
ute grammars in software development. Let us first have a look at some methods and
tools supporting the use of data and information in different kinds. Figure 4 is an
attempt to classify some methods and tools. Such tools can also be used in another
way, of course, but they were mainly designed for this purpose.

Software Specification Methods and Attribute Grammars 109

Programming Method

Data Encapsulation

Attribute
Grammars

Languages
with .Abstract
Data Types

ADA 79
ALPHARD 76
BLISS 73
CLU 77
SIMULA 67

Rechenberg 84 ^ -
Forbrig 84

Data Driven Programming

Attribute
Grammars

CDL76
Hehner 83
Hughes 79
Logrippo 83
Noonan 75

Very High
Level
Languages

I
MODEL 83
LUCID 77
VAL 79

Rechenberg 84 {with data
Forbrig 84 • encapsulation}'

Problem Driven Programming
{without data encapsulation}

Attribute
Grammars

Maluszytiski 82

Algorithm Driven Programming
{without data encapsulation}

Programming in
Predicate Calc.

PROLOG 75
PLANNER 69

/
Attribute
Grammars

I
CDL 76
ELSA 83
HFP 81

Functional Programming
Backus 78

•Algorithmic
Languages

ALGOL 60/86
COBOL 61
FORTRAN. 54
PASCAL 71
PL/I 67

Figure 4. Classification of some Programming Methods and Tools

The following results can be obtained from Figure 4:
1. Attribute grammars are applied in all classified fields.
2. The programming language CDL can be used in a data driven and algorithm

driven way. 5'
3. Attribute grammars can be combined with data encapsulation.
4. Attribute grammars can be used to combine data driven programming and data

encapsulation.
The method of data driven programming by attribute grammars with abstract

data types was discussed in Rostock in [For 84 a]. Some similar results can be found
in [Rec 84]. Rechenberg proposes attribute grammars mainly as a tool for program
specification. The implementation is suggested by top-down programming.

We will mainly use attribute grammars as input for a translator writing system.
Examples of data driven data processing using attribute grammars with abstract data
types will be presented in the following section.

108 G. Riedewald—P. Forbrig

2.5. Data Driven Programming with Abstract Data Types

2.5.1. Attribute Grammars and Abstract Data Types

We will extend the definition of an attribute grammar by abstract data types. The
context-free grammar is not only augemented with parameters, semantic functions
and syntactic functions but also with functions of abstract data types.

That means
•Hi, ..., Hk£{semantic functions} U{syntactic functions} U{functions of abstract
data types}.

These grammars are more effective to implement, because not all information
has to be transfered a long way via parameters.

In our opinion attribute grammars with abstract data types are better to read and
write. They can better be maintained.

2.5.2. Examples

2.5.2.1. Grammatical Specification of the Simple Telegram Problem

I. Abstract data types

* File of output telegram stream with statistics
— OPEN-OUTFILE, CLOSE-OtiTFILE
. These functions open and close the file.

— OUTWORD (iWord, \Length)
The "Word" with given length is stored on the file.

— OUTCOUNT ([Short, \Long)
The number of long and short records of the current telegram are stored on
the file according to the specification. Short. #Long. #)

II. Semantic functions

We use the semantic functions of our example in section 2.2.7.

III*. Aixitiary syntactic functions

We use the syntactic functions of the example in section 2.2.7.

IV. Production rules

1.. Program ::=Begin Stream CLOSE-OUTFILE.
.2. Begin ::=OPEN-OUTFILE.
3. Stream::=Telegramstream. " # " Endsymbol

OUTCOUNT 0"0" , J"0"). .
-4. Telegramstream: :=Telegram.
5. Telegramstream::=Telegramstream Telegram. • -

Software Specification Methods and Attribute Grammars 109

6. Telegram ::=Wordsequence (t Short, \Long)
Endsymbol
OUTCOUNT (\Short, \Long).

7. Wordsequence (f Short, \ Long): := Word (t Word, t L)
OVERLENGTH (J i)
COUNT (\L, J"0", r '0" , \ Short, fLong)
OUT WORD ([Word, \L).

8.Wordsequence (t Short, \ Long): :=
Wordsequence (\Shortl, ¡Longl)

Word (\Word, \L)
OVERLENGTH (\L)
COUNT (|L, ¡Short], [Longl, \Short, fLong)
OUTWORD (¡Word, \L).

9. Word (t Word, t L): :=Charactersequence (t Word, \L)
Spacesequence.

10. Charactersequence (fC, t "!")::=Character (|C).
11. Charactersequence (f C, t L) : :=

Charactersequence (fCl, f Z.1)
Character (fC2)
CAT2 (JC1, \C2, tC)
ADD ([L\, |"1", tL) .

12. Character (f"A") : :="A".

37. Character (f " Z ") : : = " Z " .
38. Character (t "a"): :="a".

53. Character (t"z"): "z".
54. Character (f"0") :="0".

64. Character (f"9")::= "9".
65. Endsymbol:
66. Spacesequence : :=" # " .
67. Spacesequence ::=Spacesequence " # " .

If standard technices are used as subprograms for lexical analysis only the first
eight production rules of the grammar are necessary.

2.5.2.2. Grammatical Specification of a Very Little Commercial Project

The following task has to be fulfilled by a computer: A special master file con-
tains data of all wage-earners of an enterprise. Another file contains monthly data of
working time and wages. These two files have to be used to produce pay slips, to
remit the money through the bank and to report about working time. There is a lot of
possibilities of monthly data. Therefore, every item has a key and the file contains
only items different from zero. According to the four kinds of taxes used in the GDR
the total sum on the pay slip is broken up into four groups. This very little commercial
project can be descibed by the following attribute grammar.

110 G. Riedewald—P. Forbrig

I. Abstract data types

a) Master file with the functions:
— OPEN-MASTER-FILE, CLOSE-MASTER-FILE

These functions open and close the file.
— MASTER-DATA ([Number, \Group, \ Place, iBank)

This function delivers for a given number of a wage-earner his number of
the bank account, his working place and his group of professional classi-
fication. The master file data of this worker are prepared open for other
functions.

— MASTER-WAGES (tMoney)
For the current wage-earner the money per hour is delivered from the
master file.

b) File of working time statistics:
— OPEN-TIME, CLOSE-TIME
— TIME-BEGIN ([Group, [Place)

For a given group and working place the entry of statistical data is pre-
pared.

— TIME-KEY ([Key, [Hours)
For a group and working place fixed above the given hours are added
according to the key.

c) File of data for the bank:
— OPEN-BANK, CLOSE-BANK
— BANK-REMIT ([Bank, [Amount)

The amount is transfered to the given bank account.

d) File of pay slips:
— OPEN-PAY-SLIP, CLOSE-PAY-SLIP
— PAY-SLIP-BEGIN ([Number, 1Place)

An entry of data is prepared for number and place.
— PAY-SLIP ([Ami, [Ami, [Am3, [Am4, [Sum)

The given data are entered on the file.

II. Semantic functions

— ADD2 ([SI, [S2, tSum)
Sum := 51 + S2

— ADD (J51, |52, 153, lS4, \Sum)
Sum := 51 + 52+ 53 + 54

— MULT ([Fl, [F2, t Product)
Product :=F*F2

— DEC 0D1, [D2, [D3, |£>4, [D5, \Value)
Value:=(((Dl * 10+£>2)* 10+Z>3)* 10+£>4)* 10+ £>5

III. Auxiliary syntactic functions

Auxiliary syntactic functions are not necessary for our example.

Software Specification Methods and Attribute Grammars 111

IV. Production rules

1. Project-run ::=Begin Records CLOSE-MASTER-FILE
CLOSE-TIME CLOSE-BANK CLOSE-PAY-SLIP.

2. Begin: :=OPEN-MASTER-FILE OPEN-TIME OPEN-BANK
OPEN-PAY-SLIP.

3. Records ::= Record.
4. Records::= Records Record.
5. Record ::=Head (\Bank) Items (\Amount)

BANK-REMIT (|Bank, \Amount).
6. Head (\Bank): "NO" Earn-No (\ Number)

MASTER-DATA (¡Number, \Group, \Place, tBank)
TIME-BEGIN (|Group, \ Place)
PAY-SLIP-BEGIN (JNumber, \Place).

7. Items (tAmount): :=Amount 1 ('[Ami) Amount2 (\Am2)
Amount3 (tAm3) Amount4 (\Am4)
ADD4(\Aml, \Am2, \Am3, \AmA, fSum)
PAY-SLIP (\Aml, \Am2, \Am3, \Am4,
\Surri).

8. Amountl (Mml)::=Amountsl (\Aml).
9. Amountl (t"0")::=.

10. Amounts 1 (\Aml)::=Aml(iAml).
11. Amountsl (\Aml): :=Amounts 1 (\Am2) Ami (\Am3)

ADD2 (\Am2, \Am3,\Aml).
12. Ami (t^ml): :="H01" Hours (\H) "M01" Money (\M)

MULT (\H,\M,\Aml) TIME-KEY "01", \H).
13. Ami (Mml)::="H01" Hours (\H) MASTER-WAGES (\M)

MULT (\H, |M,\Aml) TIME-KEY (|"01", \H).
14. Ami (Mml)::="FM01" Money (t^wl) .
15. Ami (t^ml) : :="FM02" Money (Mml).
16. Earn-No (\Number): :=Number5 (\Number).
17. Hours (tH): :=Number5 (\H).
18. Money (tM)::=Number5 (\M).
19. Number5 (tK)::=Digit (\Dl) Digit (\D2) Digit (\D3)

Digit (|Z)4) Digit (\D5)
DEC (\Dl, \D2, \D3, \DA, j£>5, \V).

20. Digit (t"0")::="0".

30. Digit(t"9")=::"9".

With respect to simplicity the rules of Amount2, Amount3 and Amount4 were
omitted. They can be formulated similarly to the rules of Amountl.

According to rule 1 and 2 the project run consists of opening all abstract data
types, interpreting a sequence of records and closing all abstract data types.

Every record has head data and items (rule 5).
The head data consist of key "NO" followed by the number of a wage-earner

(rule 6). With the help of this number, data are obtained from the master file and the
entry of data for statistics and the pay slip are prepared.

112 G. Riedewald—P. Forbrig

The items consist of four groups (rule 7). Every group can be a sequence of data
(rule 11). The empty sequence is possible (rule 9).

If there are data about hours and money, multiplication is performed and the
hours are reported for statistics (rule 11).

If there are only hours the money per hour is taken from the master file (rule 13).
It is also possible to get money per month (rule 14,15).

Everybody familiar with attribute grammars can easily get this information from
the grammar. Therefore, it is an exact document of the project and it supports the
implementation.

3. Summary

After a short survey of the fundamentals of software engineering we have dis-
cussed some classifications of methods and tools. As a result, the combination of data
driven programming and data encapsulation, usually classified as contrary concepts,
was developed by using attribute grammars.

This method was demonstrated by a very little commercial data processing sys-
tem. The advantages of the method presented can be summarized as follows.

1. Attribute grammars are a good document for design and implementation.
2. Modularization is supported.
3. Maintenance can be performed relative easily and locally.
4. Syntactic analysis of data is automated and the software engineer can concentrate

upon the main principles of his system.
5. Grammars can already be tested at very early development phases and the com-

pleteness of the system can be checked.
6. Simulations can be performed without total implementation of all functions.
7. Developed projects are broken up into many parts in a natural manner, which

can run in parallel.
8. Functions have not to be designed in the same manner. A system of existing

modules can be composed by using this method.
9. The method supports the use and design of so called knowledge bases (e.g. as

abstract data types).
10. Syntactic analysis algorithm in translator writing systems will be much more ef-

fective than most hand written algorithms.
11. Automatic error recovery methods can be used (e.g. [For 84 b]).

Of course, this method is not intended to be applied to all problems of software
engineering. The application of data driven programming, however, is very well
supported by a grammar. We think this method to be useful especially in the field of
commercial data processing.

Only a short list of references can be given here. A more complete list with about
300 references related to the topic of software specification can be obtained from the
authors.

WILHEM PICK UNIVERSITAET ROSTOCK
SEKTION INFORMATIK
D D R 2500 ROSTOCK
ALBERT EINSTEIN STRASSE 21

Software Specification Methods and Attribute Grammars 113

References

[Aba 82] ABAFFY, J., KRAFFT, W., XHELF: An Aid for Developing Computer Programs, Proc. o f
the Conference on System Theoretical Aspects in Computer Science, Hungary, 1982.

[Bac 78] BACKUS, J., Can Programming be Liberated from the von Neumann Style? Comm. of the
ACM 21 (8) 1978.

[Bj0 78] BJ0RNER, D., JONES, C. B., The Vienna Development Method: The Meta-Language, Lec-
ture Notes in Computer Science, Vol. 61,1978.

[Cle 80] CLEAVELAND, J. C., Mathematical Specification, SIGPLAN Notices, 15 (12) 1980.
[Clo 81] CLOCKSIN, W. F., MELLISH, C. S., Programming in PROLOG, Springer Verlag, 1981.
[Col 81] COLEMAN, D., HUGHES, W., POWELL, M. S., A Method for the Syntax Directed Design of

Multiprograms, IEEE Trans, on Software Eng., 7 (2) 1981.
[Des 83] DESPEYROUX, J., An Algebraic Specification of a PASCAL Complier, SIGPLAN Notices,

18 (12) 1983.
[Fib 84] FIBY, R., MOLNAR, S., WEIGL, I., Is the Idealised Logic Programming Feasible? Proc.

IMYCS 84, Smolenice, CSSR, 1984.
[For 84a] FORBRIG, P., Attributierte Grammatiken und Softwarespezifikation, Seminar attr. Gr.,

Rostock 84.
[For 84b] FORBRIG, P., A New Error Recovery Method for Optimized LR Parsers, Proc. IMYCS

84, Smolenice.
[For 85] FORBRIG, P., Kombination der datengesteuerten Programmierung nach Jackson mit der

Methode der Datenabstraktion nach Parnas, Rostock, Rep. 7/85.
[Gog 74] GOGUEN, J. A., THATCHER, J. W., Initial Algebra Semantics, IEEE Symp. on Switching and

Autom. 74.
[Gut 75] GUTTAG, J. V., The Specifications and Application to Programming of Abstract Data Types,

University of Toronto, Report CSRG-59, 1975.
[Gut 78] GUTTAG, J. V., HORNING, J. J., The Algebraic Specification of Abstract Data Types, Acta

Informática 10 (1) 1978.
[Gyi 83] GYIMÓTHY, T . , SIMON, E . , MAKAY, A . , A n I m p l e m e n t a t i o n o f H L P , A c t a Cybernet ica ,

3 (6) 1 9 8 3 .
[Heh 83] HEHNER, E. C. R., SILVERBERG, B. A., Programming with Grammars: An Exercise in

Methodology-Directed language Design The Computer J. 26 (3) 1983.
[Hug 79] HUGHES, J. W., A Formalization and Explication of the Michael Jackson Method of Pro-

gram Design, Software Practice & Experience, 9 (2) 1979.
[Hoa 69] HOARE, C. A. R., An Axiomatic Basis for Computer Programming, Comm. of the ACM,,

12 (10) 1969.
[Jac 75] JACKSON, M., Principles of Program Design, Academic Press, 1975.
[Kat 81] KATAYAMA, T., HFP: A Hierarchical and Functional Programming Based on Attribute

Grammars, Proc. 5th Int. Conf. on Software Engineering, 1981.
[Knu 82] KNUTH, E., NEUHOLD, E. J., Specification and Design of Software Systems, Proc. of the

Conference of Operating Systems, Hungary, 1982.
[Kow 74] KOWALSKI, R. A., Predicate Logic as a Programming Language, Information Processing

74, North Holland, 1974.
[Lae 84] LAEMMEL, U-, Specification of Dialogue Systems Using Attributed Grammars, Proc.

IMYCS 84.
[Lin 83] LINDSEY, C. H., ELSA — An Extensible Programming System, IFTP — TC 2, Dresden,

1983.
[Log 83] LOGRIPPO, L., SKUCE, D. R., File Structures, Program Structures and Attribute Grammars,

IEEE Trans, on Software Engineering, 9 (3) 1983.
[Loy 84] LOYD, J. W., Foundations of Logic Programming, Springer Verlag, Heidelberg—New

York—Tokio 1984.
[Mad 80] MADSEN, O. L., On Defining Semantics by Means of Extended Attribute Grammars,

Lecture Notes in Computer Science, Vol. 94,1980, p. 259—300.
[Mai 80] MALLGREN, W. R., Formal Specification of Graphical Data Types, University of Washing-

ton, Technical Reprt No. 80—04—04, 1980.
[Mai 82] MAIUSZYNSKI, J., NILSSON, J. F. A Version of PROLOG Based on the Notion of Two-

Level Grammars, International PROLOG Workshop, Linkoeping, 1982.
[Noo 75] NOONAN, R. E., Structured Programming and Formal Specification, IEEE Trans. on S.

Eng., 1 (4) 1975.

8 Acta Cybernetica Vin/1

114 G. Riedewald—P. Forbrig: Software Soecification Methods and Attribute Grammars

[Par 72] PARNAS, D. L., On Criteria to be Used in Decomposing Systems into Modules, Comm.
ACM, 15 (12) 1972.

[Ree 84] RECHENBERG, P., Attributierte Grammatiken als Methode der Softwaretechnik, El.
Rechenanl., 26 (3) 84.

[Rie 83] RIEDEWALD, G., MALUSZYNSKI, J., DEMBINSKI, P., Formale Beschreibung von Program-
miersprachen, Akademie Verlag Berlin, 1983. also Oldenbourg Verlag, Wien—Muenchen,
1983.

[Rie 85] RIEDEWALD, G., Ein Modell fuer Programmiersprachen und Compiler auf der Basis uni-
verseller Algebren, Elektronischen Informationsverarbeitung und Kybernetik, 21 (3)
1985.

[Sco 71] SCOTT, D., STRACHEY, C , Towards a Mathematical Semantics for Computer Languages,
Proc. of the Symp. on Computer and Automata 1971..

[Sto 77] STOY, J. E., Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, MIT Press 1977.

[Sze 77] SZEREDI, P., PROLOG: A Very High Level Language Based on Predicate Logic, Proc. 2nd
Hungarian Computer Science Conference, 1977.

[Wat 79] WATT, D. A., MADSEN, O. L., Extended Attribute Grammars, Aarhus Univ., Rep. DAIMI
PB-105,1979.

[Watt 83] WATT, D. A., MAUSEN, O. L., Extended Attribute Grammars, The Computer Journal,
26(2)1983.

[Wil 82] WILSON, W. W., Beyond PROLOG: Software Specification by Grammars, SIGPLAN
Notices, 17 (9) 1982.

(Received Dec. 18, 1985)

