In this work we study the class of regular strongly shuffle-closed languages and we present their description by giving a class of recognition automata.

The shuffle product operation plays an important role in the theory of formal languages, cf. [1], [2], [4]. Several properties of shuffle closed languages are studied in [3]. Among others a characterization of regular strongly shuffle-closed languages is presented by giving their expressions. Using this result, we determine a very simple class of deterministic automata accepting regular strongly shuffle-closed languages.

First of all we introduce some notions and notations. Let X be a nonempty finite set and let X^* denote the free monoid of words generated by X. We denote by 1 the empty word of X^*. The *shuffle product* of two words $u, v \in X^*$ is the set

$$u \circ v = \{w : w = u_1 v_1 ... u_k v_k, u = u_1 ... u_k, v = v_1 ... v_k, u_i, v_j \in X^*\}.$$

A language $L \subseteq X^*$ is called *shuffle-closed* if it is closed under \circ, that is, if $u, v \in L$, then $u \circ v \subseteq L$. If L is shuffle-closed and, for any $u \in L$, $v \in X^*$, the condition $u \circ v \cap L \neq \emptyset$ implies $v \in L$, then L is called a *strongly shuffle-closed language*, or briefly, an *ssh-closed language*.

Next let $X = \{x_1, ..., x_r\}$, $r \geq 1$, be an arbitrarily fixed alphabet. For any $L \subseteq X^*$, let us denote by $\text{alph}(L)$ the set of elements of X occurring in words of L. We shall describe those regular ssh-closed languages over X for which $\text{alph}(L) = X$.

We use the Parikh mapping and its inverse which are defined as follows. Let $N = \{0, 1, 2, ...\}$. The mapping Ψ of X^* into the set N^r defined by

$$\Psi(u) = (\mu_{x_1}(u), ..., \mu_{x_r}(u)),$$

is called the *Parikh mapping*, where $\mu_{x_i}(u)$ denotes the number of occurrences of x_i in u. For a language $L \subseteq X^*$, we define $\Psi(L) = \{\Psi(u) : u \in L\}$. Moreover, if $S \subseteq N^r$, then $\Psi^{-1}(S) = \{u : u \in X^* \land \Psi(u) \in S\}$.

Now we recall a notation and a result from [3].

Let $a = (i_1, ..., i_r)$, $b = (j_1, ..., j_r) \in N^r$ and let $p_1, ..., p_r$ be positive integers. Then $a \rightarrow b \pmod{(p_1, ..., p_r)}$ means that $i_t \geq j_t$ and $i_t \equiv j_t \pmod{p_t}$, for all t, $t = 1, ..., r$.

*Department of Informatics, A. József University, Árpád tér 2, H-6720 Szeged, Hungary
†Faculty of Science, Kyoto Sangyo University, 603 Kyoto, Japan*
Theorem 1 ([3], Proposition 5.2) Let $L \subseteq X^*$ with $\text{alph}(L) = X$. Then L is a regular ssh-closed language if and only if L is presented as

$$L = \bigcup_{u \in F} \Psi^{-1}(\Psi(u(x_1^{P_1})^* \cdots (x_r^{P_r})^*))$$

where

(i) p_1, \ldots, p_r are positive integers,

(ii) F is a finite language over X satisfying

(iii)-(1) for any $u \in F$, we have $0 \leq j_t < p_t$, $1 \leq t \leq r$ where $\Psi(u) = (j_1, \ldots, j_r)$,

(iii)-(2) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(uv) \mapsto \Psi(u)(\text{mod} \ (p_1, \ldots, p_r))$,

(iii)-(3) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(uv) \mapsto \Psi(v)(u)(\text{mod} \ (p_1, \ldots, p_r))$.

Finally, we make some further preparation. For any positive integer p and $x_t \in X$, let us denote by $C(p,x_t) = (X, \{0, \ldots, p-1\}, S(p,x_t))$ the automaton defined by the following transition function. For any $j \in \{0, \ldots, p-1\}$, $x \in X$, let

$$\delta(p,x_t)(j, x) = \begin{cases} j & \text{if } x \neq x_t, \\ j + 1(\text{mod } p) & \text{if } x = x_t \\ \end{cases}$$

where $j + 1(\text{mod } p)$ denotes the least nonnegative residue of $j + 1$ modulo p.

Now let p_1, \ldots, p_r be positive integers and form the direct product of the automata $C(p_t,x_t)$, $t = 1, \ldots, r$. Let us denote by $C(p_1,\ldots,p_r)$ this direct product and by $\delta(p_1,\ldots,p_r)$ its transition function. It is easy to prove that $C(p_1,\ldots,p_r)$ has the following properties:

(a) it is a commutative automaton,

(b) if $a, b \in \prod_{t=1}^r \{0, \ldots, p_t - 1\}$, $u \in X^*$ are such that $\delta(p_1,\ldots,p_r)(a, u) = b$, then $\delta(p_1,\ldots,p_r)(a, v) = b$, for all $v \in \Psi^{-1}(\Psi(u))$,

(c) for any $u \in X^*$, $\delta(p_1,\ldots,p_r)(0, u) = \Psi(u)(\text{mod} \ (p_1, \ldots, p_r))$,

where 0 denotes the r-dimensional 0-vector and $\Psi(u)(\text{mod} \ (p_1, \ldots, p_r))$ denotes the vector $(i_1(\text{mod } p_1), \ldots, i_r(\text{mod } p_r))$ with $\Psi(u) = (i_1, \ldots, i_r)$.

For each t, $t = 1, \ldots, r$, let us denote by M_{p_t} the group defined by the addition mod p_t over the set $\{0, \ldots, p_t - 1\}$. Let $M(p_1,\ldots,p_r)$ denote the direct product of the groups M_{p_t}, $t = 1, \ldots, r$. Then $M(p_1,\ldots,p_r)$ is also a group; let \oplus denote its operation. Let us observe that the set of states of $C(p_1,\ldots,p_r)$ is equal to the set of elements of $M(p_1,\ldots,p_r)$. Therefore, for any subgroup H of $M(p_1,\ldots,p_r)$, we can define the recognizer

$$R_H^{(p_1,\ldots,p_r)} = (\prod_{t=1}^r \{0, \ldots, p_t - 1\}, X, \delta(p_1,\ldots,p_r), 0, H),$$

where 0 is the initial state and H is the set of the final states.

The next property of $R_H^{(p_1,\ldots,p_r)}$ can be proved easily:

(d) if $u, v \in X^*$ are accepted by $R_H^{(p_1,\ldots,p_r)}$ with final states a, b, respectively, then uv is also accepted by $R_H^{(p_1,\ldots,p_r)}$ with the final state $a \oplus b$.
Finally, form the set of recognizers

\[M_X = \{ R_{H}^{(p_1, \ldots, p_r)} : (p_1, \ldots, p_r) \in \mathbb{N}^r \text{ and } H \text{ is a subgroup of } M^{(p_1, \ldots, p_r)} \}. \]

Now we are ready to prove our result.

Theorem 2 A language \(L \subseteq X^* \) with \(\text{alph}(L) = X \) is regular ssh-closed if and only if \(L \) is accepted by a recognizer from \(M_X \).

Proof. In order to prove the necessity, let us suppose that \(L \subseteq X^* \) is a regular ssh-closed language with \(\text{alph}(L) = X \). Then there are positive integers \(p_1, \ldots, p_r \) and \(F \subseteq X^* \) which satisfy the conditions of Theorem 1. Let us consider the automaton \(C(\pi, p_1, \ldots, p_r) \) and let us define the set \(H \) by

\[H = \{ a : a \in \prod_{t=1}^{r} \{0, \ldots, p_t - 1\} \text{ and } \delta^{(p_1, \ldots, p_r)}(0, u) = a, \text{ for some } u \in F \}. \]

We show that \(H \) is a subgroup of \(M^{(p_1, \ldots, p_r)} \). Indeed, let \(a, b \in H \) be arbitrary elements. By the definition of \(H \), there are \(u, v \in F \) with \(\delta^{(p_1, \ldots, p_r)}(0, u) = a \) and \(\delta^{(p_1, \ldots, p_r)}(0, v) = b \). Let \(\Psi(u) = (i_1, \ldots, i_r) \) and \(\Psi(v) = (j_1, \ldots, j_r) \). Then, by \((ii) - (1)\), we have \(0 \leq i_t, j_t < p_t \) for all \(t = 1, \ldots, r \), and hence, we obtain, by \((c)\), that \(a = (i_1, \ldots, i_r) \) and \(b = (j_1, \ldots, j_r) \). On the other hand, by \((ii) - (g)\) of Theorem 1, there exists a \(w \in F \) with \(\Psi(uw) \leftarrow \Psi(w)(\text{mod } (p_1, \ldots, p_r)) \). Let \(\Psi(w) = (k_1, \ldots, k_r) \). Then, by \((ii) - (1)\) and \((c)\), \(\delta^{(p_1, \ldots, p_r)}(0, w) = (k_1, \ldots, k_r) \). Since \(w \in F \), we have \((k_1, \ldots, k_r) \in H \). From \(\Psi(uw) \leftarrow \Psi(w) \) it follows that \(i_t + j_t \equiv k_t(\text{mod } p_t) \), \(t = 1, \ldots, r \). But then \(a \oplus b = (k_1, \ldots, k_r) \). Therefore, \(H \) is closed under the operation \(\oplus \) implying that \(H \) is a subgroup of \(M^{(p_1, \ldots, p_r)} \). This completes the proof of the necessity.

In order to prove the sufficiency, let us suppose that \(L \subseteq X^* \) with \(\text{alph}(L) = X \) and there exists a recognizer \(R_{H}^{(p_1, \ldots, p_r)} \in M_X \) accepting \(L \). We show that \(L \) is a regular ssh-closed language.

The regularity of \(L \) is obvious. Now let \(u, v \in L \) and let \(w \) be an arbitrary element of the set \(u \circ v \). Since \(L \) is accepted by \(R_{H}^{(p_1, \ldots, p_r)} \), there are \(a, b \in H \) such that \(\delta^{(p_1, \ldots, p_r)}(0, u) = a \) and \(\delta^{(p_1, \ldots, p_r)}(0, v) = b \). Therefore, by \((d)\), we obtain that \(uv \) is accepted by \(R_{H}^{(p_1, \ldots, p_r)} \) with the final state \(a \oplus b \). From this, by \((b)\), we get that \(w \in L \), and so, \(L \) is shuffle-closed.

Finally, let \(u \in L, v \in X^* \) and let us assume that \(u \circ v \cap L \neq \emptyset \). If \(v = 1 \), then \(\delta^{(p_1, \ldots, p_r)}(0, u) = 0 \in H \), and so, \(v \subseteq L \). Now let us suppose that \(v \neq 1 \). Let \(\delta^{(p_1, \ldots, p_r)}(0, u) = a, \delta^{(p_1, \ldots, p_r)}(0, v) = b \) and let \(\Psi(u) = (i'_1, \ldots, i'_r), \Psi(v) = (j'_1, \ldots, j'_r) \). Then there exist nonnegative integers \(i_t < p_t, j_t < p_t, i_t, j_t, t = 1, \ldots, r \), such that \(i'_t = i_t + l_t p_t, j'_t = j_t + k_t p_t, t = 1, \ldots, r \). Let us denote by \(u' \) and \(v' \) the words \(x_1^{i_1+l_1p_1} \ldots x_r^{i_r+l_r^r} \) and \(x_1^{j_1+k_1p_1} \ldots x_r^{j_r+k_r^r} \), respectively. Using \((b)\) and \((c)\), we obtain that \(\delta^{(p_1, \ldots, p_r)}(0, u') = a, \delta^{(p_1, \ldots, p_r)}(0, v') = b \), where \(a = (i_1, \ldots, i_r), b = (j_1, \ldots, j_r) \). By our assumption on \(u \circ v \), there exists a word \(w \in u \circ v \cap L \). Let

\[w' = x_1^{i_1+j_1+(l_1+k_1)p_1} \ldots x_r^{i_r+j_r+(l_r+k_r)p_r}. \]
Since \(w \in u \circ v \cap L \) and \(\Psi(w') = \Psi(u'v') = \Psi(uv) = \Psi(w) \), (b) implies \(w' \in L \). On the other hand, by (c), we have
\[
\delta^{(p_1, \ldots, p_r)}(0, w') = (i_1 + j_1 \text{mod } p_1, \ldots, i_r + j_r \text{mod } p_r).
\]
Now let us observe that \((i_1 + j_1 \text{mod } p_1, \ldots, i_r + j_r \text{mod } p_r) = a \oplus b \). Since \(w' \in L \), we have \(a \oplus b \in H \). But \(H \) is a subgroup of \(\mathcal{M}^{(p_1, \ldots, p_r)} \), thus \(a \in H \) and \(a \oplus b \in H \) imply \(b \in H \). Therefore, by \(\delta^{(p_1, \ldots, p_r)}(0, v) = b \), we obtain that \(v \in L \), and so, \(L \) is an ssh-closed language. This completes the proof of the theorem.

References

Received September 1, 1994