
Two Transformations on Attribute Grammars
Improving the Complexity of their Evaluation

ÉVA GOMBÁS a n d MIKLÓS BARTHA

A. JÓZSEF UNIVERSITY
BOLYAI INSTITUTE
SZEGED, A R A D I V É R T A N Ú K TERE 1.
6720 — H U N G A R Y

1. Introduction

Several papers have been written recently on designing efficient evaluators for
attribute grammars (AGs). Some of these papers (e.g. [6], [7]) provide techniques
to optimize the time complexity of the evaluators for certain classes of AGs (the
class of absolutely noncircular AGs in the referenced papers), other ones (e.g. [5], [9])
try to reduce the storage requirement of the evaluators. The same goal of these
papers is, however, to optimize evaluation by improving the evaluator itself in some
respect. Our aim is to improve the AG to be evaluated — by the application of a
suitable transformation — not the evaluator (of a fixed type) by which the evaluation
is actually performed. Of course, this approach cannot provide general optimization
results as the previous one, but in some cases it can be quite powerful. In this paper
we present two transformation techniques and show how they work in restricted
classes of AGs.

It is known that every AG can be converted to an equivalent one which uses
only synthesized (^attributes. The underlying idea is the following: the value of a
new i-attribute computed at any (nonterminal) node of a derivation tree becomes
a function that describes how the corresponding old s-attribute depends on the old
inherited (i)-attributes at the same node of the tree in the original AG. An exact
algebraic formulation of this method, which will be referenced as the "convert to
functional domains" (c.f.d.) principle, can be found e.g. in [2]. On the one hand it is
clear that for an AG having ^-attributes only, the structure of the evaluator is the
simplest possible (only one left-to-right pass is needed). On the other hand, it is in
general much more costly to deal with functional domains during evaluation, than
to make multiple visits to the nodes of the derivation trees. Therefore, the c.f.d.
principle cannot be used as a general transformation technique improving the com-
plexity of evaluation. But it can be used successfully in a less drastical form for restrict-
ed classes of AGs. Indeed, both transformations presented in this paper are even-
tually applications of the c.f.d. principle.

The trick we are going to apply in the first transformation is based on the
following well-known method of designing a one-pass assembler. If a post-definite

56 Gombas, M. Bartha

label occurs in some instruction of the source program, then the assembler will
translate an incomplete object code from that instruction, and it will update the
adress field of this object code instruction (chained together with all those instruc-
tions referring to the same postdefinite label) as soon as the referenced label becomes
definite. The term "reference to a post-definite label" corresponds to the term
"reference to an /-attribute occurrence on the right-hand side of the semantic rules"
in an AG, thus, we simplify evaluation by ignoring or postponing the computation of
certain /-attribute instances at the nodes of the derivation trees. An example for this
transformation is given in Sect. 2, and it is generalized in Sect. 4. To characterize
the AGs for which the transformation is applicable, we introduce the class of VSE
AGs in Sect. 3 and investigate the basic properties of this class. The class of VSE
AGs is the visit-oriented counterpart of the class of ASE AGs [8], and it is in strong
connection with the classes of OAG [10] and simple multi-visit AGs [3].

The second transformation technique is described in Sect. 5. It uses the c.f.d.
principle with its full power, i.e. all the /-attributes are eliminated. The transforma-
tion can be applied, however, for a more restricted class of AGs, the class of linear
string-valued AGs. By linearity we mean that in the Bochmann normal form of the
semantic rules every attribute occurrence can be referenced at most once on the
right-hand sides. This concept was originally defined for attributed tree transducers
in [1].

In Sect. 4 we introduce two complexity measures for the evaluation of the
complete derivation trees (cd-trees) of an AG under a fixed visit-oriented evaluator
(cf. [9]). The visit complexity of a cd-tree t is the average number of visits made to
a node during the evaluation of t. The pure computation complexity of t is the total
amount of computation needed to assign value to all the attribute instances of t.
The collection of pairs constructed from these two numbers for all the cd-trees,
together with the type of the evaluator characterizes the evaluation complexity of
the AG in a satisfactory way. We shall show that our transformations indeed reduce
the complexity of evaluation in this sense.

2. Definitions and Examples

Although we assume familiarity with attribute grammars [11], we repeat some
of the basic concepts here to fix our notations for the forthcoming sections.

An attribute grammar is a 5-tuple

<$ = (G, A, v, {Da\a<iA}, {r„\piP}),
where

G=(N, T, P, 5 0 is a context-free grammar, called the underlying CF-grammar
of <3. N and T denote the set of nonterminal and terminal symbols, respectively;
P i s the set of productions and S'dN is the start symbol. We assume that G is "aug-
mented" by the top-production (S£N as well), so that S' does not appear
in any other production. We shall write a production p£P in the form

p: F0 - w0F1w1...Fnwn,

where F f i N and w} is a string of terminal symbols for each./£[0, «]. For nonnegative
integers k, I, \k, I] denotes the set {k, k+1, ..., /}; [&] is a shorthand for [1, k], as

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 57

usual. Since terminal symbols play no essential role in attribute grammars, the
above production will rather be written as p: F0-*F1...F„. Accordingly, by a node
of a derivation tree we always mean a nonterminal node.

A—As\JAl is a finite set of attributes, Asr\Aj=0. The elements of As and
Aj are called synthesized (s-) and inherited (/-) attributes, respectively.

v: N—2A is a mapping; if a£v(F), then we say that FfN has attribute a.
S{F) and / (F) will denote the sets v(F)i]As and v(F)f}Aj, respectively. We
assume that every nonterminal has at least one attribute, S' has only ^-attributes.

{Da\a£A} is the family of attribute domains. An attribute a£A takes its value
from the set Da.

{rp\p€.P} is the family of semantic rules. If p: F0—F1 . , .Fn , then rp consists
of the following rules (equations):

a0(FJo) =f(av(Fh), ..., aJFJ)
for each

rS(F0) if , o = 0;
fl°€U(F}) if j = j 0 > 0 , /

where./¡€[0, n] and a£v(Fj) for every /'€[0, m}\ f : DaiX..-XDam-~Dao is a (com-
putable) function. The above rule will be abbreviated later on as a0(FJo)—rhs (a0, FJo).
We say that a,(Fj.) is a definition or a reference to attribute occurrence at of non-
terminal (occurrence) Fj. in a rule corresponding to production p depending on
whether it occurs on the left-hand side or right-hand side of the rule. If there are
several occurrences of the same nonterminal in p, then these occurrences will be
distinguished by subscripts, as usual. The condition that if a,(Fy.) is referred on the
right-hand side in any rule of rp , then

(S(Fj) if . / = . / • > ()
a i € \ l (F 0) if j) = 0

is the well-known Bochmann normal form (n.f.) condition. We shall violate this
condition only if this makes the semantic rules shorter to write down.

The underlying idea of the following example is well-known from compiler
literature (see e.g. [12]). We show how to compile a Boolean expression so that the
length of the generated code depends only on the relations which the expression is
built up from.

Example 2.1. Let rS be the following AG. The underlying CF-grammar G has
productions:

or D\D\D+D and C\C; C - not C | (5) | i?,

where B', B, D, C and R are all the nonterminals with B' being the start symbol.
(Note that the syntax satisfies both the LR-1 and operator precedence conditions.)
Of course, G is incomplete in the sense that it is impossible to generate any terminal
string using the above productions only. Therefore we assume that the grammar G
is "continued" in such a way that the nonterminal R derives relations e.g. between
arithmetic expressions. This part of the grammar is, however, not relevant from the
point of view of our example. In this way G generates well-formed Boolean expres-

58 Gombas, M. Bartha

sions, and by ^ we would like to translate these expressions to assembly language
code. To this end we define the following attributes and corresponding domains:

code: string of assembly instructions, the generated code;
len: integer, the length of the generated code;
loc: integer, the location (or adress) of the first instruction of the generated

code;
i : integer, the location where control should be passed if the corresponding

Boolean expression is true;
| : integer, the location where control should be passed if the corresponding

Boolean expression is false.

code and len are ¿-attributes, while loc, t and 1 are /-attributes. Every nonterminal,
except B' has all these attributes, v (B r) = {code}. The semantic rules corresponding
to the productions are listed below.

B'^B code (B') = code (B),
loc (B) = l0, tOB)=to, l(fi) = lo

(/0, t0 and Jo are constant locations).

B^B2 or D code (51)=code (B2) code (D), len (£x)=len (52)+len (D),
loc (B2)=loc (Bx), loc (D)=loc (. e j + l e n (B2),
№=\(D)=\(BJ, | (£ 2)=loc (£) , IOD)=*(£,).

-*D2 and C code (Dx)=code (D2) code (C), len (Dx)=len (Z)2)+len (C),
loc (D2)=loc (Dj), loc (C)=loc (Dx)+len (D2),
t(D2)=loc (C), t(C) = \(D2) = |(C) =

C x - n o t C 2 code (C1)=code(C2), len (C J ^ l e n (C2),
loc (C2)=loc (CO, t(C2)=KCj), }(C2) = t(Cx).

In the remaining four productions: 5—D, C^(B)\R the value of the attri-
butes is transferred without any change from one nonterminal to the other. •

Let t be a cd-tree of and assume that the value code (M) of attribute instance
code at any node u labelled by R is such a code that, when executed, it passes control
to t(w) or J(w) depending on whether the corresponding relation below u is true or
false, respectively. Then it is obvious from the semantic rules that this property is
inherited by all the nodes of t. Clearly, the augmentation B ' ^ B is not necessary
in practice, because ^ is just a portion of a large AG defining the compiler semantics
of a programming language, and the locations /0, t0 , | 0 are inherited from the context.

To define dependency relations between the attribute occurrences of a produc-
tion in an AG we assume that the family of domains {Da\a(iA} is extended to a
many sorted algebra, which is called the attribute algebra of and the functions /
on the right-hand sides of the semantic rules are polynomials of the attribute algebra.
Thus, if p: F0-*F1...Fn£P, then we say that attribute occurrence a(Ft) depends
on b(Fk) in p if there is an equation of the form a(F^)=f(...b(Fk)...) among the
n.f. of the rules in rp. The dependency graph for production p (denoted by dp{p))
is the graph having as nodes the attribute occurrences of all nonterminals F j of p,

0, n), and in which there is an arc running from node b(Fk) to node a(Ft) iff
a(F,) depends on b(Fk) in p. See Fig. 1 for the dependency graph for production
B-»B or D of Example 2.1.

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 59

62 Gombas, M. Bartha

Several tree walking strategies exist for evaluating the cJ-trees of an AG. The
reader is assumed to be familiar with the notion of visit and pass, and with at least
some of the papers [3], [4], [8], [10]. It can be seen directly from Fig. 1 that the cd-
trees of our example AG H cannot be evaluated in one pass, nor in one visit (|(i?2)
depends on len (B2) in the production B1 -*B2 or D). On the other hand it is clear
that <§ satisfies the ASE property [8]. loc and len can be computed in the first
left-to-right pass, and the remaining attributes in the second pass (which can be
either left-to-right or right-to-left).

can be transformed into an equivalent one-pass AG <§' by the following trick.
We drop the /-attributes t and I, and compute the code of any sub-Boolean expres-
sion by leaving holes in the adress field of the crucial "jump to t (R)" and "jum to
instructions generated while compiling the relations contained in that subexpression.
At the same time, we maintain two chains to register the locations of the "t-holes"
and "J-holes" in the code. The holes will be filled in by the "old" values of t and \
computed in ^ at the rootnode of the subexpression, but in <&' we compute and fill
in these values only later, when it. becomes possible moving upwards in the deriva-
tion tree. The explicit construction is the following.

Example 2.2. The underlying CF-grammar of fS' is the same grammar G, and
it is equipped with the following attributes and corresponding domains :

(code, tc, Jc): a triple consisting of the generated code and two chains containing
the locations of t-holes and J-holes in the code,

len: integer, the length of the code,
loc: integer, the location of the first instruction of the code.

Again, every nonterminal except B' has all these attributes, but now loc is the only
¿-attribute; V(JB') = {code}. In fact code, tc and \c will be treated as three different
s-attributes; we gathered them up just for the sake of the generalization we are going
to introduce in Sect. 4. The semantic rules of <§' are the following.

B'-~B code (B')=rollup (rollup (code (5), tc(5), t0), \c(B), J0),
loc (B)=l0,

where rollup (w, c, x0) is a function which substitutes iteratively a constant string x0
into another string w at all the locations registered in a chain c.

Br-*B2 or D code (BJ=rollup (code (B2), \c(B2), loc (D)) code (D),
tc(51) = tc(52)tc(X>), ic(BJ±\c(D), loc (B2)=loc (BJ,
len (Si)=len (B2)+len (£)), loc (£>)=loc (£ ,)+len (B2).

and C code (Z)x)=rollup (code (D2), \c(D2), loc (C)) code (C),
tc(Z)1) = tc(C), \c(DJ = \c(DJ\c(C), loc (D2)=loc (DJ,
len (/>!>=len (/) ,)+len (C), loc (C)=loc (Z)x)+len (D2).

Q—not C2 code (Cx)=code (C2), tc(C1)=Jc(C2), K(C,) = tc(C2),
len (Cx) =len (C2), loc (C2)=loc (Cx).

The rules corresponding to the remaining four productions are again "simple"
rules. •

It is clear that and are equivalent in the sense that they compute the same
code for every Boolean expression. To compare the evaluation complexity of ^ and
<&' we make the following two observations.

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 61

a) <&' is clearly one-pass.
b) In 'S' we have to compute the "old" values of attribute instances t and 1

only at certain nodes of a «/-tree (i.e. at exactly those points where a chain must be
rolled up), and not both at all nodes as we do it in <$. For this reason we can say
that, although the operations of maintaining the chains and rolling them up (which
corresponds to a substitution of depth one) bring some extra cost into the evaluation,
the total amount of computation needed to evaluate a cd-tree by CS' is approximately
the same as by <&.

Thus, b j a) y is more efficient than

3. The Visit-Oriented Semantic Evaluator

We would like to extend the transformation technique outlined in Example 2.2
to a restricted subclass of simple multi-visit AGs (see [3]). The class that we are
going to introduce — the class of VSE AGs — is the visit-oriented counterpart of the
class of ASE AGs introduced in [8]. Those familiar with this work of Jazayeri and
Walter know that it is not clear from the paper whether the authors mean the ASE
property in a global sense, i.e. for all the attributes, or in a local sense, i.e. for all
the attribute occurrences of the semantic rules. We assume here that they mean it
in the global sense. Anyway, this question is not too relevant, and Proposition 3.2
shows the obvious connection between the two alternatives. The local version of the
ASE property was redefined in [4] in a generalized form, with the new name simple
multi-^Lr.

The VSE Property.

In the sequel let <S = (G, A, v, {DJa£A}, {rp\p(,P}) with G = (N, T,P, S') be
a fixed AG.

Definition 3.1. The localized grammar of $ is the AG

lc (9) = (G, A', v', {DMiA'}, {r'p\piP}),
where

— A' = {(a, F)£AXN\F£N, a€v(F)};

_ V'(F) = {(a, F) |a6v(F)} for all F£N;

— D(a,F)=Da for all F£N, a£v(F);

— if p£P is of the usual form and

a0(Fjo)=f(...ai(Fj)...)

is in rp, then there exists a corresponding rule in r'p of the form:

(«o, FJo)(FJo) = /(...(a;, FjXFJ)...)

and r'p consists of exactly these rules. •

Proposition 3.2. <$ is strictly alternating simple multi-ALT iff /c(^) is ASE.
Proof. Obvious. •

62 £,. Gombis, M. Bartha

Let B be a finite set. By an ordered partition of B we mean a finite sequence
m

(2?!, ..., Bm) of subsets of B such that [J Bt=B. (Note that any of the B, might be
¡=1

0.) Recall from [3] that a set of ordered partitions for <& is a set /7 containing an
ordered partition n(F) of v(F) for each F6N. /7 is called a simple multi-visit (smv)
set of (ordered) partitions if for every octree there is a computation sequence (cf.
[3]) for it respecting II. & is smv if there exists an smv set of partitions for it.

Definition 3.3. Let /7 be an smv set of partitions for ^ and q> = (Al, ..., Am)
an ordered partition of A. is m-VSE with respect to (w.r.t.) (II, <p) if the following
condition holds. For every F£Ar, if n(F)=(B1, ...,BkF), then there exists an injective
and monotonic mapping gF: [kF]^[m] such that BkQAeF{k) for each k£[kF].
That is, n(F) is the projection of cp to v(F). ^ is (m-)VSE if it is (m-)VSE w.r.t.
some (77, cp). In this case cp is called a VSE partition for e§. •

Example 3.4. The AG of Example 2.1 is 2 - V S E w.r.t. (77, <p), where
<p = ({ioc, len}, {i, ;, code}),

and for each F£N\{B'}, n(F) = (p; 7r(B')=({code}). •
Let $ be m-VSE w.r.t. (/7, q>). The sets Bk, k£[kF] in n(F) = (B1, ...,Bkr)

are called the local visit-sets of F in contrast with the "global" visit-sets A1, ..., Am
in (p. If Qr(k)=c, then we shall say that c is the global visit-number (gw-number)
of the local visit-set Bk(F). Let p: F 0 - F 1 . . . F „ 6 i ' with

n(Fj) = (Bi,...,BiF)

for each /€[0, n]. The visit sequence (see [3]) of the visit-set 5g(F0), in p
(denoted by Vsp(Bk)) is a concrete list of descendant visit-sets, i.e. a list consisting
of some visit-sets B{(Fj), jm 1. Let c be the gv-number of Bk(F0). We associate a
global visit sequence Gvsp(c) with Vsp(Bl) in a natural way: Gvsp(c) is a list of
pairs of integers such that to any member B{(Fj) on Vsp(B%) there corresponds a
member (d, j) on Gvsp(c) (at the same position, of course), where d is the g«-number
of B{(Fj). In this way we can consider Gvs„ as a vector of m lists. For each
c€[m], if c = gFo(k) for some then Gvsp(c) is the above list, otherwise
Gvsp(c) is the empty list.

The cd-trees of can now be evaluated by the help of the following procedure:
procedure visit (c, u); integer c; node u;
comment c is a global visit-number;
comment let p: F0 — F1...Fn be the production applied at w;
begin

compute the instances of I(F^)C\Ac at node M;
for /'=1 to length (Gvsp(c)) do
begin

comment take the z'-th member of the list Gvsp(c);
(d, j) = take (/, Gvsp(c))\
comment make a visit to the /-th son of u;
visit (d, son (j , «))

end;
compute the instances of S(F0)C\Ac at node u

end

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 63

The part of the "main program" which evaluates a cd-tree t can be written as:
for c = 1 to m do

visit (c, root(t)).
The main point of the procedure visit above is that we evaluate the local visit-

sets at each node as being the projections of the corresponding known global visit-
sets. This makes the procedure so simple compared with e.g. the simple multi-visit
evaluation procedure in [4].

There are some situations when it is more appropriate to compute the final
value of certain attribute instances by several assignments placed in different visits.
To handle such situations we allow some instances of v(F 0)D^ c at node u to be
"marked" in the procedure visit (c, u) above. The value of these attribute instances
can be updated later by the call of the following procedure.

procedure update (c, u); integer c; node u;
comment let F0 be the label of u;
begin

recompute the marked instances of v(F 0) fM c at node u\
modify the present
marking for the sake of further updates to u, if necessary;

end

Since the procedure update can be considered to be a visit of depth zero, we assume
that update visits are also placed as distinguished members onto the global visit-
sequence lists. Update visits will be used in the next section.

The following two definitions are adopted from [3]. An ordered partition n =
=(B1, ..., Bm) of a subset of A is reduced if Bk ¿¿0 for any k£\m\. n is good if, when-
ever » i s 2 , B1 contains at least one ¿-attribute, Bm contains at least one /-attribute
and for every k£[2, m—1], Bk contains both z- and ¿-attributes.

Lemma 3.5. If is VSE w.r.t. (77, q>), then (p can be assumed to be reduced.

Proof The result is a direct consequence of Lemma 2.1 in [3]. •

Theorem 3.6. If <§ is VSE w.r.t. (77, cp), then <p can be assumed to be good.

Proof By Lemma 3.5 we can assume that <p=(A1, A,„) is reduced. More-
over, we can assume that 77 is also reduced, i.e. n(F) is reduced for every F£N.
Suppose first that Ac contains only ¿-attributes for some c£[2, m]. Let F be a non-
terminal such that n(F)=(B1, ..., Bkp) and there exists k^[kf] with c=QF{k). Define

{7z(F) if k = 1 or QF(k— 1) < c— 1,
(B1,...,Bk_1[JBk,...,BkF) if QF(k-\) = c-\.

By virtue of Theorem 2.2 in [3], the replacement of n(F) by n'(F) in 77 preserves
the smv property. Thus, making this replacement for all appropriate FdN we get
a set 77' which is still smv and, together with (p' = (A1, ..., AC_1[JAC, ..., Am) it
satisfies the VSE condition. The same argument shows that, if Ac contains only
/-attributes for some c£[w — 1], then the partition <p"=(A1, ..., ACUAC+1, ..., Am)
together with its projections {7t"(F)|F(| iV} remains VSE. In this way it is clear that,

64 Gombas, M. Bartha

applying a finite number of such transformations on <p and 77, we shall end up with
a good ordered partition <p. It must be noted, however, that the corresponding set
of smv partitions 77 need not be good at all. •

Testing the VSE Property.

Lemma 3.7. <S is smv iff Ic (2?) is VSE.

Proof. Obvious. •

Theorem 3.8. The following problems are TVP-complete:
(i) deciding whether an arbitrary AG is VSE,

(ii) deciding whether an arbitrary AG is 2 -VSE .

Proof, (i) is an immediate consequence of Lemma 3.7 and Theorem 4.1 in [3],
because the size of Ic (f§) is polynomially related to the size of To prove (ii) it is
enough to observe that the example AG ^(F 0) constructed in the proof of Theorem
4.1 in [3] for a Boolean expression F„ is simple 2-visit iff Ic (i?(F0)) is 2-VSE. (Of
course, this is not true for an arbitrary AG.) •

In spite of these negative results it is worth computing the relation "forced
before" (see [3]) of the attributes as it was done also in [10]. Let rQAXA be any
relation and p: F0-^F1...Fn^P. Define the graph idp (p , r) to be an extension of
dp (p) with the arcs

a(Fj) - b(Fj) iff arb

for all yd[0, «], and let idp (p, r)+\Fj denote the restriction of the transitive closuie
of idp (p, r) to the attribute occurrences of the j-th nonterminal (occurrence) in p.
Then the relation forced before is the smallest relation fbQAXA such that

idp (pJby\FjQfb\v(Fj)

for all productions p: Fq—F1...F„ and each [0, «]. Clearly, fb must be respected
by any VSE partition cp for (S. It is easy to give an algorithm which computes the
relation fb in polynomial time (see [10] for a similar construction). When f b is com-
puted and it is cycle free, then we can either attempt to construct a VSE partition
(p directly, as it was done in [10], or to design a more complicated backtrack algorithm
to search for a suitable (p. We must know, however by Theorem 3.8, that a really
good backtrack algorithm will presumably have exponential time complexity.

4. Improving the evaluation of VSE AGs

We start this section by introducing two complexity measures for the evaluation
of the «/-trees of an AG. For a «/-tree t define the visit complexity of t to be the
ratio of the total number of visits to the nodes of t during a concrete visit-oriented
evaluation (recall that every noncircular AG is at least pure multi-visit), and the
number of (nonterminal) nodes of t. The pure computation complexity of t is the
total amount of computation needed to assign value to all the attribute instances
of t (the number of visits is irrelevant here). Suppose that ^ and rS' are two equivalent
AG, i.e. they have the same underlying CF-grammar and they compute the same

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 65

values at the root S' of every cd-tree,- just by the help of different sets of attributes.
To compare the efficacy of <§ and W we have to consider three points.

1. The evaluator applied for ^ and (i.e. pure multivisit, simple multi-visit,
ASE, VSE, etc.).

2. The visit complexity of each cd-tree in rS and (S'.
3. The pure computation complexity of each «/-tree in eS and eS'.
We say that W is more efficient than ^ if (S' is not worse than H in any of the

above three respects, and it is strictly better in at least one of them. From this point
of view the AG <3' of Example 2.2 is indeed more efficient than the AG 'S of
Example 2.1, because of the reasons a) and b) explained at the end of Sect. 2.

To generalize the transformation technique described in Example 2.2 assume
that is m-VSE w.r.t. (II, cp), furthermore it satisfies the following three con-
ditions.

(CI) For every p£P and c£[m], if (d,j) is a member of Gvsp(c), then ¿ S c .
(C2) There exists a distinguished ^-number v£[2, m] with the following prop-

erty. Let p: F0^-F1...Fn be any production, and suppose that F0 has a local visit
set B(F0) the gv-number of which is v. If C(Fj), ./'£[/?], is a member of Vsp(B) such
that some /-attribute occurrence b(FJ)^C(F]) depends on an attribute occurrence
b'(Fl)£D(Fl) in p, then the g»-number of D(F,) is not equal to (or equivalently, it
is strictly less than) v, except when all the three conditions below are satisfied:

a) D(F,) = B(F0),
b) the gv-number of C(Fj) is v,
c) b' is also an /-attribute and the semantic rule for b(Fj) is: b(Fj)=b'(F0).

We shall say that such an exception rule is a simple rule.
(C3) AVDAS contains only string-valued attributes.

Construction of the simplified AG .

On the analogy of Example 2.2 we define the AG

<$' = (G, A', v', {D'a\a£A'}, {r>p\pZP})
as follows:

A'=A\A0\JA'V, where if

AVC]AS = {a1; ..., a j and Avf]Ar = {Plt ...,
then

A'v = {(ocy, c±, ..., c j \ y € [s v] } . . . , Piv).

A\=Aj, As=A'\A'j. In the "chained" j-attribute (<xy,c1, ...,civ), cz (zf_[/„]) rep-
resents the chain of those locations which point to the "/?,-holes" in the string
corresponding to attribute <xy. Note that by Theorem 3.6 we can assume that / „ s i .

For any F£N we first define the set

v"(F) = v(F)\AvU{(ocy, q , ..., civ)\y€[sv], ay£v(F)},
then define

{ v"(F) if v is the greatest gv-number at F,
v"(F)U{^|2€[/„], i?z€v(F)} otherwise.

66 £,. Gombis, M. Bartha

That is, we supply F with the /-attributes of AvPiv(F) iff there exists a local
visit-set of F with ^«-number greater than v. In fact, these attributes will always
be evaluated in the (v+l) - th global visit.

If a£AC\A' then D'a—Da, else (i.e. if a is a chained ¿-attribute (a,, ct, ..., ciu))
D'a is the cartesian product of Day and iv chains (strings) of integer locations.

L e t p : F 0—F 1 . . .F„€i ' and consider a rule

r- a0(FJo) = rhs (a0, FJo)

in rp (now we assume that rp is in n.f.). To construct the corresponding rule / in r'p
we distinguish two cases.

Case (a). a0(FJo)=oix(F0) for some In this case the left-hand side of
/•' is (a*, c l 5 . . . ,)(F0), and the right-hand side of r' is obtained from rhs (a0, FJo)
by

(i) replacing any reference to an ¿-attribute cty(Fj), / S i by

(*) rollup (oc,(Fj), cZl(Fj), rhs(pZi, Fj), ..., cZl(.F)), rhs(pz,, Fj)),

where z1 ; ..., z, are all the numbers z such that the (existing) rule in rp defining /L
is not a simple rule. The function rollup is the obvious generalization of the one used
in Example 2.2, allowing several chains to be rolled up at the same call.

(ii) Ignoring (i.e. replacing with marked holes) all the references to the /-attri-
butes /?Z(F„), z€[/„], and adjusting the value of the chains in (ax, c\, ...,civ)(F0)
in an appropriate way (obvious details are omitted).

Case (b). a0(Fjo)Tiax(F0) for any ^^[¿J . In this case r' is of the form

r'- a0(FJo) = rhs'(a0, FJo),

where rhs' (a^, is obtained from rhs(a0, FJ0) by replacing any reference to an
¿-attribute ay(Fj) (7 s i) by

(* *) rollup (ay(Fj), Cl(Fj), rhs'(Py, Fj), ..., c J F y) , rhs'(ft,, Fj)).

(Note that all the chains are rolled up here.)
Although we construct a "corresponding" r' for each rule r in rp (this is necessary

because of the recursion in (* *) above), r'p should contain only those rules r' which
define correct attribute occurrences in *§' (an occurrence a0(FJt) is correct in
if «0€v'(F,0)).

Proposition 4.1. y is correct and it is equivalent to (S.

Proof. By the correctness of W we mean that all the attribute occurrences in
the semantic rules r' of <&' are correct. The left-hand side of the rules is clearly correct
by construction, so we only have to prove that the references on the right-hand
sides are also correct. In Case (a) it is enough to check that the expressions rhs (fiz, Fj)
in (*) (z£{z1, ..., z,}) do not refer to incorrect attribute occurrences. Indeed, in
this case Gvsp(v) contains (v,j) by condition (Cl), hence by (C2) rhs (/?z, Fj) is
always correct (note that the rules of ^ are in n.f., as we assumed). In Case (b) observe
that, by (Cl) and (C2), if a0(Fjo) is correct on the left-hand side of r', then a0(FJO)
is computed in such a local visit of F 0 which follows the one with ^ - n u m b e r v.

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 67

Consequently, F0 has /?z in for each zg [/„] by the construction of v'. We have
to consider the expressions rhf (/?,, Fj) in (* *). Two subcases are possible.

(i) The rule defining Pz(Fj) in rp is a simple rule. In this case rhs' (/L, Fj) is
correct by the above observation.

(ii) The rule defining Bz(Fj) is not a simple rule. An easy inductive argument
shows that rhs' (/?., Fj) contains only correct attribute occurrences.

Note that the semantic rules of <§' are also in n.f. The rest of the proof, i.e.
that ^ and (3' are equivalent, is left to the reader. •

Proposition 4.2. <S' is (m-l)-VSF.

Proof. Let

q>' = {Au ..., Av^U(A'vnA's), Av+1U(A'vnA't), ..., Am),

and for each F^N let n'(F) be the projection of q>' to v'(F). In the proof of Propo-
sition 4.1 we observed already that only those rules refer to occurrences of /-attributes
Pz (z€[/J) in W which define occurrences of attributes computed in local visits follow-
ing the ones with gv-number v in This shows that W is also an smv set of par-
titions, thus <$' is VSE w.r.t. (IT, cp'). •

Evaluating the AG <$'.

We must admit that, although the reduction achieved in the visit complexity,
the pure computation complexity of the «/-trees has increased. This is due to the
fact that, while rolling up chains we have to recompute the "old" value of certain
/-attribute occurrences several times. To solve the problem we use update visits
introduced in Sect. 3. To this end we put the attributes Pz, z£[iv], forward into the
joint global visit-set A'v(~]Av_j of cp' (and, of course, into the corresponding joint
local visit-set of each nonterminal, too). However, at the call visit (v — l,u) to a
node u we do not compute the instances of these /-attributes (or just give some un-
important initial value to them), but mark them together with all the instances of
the chained ^-attributes belonging to A'v at u. Then, update (v—1 ,u) should be
called instead of the first rollup call of type (* *) — detailed in Case (b) of the con-
struction of the rules of — for a chained ¿-attribute instance xy at node u. Note
that this update call can always be designed as a fixed member in that global visit-
sequence of the father of u which contains also the pair (v — l,j) corresponding to
the call visit (v—\, u). Then, every further rollup call for a chained ^-attribute in-
stance at u can be replaced by a simple reference to the corresponding "old" s-attri-
bute instance. The problem of recomputation is not solved completely, however,
because we did not handle rollup calls of type (*) in Case (a). This would require
a more sophisticated marking procedure for the update visits, the details of which
is left to the reader.

Theorem 4.3. is (generally) more efficient than <§.

Proof By Propositions 4.1 and 4.2, 'S and are equivalent, and they are both
VSE. Once we have eliminated recomputation, we can say that the pure computation
complexity of every cd-tree is approximately the same in both AG. It would not be
honest, however, to state categorically that, by Proposition 4.2, the visit complexity

68 É. Gombâs, M. Barttaa

of the oi-trees in IS' is less than that in CS. To be exact, an update visit is also a visit,
although it concerns only one node of a derivation tree. There are extreme examples
of «/-trees where an update visit must be made to every node of the tree. Such an
example is illustrated in Fig. 2. Circles represent local visit-sets in the graph of the
figure, and the gv-number of the visit-sets is written inside the circles. Members of
the visit-sequences are represented as descendants of the corresponding circles.
It can be seen that the visit complexity of such kind of crf-trees remains the same
in W. But, taking into account all the cd-trees of the grammar we can in general
say that <&' is indeed better than (S from the point of view of visit complexity. This
is always the case when e.g. v is the greatest gv-number, like in Example 2.1.

Our second transformation technique eliminates all the /-attributes of <&, there-
fore it is more powerful than the chaining technique. This transformation can be
applied, however, for a more restricted class of AGs, the class of linear string-valued
AGs. Although we shall use the c.f.d. principle here with its full power, the attribute
domains (as well as the algebra!) except for one attribute will not be changed.

cd-trec vis i t -sequences

Fig. 2. An extreme example.

5. Improving the Evaluation of Linear String-valued AGs

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 69

In this section will be a purely string-valued AG. By this we mean that the
domain of all the attributes is I* , the set of all strings over I , for some finite alphabet
I , and the only operation applied in the semantic rules is concatenating strings.
As usual, 2T* denotes also the free monoid generated by I , thus, we can say that the
attribute algebra of e3 is I*. Dealing with polynomials over I* we shall use different
copies of the set Z = {zl5 ..., zm, ...} as variable symbols (e.g. X= {x1? ..., xm, ...},
Y= {yl, ...,>•,„, ...}). Zm will denote the set {zlt ..., zm}. These sets of variables are
assumed to be disjoint from I . For simplicity assume that every nonterminal, except
•S", has the same set of attributes consisting of k synthesized and I inherited attributes,
and these attributes are numbered from 1 to A: and from 1 to /, respectively. S' has
only ¿-attributes 1, 2, ..., k. (The name of the attributes is irrelevant in this section.)
Now, since the right-hand side of the semantic rules are polynomials over I*, and
these polynomials can also be represented as strings in (XUZ)*, the semantic rules
rp corresponding to production p: F0^F1...F„ can be condensed into a sequence
of k+l-n strings:

a(p)6((ZUAr tBUr,)*y+ '-".

where each occurrence of any variable in a (p) corresponds to a reference to an
appropriate attribute occurrence: any occurrence of x t . (j-_1) + i , where _/£[«] and
/£[&] is a reference to the z-th ¿-attribute occurrence of Fj, while yr (r£[/]) corresponds
to the r-th z-attribute occurrence of F0 . The first k components of a(p) define the
¿-attribute occurrences of F0, and the following components define the /-attribute
occurrences of Fx, ..., F„ from left to right in n segments each containing / compo-
nents. Observe that rp is in n.f.

Definition 5.1. A sequence of strings y£((rUZm)*) s (s is a nonnegative integer)
is linear if each variable occurs at most once in y. 'S is linear if a(p) is linear for
every pdP.

Let Dt (F) denote the set of all derivation trees with root F£N. It is clear that
— provided 'S is noncircular — the value of all the attribute instances of the nodes
of a tree i£Dt (F) is uniquely determined by fixing the values of the /-attribute in-
stances at the root of t. Let us fix these values to y1, ...,yt, respectively {yl, ..., >>,
are variable symbols, as we agreed), and compute the value of the ¿-attribute instances
at the root with the attribute domains enlarged to (J U Y{)* during this computation.
We obtain a sequence:

Clearly, P(t) represents the sequence of polynomials that describe how the
¿-attributes depend on the /-attributes at the root of t. It is important to note that if
'§ is linear, then it is essentially noncircular. By this we mean that, although there
might be circles in the dependency graph of a derivation tree (cf. [3]), these circles
are "self-contained", i.e. they do not bother the computation of the attribute in-
stances of the root. (In other words, the attribute instances contained in the circles
are always useless.) For this reason, if <§ is linear, then fi(t) always exists, more-
over, it is easy to see that fi(t) is always linear.

We are able to compute the polynomials fi(t) by the help of the following
algorithm.

70 £,. Gombis, M. Bartha

Algorithm 5.2.

Input: a production p: FQ—Fl...Fn(zP,
strings U Y,y)k for each j€[n]
(Pj=P(t j) for some hypothetical i ,eDt(F,)) .

Output: /?€((! U Yt)*)k

(p=№ for t=p(ti, OCDt (F0)).
Method: Suppose that

« (p) = (« i . •••> ak-> bi,i, • ••, ¿1,1, ¿„.i, £>„,;),

and set the initial value of the string variables tv,j and «,• (/£[&], to the /-th
component of Pj and to a h respectively. Then apply the following procedure and set
/?=(«!, ...,uk).

procedure substitute;
begin for all y€[n] do

for i=1 to k do
comment substitute bjr for yr in w,j for each r£[/];
wij=wi,jlyr*-bj,r, r=l to /];
repeat

for i = l to k do .
y=l to n, j=1 to k]

until (u£(Z{JY,)* for every /€[*])
end

Lemma 5.3. Let ^ be noncircular. If Pj—P(tj) for some derivation trees
/j€Dt(F ;-) (/€[«]), then after the execution of Algorithm 5.2, j3=j3(f) for f =
-P(h, Q.

Proof. Immediate from the construction. •
Further on we assume that US is linear. Then /?(/) can always be "splitted"

by the partial mapping

((2UF,)*)" - (r*) '+ , x(r I U{i})* (*+ , + 1)

which we define as follows (-# is a new symbol, 4 *(s) denotes the set of strings over
A riot longer than s). Let y=(c1, ..., ¿ ^ ((r U F ;) *) * be linear. Put

and consider the symbols of F, U {# } occurring in y$ as delimeters. Then the last
component of is the string of delimeters occurring in y» read from left to right,
while the first k + l components of £(y) are those substrings of lying between
the delimeters. If there are less than k+l such substrings, then the remaining com-
ponents of £(7) are set to A (A denotes the empty string). £ is partial, since it can be
applied only for linear elements. On the other hand, £ is clearly injective, so we can
speak of the inverse of

Now we are ready to define the transformed AG which has only k+l+1
i-attributes, numbered again from 1 to k+l+1. Every nonterminal, except S' has
all these attributes, S' has only the first k ones. For the sake of uniformness, howe-
ver, we shall construct the semantic rules for the production S'-*S in such a way

Two Transformations on Attribute Grammars Improving the Complexity of their Evaluation 71

that they define the "dummy" attribute occurrences fc+l, ..., k+l+l of S\ too.
The first k+l attributes are the so called "derived" attributes with domain I*,
while the last one is the "control string" (denoted by cs) having (7,U{it})* (, I + '+ 1)

as its domain. We define the semantic rules corresponding to a production p: F0 —• ...
...F„ in the following way. With the notation of Algorithm 5.2 set

Pj = •••> x(j-iyvc+i+i)+dj-i> X, ..., A, cs(F})),

where d,•=length (cs (F ;)), (supposing just for the moment that Z (t + / + 1) . n Q 2)
and apply Algorithm 5.2. Then £(/?) represents the polynomials over I * that define
the derived attribute occurrences of F0 in and it gives the definition of cs (F„),
too, in the last component.

Theorem 5.4. <& and are equivalent.

Proof. Let f£Dt (F) be any derivation tree. It can be proved by a straightfor-
ward induction on the depth of t using Lemma 5.3 that £(P(t))=P'(t) , where P'(t)
is the sequence of values of all the attribute instances computed at the root of t in
<§'. Observe that the (dummy) value of cs (5") is always (# , . . . , it). Hence, if
/GDt(S'), then P(t) and the first k components of P'(t) coincide. •

It is evident that the visit complexity of the cd-trees in 18' is the best possible.
On the other hand, since the form of the semantic rules became more complicated,
one would think that the pure computation complexity has also increased in
But this is not true. Indeed, let t be a cd-tree and suppose for simplicity that all the
attribute instances of t are useful in the evaluation of t. If P(t)=(w1, ..., ivA) for
some strings wfcZ* (/£[&]), then each vv; is the concatenation of such "atomic"
strings in I * that can be found on the two sides of the variable occurrences, or
stand as constants on the right-hand side of the semantic rules. If w-t consists of m;

k
atomic strings, then is a reasonable estimate for the pure computation

•=i
complexity of t in (S. The same reasoning holds for too, moreover by construc-
tion, the atomic strings in <$' are already some composites of the ones in 'S. Thus, . . . k
by Theorem 5.4 we obtain that the corresponding sum £ m l ^ generally

•=i
k . . .

less than 2 i mi- The difference is compensated, however, by the extra cost of i = l
computing the control strings at each node of /.

Finally, let us mention that it is also possible to restrict the scope of our second
transformation to one or more visits. For example, if rS is ASE and the restriction
of the semantic rules to the attribute occurrences contained in the same pass (say
the m-th) is linear, then we can eliminate the i-attributes from the m-th pass and
postpone their evaluation to the (m+l)-th pass (if any). At the same time the s-
attributes of the m-th pass can be put forward to the (m—l)-th pass. The elaboration
of a similar condition for VSE AG is left to the reader.

72 £,. Gombis, M. Bartha

Summary

The design of efficient attribute evaluators is one of the most important require-
ments for compilers based on attribute grammars. Another interesting question is
that, given a fixed evaluator, is it possible to optimize the attribute grammar (AG)
to be evaluated by performing a suitable transformation on it. In this paper we
present two such transformation techniques and show how they optimize evaluation
by a simple visit-oriented attribute evaluator, called the VSE evaluator (Visit-oriented
Semantic Evaluator). The class of VSE AGs is introduced as the visit-oriented
counterpart of the class of ASE AGs. We also study the basic properties of VSE
AGs relying on the strong connection between the class of VSE AGs and the classes
of OAG and simple multi-visit AGs.

References

[1] BARTHA, M.: Linear attributed tree transformations. Acta Cybernet. 6, 125—147 (1983).
[2] BARTHA, M.: An algebraic definition of attributed transformations. Acta Cybernet. 5, 409—421

(1982).
[3] ENGELFRIET, J . , FILE, G . : Simple multi-visit attribute grammars. J. Comput. System Sci. 2 4 ,

2 8 3 — 3 1 4 (1 9 8 2) .
[4] ENGELFRIET, J . , FILE, G . : Passes, sweeps and visits in attribute grammars. Technische Hoge-

school Twente, Onderafdeling der Informática Memorandum Nr. INF—82—6, 1982.
[5] FARROW, R., YELLIN, D.: A comparison of storage optimizations in automatically-generated

attribute evaluators. Acta Informat. 23, 393—427 (1986).
[6] FILE, G.: Attribute evaluation by recursive procedures. Theoret. Comput. Sci. 53,25—65 (1987).
[7] GOMBÁS, E . , BARTHA, M.: A multi-visit characterization of absolutely noncircular attribute

grammars, Acta Cybernet. 7, 19—31 (1985).
[8] JAZAYERI, M., WALTER, K . G . : Alternating semantic evaluator. Proc. ACM Annual Conference

1975, pp. 230—234(1975).
[9] KASTENS, U.: Lifetime analysis for attributes. Acta Informat. 24, 633—651 (1987).

[10] KASTENS, U.: Ordered attribute grammars. Acta Informat. 13, 229—256 (1980).
[11] KNUTH, D . E . : Semantics of context-free languages. Math. Systems Theory 2 , 1 2 7 — 1 4 5 (1 9 6 8) ;

Correction: Math. Systems Theory 5 , 9 5 — 9 6 (1 9 7 1) .
[12] WAITE, W . M., Goos, G.: Compiler Construction. Berlin—Heidelberg—New York: Springer

1983.

Received June 27,1988

