
Acta Cybernetica 13 (1997) 23-39.

Server Problems and Regular Languages

B. Csaba * G. Dányi t

Abstract

The sequences of requests are considered as words over the alphabet of
vertices. We assume that the server problem is restricted, meaning that
the request words are chosen from a subset of all possible words, i.e. from a
language. We define the class ONLINE consisting of the languages, for which
there exists a 1-competitive satisfying on-line algorithm. Our main result is
a sufficient condition for languages to be in ONLINE and a construction
method of 1-competitive on-line algorithm for the ones, which satisfy that
condition. We perform this by characterizing a subclass ONREGo of the class
ONLINE fl REG, where REG is the class of regular languages. Moreover,
we prove some results, which help to show the on-lineness of certain other
(even nonregular) languages and we give sufficient conditions to prove that a
language is not on-line.

1 Introduction
The fc-server problem is a generalized model of certain scheduling problems as,
for instance, multi-level memory paging, disk caching and head motion planning
of multi-headed disks (see [MMS]). The paging and caching problems have been
studied for a long time. However, server problems are introduced in the 80's (see
[ST] and [MMS]).

The ¿-server problem can be stated as follows. Let M = (V, 6) be a finite metric
space, where V = {vi,..., vrl} are the vertices and 6 is the distance function. There
are k mobile servers occupy exactly k vertices of M. Repeatedly a request, v,, G V
appears. The request should be satisfied by moving some servers resulting that
a server appears on the point The cost of moving one server from v̂ to vj is
S(ví , Vj) and the cost of a satisfaction is the sum of the costs of the taken movements.

"Research of this author was supported by the Research Foundation of Hungary under Grant
F4204.
Dept. of Computer Science, József Attila University, H-6701 Szeged, P.O.Box 652, Hungary,
email: csaba@inf.u-szeged.hu

t Research of the author was supported by the Research Foundation of Hungary under Grant
F012852 and by the Hungarian Cultural and Educational Ministry under Grant 434/94.
Dept. of Foundations of Computer Science, József Attila University, H-6701 Szeged, P.O.Box
652, Hungary, email: danyi@inf.u-szeged.hu

23

mailto:csaba@inf.u-szeged.hu
mailto:danyi@inf.u-szeged.hu

24 B. Csaba, G. Daiiyi

We assume that the request sequences are finite. The goal is to find an algorithm
for M, which can satisfy request sequences with as little'cost as possible.

If an algorithm serves requests immediately without knowing what the future
requests will be, then we say that it is on-line. A widely used measure for the
performance of an on-line algorithm is the competitive ratio, introduced by [ST].
Denote the optimal cost of the satisfaction of a request sequence x by opt(a:). An
on-line algorithm A is called c-competitive, if there exists a number K such that,
for all allowed request sequences x, the total cost A(x), incurred by A on x, is at
most copt(x) + K.

Obviously, a finite request sequence can be considered as a word over the alpha-
bet V. It has been proved that, if the request sequences can be arbitrarily chosen,
that is, any word in V*, then the competitive ratio of any on-line algorithm is at
least k (see [MMS]). However, in practice the request sequences are generated by
programs, hence these sequences usually cannot be arbitrary, i.e. they are chosen
from a language L C V*. Then the server problem is said to be restricted. Knowing
that language, we may expect to find on-line algorithms with better performance.
We can assign competitive ratio to the languages, too. Actually, a language is
called c-competitive, if, for any distance function S, there exists c-competitive on-
line algorithm satisfying its request sequences. Observe that the competitive ratio
defines a hierarchy of language classes.

In this paper we consider the class ONLINE consisting of 1-competitive lan-
guages, called on-line languages. Note that this class is the bottom element of
the hierarchy mentioned above. However, ONLINE seems to be very hard to
characterize. For instance, it contains languages, which are event not recursively
enumerable. For that very reason, we looked for necessary and sufficient conditions
a language being in ONLINE.

Sufficient conditions can be found, if we consider appropriate subclasses of
ONLINE. Such subclass can be defined, for example, by intersecting ONLINE
with a well known language class. In this paper we choose the class REG of regular
languages for this purpose. This class is easy to handle, since the regular languages
are recognized by deterministic finite automata. On the other hand, REG is closed
for the operations concatenation, union and closure, which corresponds naturally
to the programming structures, namely the sequencing, the selection, and the it-
eration, respectively. Observe that, for any alphabet V, V* £ REG holds, hence
REG % ONLINE follows. We define the subclass ONREG0 C REG. The class
ONREGo is closed for concatenation, union and closure of singleton languages.
Roughly speaking, if we consider programming structures, there cannot be a selec-
tion inside an iteration. Our main result is that ONREGQ C ONLINE. Moreover,
we show that how the operations sublanguage construction and letter reduction can
help to prove the on-lineness of certain other, even nonregular languages, and we
give sufficient conditions to prove that a language is not on-line.

The outline of our paper is as follows. In the second section we introduce the
definitions and notations, which are necessary to understand the paper. Moreover,
we give some basic results. Our main result can be found in the third section, in
which we show that the language class ONREGO contains on-line languages. In

Server Problems and Regular Languages 25

the fourth section we give some sufficient conditions for regular languages not being-
on-line, and we discuss some other properties of the class ONLINE.

We note that there is an other way of studying restricted fc-server problems,
where the movements of the servers are restricted (see [FK], [BIRS]). This leads
to the use of an access graph. A server can be moved to a vertex from an other
one immediately, if they are adjacent vertices of the access graph. However, it can
be seen that an access graph also defines a language over V, namely the set of
satisfiable request sequences.

Acknowledgement. The authors are grateful to P. Hajnal (Dept. of Mathe-
matics, University of Szeged, Hungary) and László Bernátsky (Dept. of Computer
Science, University of Szeged, Hungary) for their valuable comments and sugges-
tions.

2 Preliminaries
In this section we introduce the notions and notations which are necessary to un-
derstand the paper. Moreover, we recall the preliminaries referred in our proofs
from other papers, and give some basic results.

We denote the set of real numbers by R, the set of nonnegative real numbers
by R + and the set of natural numbers by ui. If H is a set, then \H\ denotes its
cardinality.

We frequently use the principline of structural induction in our proofs. For more
information about inductions see, for example, [W].

2.1 Languages and automata
Words and languages. An alphabet V is a finite nonempty set of symbols. The
elements of an alphabet are called letters and denoted by u and v in this paper.

A word iu over an alphabet V is a finite sequence v\... vi of some letters in V.
The length of a word w, denoted by is the number of the letters composing
w. The empty string is denoted by e, thus |e| = 0. For w £ V* — {e}, we define
first(w) € V and last(w) £ V as the first and the last letter of w, respectively.

The concatenation W1W2 of two words w\ = v\...i>i and W2 — u\ .. .Uk is
the sequence vi...viu\ .. .Uk- We define the powers of a word w as iu° = e and
wn = w ™ - 1 f o r any integer n > 1. We say that a word wi is a prefix of a word w,
and denote this fact by wi C w, if there exists a word called a suffix of w, such
that w = W\W2- We use the symbols w, x and y to denote words in this paper.

The set of all finite words over an alphabet V is denoted by V*. A language over
V is a subset L C V*. For any languages L and L', we define their concatenation
as LL' = { W \ w £ L,w' £ L'}. For any language L, we put L° = {e} and
Ll = where i > 1. The closure of a language L is the set L* = U i^L1 . The
prefix language of a language L is L- = {x \ x C w holds for some w £ L}. We say
that the prefix problem is decidable for a language L over an alphabet V, if, for an
arbitrary word w € V*, it is decidable whether w £ L-.

26 B. Csaba, G. Daiiyi

We define the operation letter reduction, denoted by lr, over words as follows.
For any word w G V*, there exists a unique decomposition w = v"1 . . . v£k, where
ni,...,rik > 1 and vi,...,vk G V, such that Vi ^ Vi+1 with 1 < i < k. Then
lr(u)) = v\. . . Vk • Roughly speaking, the lr operation substitutes a sequence of a
letter by one. We extend the lr operation for languages as lr(L) = Utug£,lr(ii;).

Regular languages. The class REG of regular languages is the smallest class,
which obeys the following rules.

(1) For any alphabet V, if w G V* then {?/;} is in REG.
(2) If L, L' G REG then L U L', LL' and L* are in REG.

That is, REG is the smallest class, which contains every singleton language and
closed for the closure, the finite union and the concatenation. Clearly, for any
alphabet V, the language V* is regular.

The characterization of REG can be found in a wide range of books and papers
concerning automata theory and formal languages (e.g. [HU]). A convenient way
to define a regular language is to give its construction according to the above
construction rules (1) — (2). This yields an expression, possibly with parentheses,
where the members are singleton languages, and the operators are the union, the
concatenation and the closure, in growing precedence order. These expressions
are called regular expressions. For example, the regular expression ({a } U {b\)*c
defines the language of sequences of a and b followed by c. For brevity, we often
write simply w for a singleton language {vi} in regular expressions in the sequel.
Thus we have (all b)*c for the above expression. Note that a regular language can
be defined by several regular expressions.

Finite automata. A deterministic finite automaton (DFA) is a 5-tuple A =
(Q, V, r, qo,F), where Q is the finite nonempty set of states, V is the input alphabet,
T : Q x V —> Q is the total transition function, qo G Q is the initial state and
F C Q is the set of final states. We extend r for Q x V* with r(q, e) = q and
r(q,wv) = T(r(q,w), v), where q G Q, w G V* and v G V. A state q G Q is called
trap state if there exists no word w G V* such that r(q, w) G F. We assume every
state to be accessible, that is, for each q G Q, there exists a word w G V* such that
r(q0,w) = q.

A DFA can be represented as a directed labeled graph, where the vertices are
the states and the edges are the transitions labeled by the corresponding letters of
V. It should be clear that, for any q,q' G Q and w G V*, r(q,w) = q' implies that
there is a path from q to q' labeled by w. By the graph representation, it is easy
to show that, for any state q G Q, it can be decided in 0(|Q||V|) time, whether
q is a trap state. Hence, the subset T C Q of trap states can be determined in
0(\Q\2\V\) time.

We say that the DFA A = (Q,V,T,qo,F) recognizes the word w G V* if
T(qo,w) G F. The recognizability of any word w G V* by A can be decided in 0(\w\)
time. The language recognized by A is the set La = {u> G V* \ r{qo,w) G F}. We
say that the language L is recognizable if there exists a DFA A such that L = Lf\.
The following proposition, known as Kleene's theorem, is a fundamental result in
the theory, of automata.

Server Problems and Regular Languages 27

Proposition 2.1 A language is regular if and only if it is recognizable.

Moreover, given a regular expression E, a DFA recognizing the language defined
by E can be constructed effectively. Conversely, given a DFA A, a regular expression
defining La can be constructed effectively, too (see [HU]).

Prefixes. The prefix words and languages play very important role in this
paper, hence we pay more attention to them. Let A = (Q,V,r,q0,F) be a DFA.
Observe that, for any word w £ V*, w £ Lj holds if and only if r(qo,w) is not
a trap state. Recall that the set of trap states T C Q can be determined in
0(\Q\2\V\) time. Define the DFA B = (Q,V,r,q0,Q - T), then it should be clear
that Lb — Lj. By Proposition 2.1, we have that if L is a regular language, then
L- is also regular. Hence, the prefix problem is decidable for regular languages.

2.2 The language class ONREG0

We define a subclass ONREGQ of REG. The name ONREG0 refers to cer-
tain properties concerning server problems, which are explained later. The class
ONREGo is investigated for the first time in the present paper, hence, in addi-
tion to the definition, it is necessary to characterize it. We do this by presenting
three different definitions for ONREGo and proving their equivalence. The first
definition shows the inclusion ONREGo C REG immediately.

Definition 2.2 The class ONREGo is the smallest one, which obeys the following
rules.

(1) For any alphabet V, if w £ V* then {w} and {w}* are in ONREGQ.
(2) If L, V £ ONREGo then LV and LuL1 are in ONREGo •

That is, ONREGo is the smallest class, which contains every singleton language,
the closure of each singleton language, and closed for the finite union and the
concatenation. Roughly speaking, a language L £ ONREGo can be constructed
on the same way as a regular one, with the constraint that the closure operation
is allowed only for singleton languages. It can be shown that, if V is an alphabet
and |V| > 1, then V* $ ONREGQ. The second definition is very useful to prove
the main result of the paper.

Definition 2.3 ONREGo is the smallest class, which satisfies the following con-
ditions.

(1) For any alphabet V and w £ V*, { w } , {w }* £ ONREGQ.
(2) For any alphabet V, L £ ONREGQ and w £ V*,

L{w},L{w}* £ ONREGQ.
(3) If L, L' £ ONREGO then L U V £ ONREGQ .

The third definition describes explicitly, what kind of languages belongs to
ONREGQ.

28 B. Csaba, G. Daiiyi

Definition 2.4 Let V be an arbitrary alphabet and let L be a language over V.
Then L E ONREGQ holds if and only if L can be defined by a regular expressions
of the following form. There exist integers r, s > 0 and words Xi,j,yi,j E V*, where
1 < i < r and 1 < j < s, such that

L - LhKiKrXi^iy^i)* . ..Xij(yij)* . •. xitS(yitS)*.

Finally, we prove that the three definitions are equivalent. We perform this
showing that Definition 2.4 is equivalent to both the definitions 2.2 and 2.3. Sup-
pose that a language L can be defined by a regular expression of the form as in
Definition 2.4. Then it is easy to see that L can be constructed by the rules of
either Definition 2.2 or Definition 2.3. On the other hand, it is a routine exercise
to show by structural induction on the rules that any language obeying the rules
of either Definition 2.2 or Definition 2.3 can be defined by a regular expression of
the form as in Definition 2.4.

2.3 Server problems and satisfying algorithms
Let M = (V, <5) be a finite metric space, where V = {vi,... ,vn} is the set of
points and S : V x V —» R + is the distance function. Thus, for any u, v. v' E V,
6(u,v) = S(v,u) and 6(u,v) < S(u,v') +S(v',v) hold. Moreover, 6(u,v) = 0 if
and only if u and v are identical. Note that M can be represented as an n-vertex
complete graph Gm, where the vertices are labeled by the elements of V and the
edges are weighted as determined by 5. We put 8max — maxi<i j<n S(vl, Vj).

There are k mobile servers occupy exactly k vertices of Gm • We assume that
1 < k < n and n > 3. Note that the other cases are trivial and irrelevant from
the point of view of our paper (see later). Suppose that there is a server on the
vertex Vi and there is no one on Vj. Then moving the server from Vi to Vj costs
5(vi,vj). Let the metric space and the number of servers be arbitrary, but fixed in
the sequel. We use the symbols n and k to denote the number of vertices and the
number of servers, respectively.

A configuration (or a state) a is a word i\.. .ik E {1 , . . . ,n } f c , where ij < ij+i
holds for each 1 < j < k, showing that the servers are on the vertices v^,..., Vik.
It is easy to see that there are exactly (£) different configurations. A configuration
can be changed by moving a server from an occupied vertex to an empty one.

A request is a letter Vi E V. A satisfaction of the request in a given starting
configuration is a sequence of movements of some servers, such that the resulting
configuration contains i, that is, there is a server on the vertex Vi. The cost of the
satisfaction is the sum of the costs of its movements. Observe that a request vt can
be satisfied with no movements if and only if the starting configuration contains
i. Moreover, any request can be satisfied by one movement of one server in any
starting configuration.

A request word is a sequence of requests, that is a word over V. A satisfaction of
a request word u> = v\ . . . Vi in a given starting configuration is the sequence of the
satisfactions of the requests vi,...,vi after each other. The cost of a satisfaction is
the sum of the costs of the satisfactions of composing requests.

Server Problems and Regular Languages 29

Satisfactions are denoted by the symbol S in the sequel. By |S| we mean the
cost of the satisfaction S. For any satisfaction S, we denote the starting and
the resulting configuration of S by as and as, respectively. A decomposition of
the satisfaction S of a word w is a sequence Si,..., Si of satisfactions of words
w i , . . . ,wi, such that w = w i . . . u>i, as1 = as and as{ = f s i + i (1 < i < Z) hold,
and the satisfaction of w by applying S i , . . . ,5; after each other gives exactly S.
Then we write S = Si... Si.

Clearly, for any request word w, there is a satisfaction with minimal cost in
a given starting configuration a, called an optimal satisfaction of w. Denote that
cost by optCT(u;). Let a and a' be different configuration, then it should be obvious
that ¡opt„.(?/;) — opt0./(w)| < kSmax. If the starting configuration a is understood,
then we write simply opt(w). Let the starting configuration be arbitrary, but fixed
in the sequel.

Let w € V* be a word such that w = wivnw2 holds, for some wi,w2 £ V*,
v e V and n > 1. Then it is easy to show that o^t(wivnw2) = opt(wii;w2)- It
follows that, for any word w, opt(w) = opt(lr(w)) holds.

The following results characterize the word composition and decomposition from
the point of view of optimal satisfactions.

Lemma 2.5 Let w £ V*. Consider an arbitrary decomposition w = Wiw2, where
wi,w2 € V*. Then the following statements hold.

(1) opt(wi) + opt(w2) < opt(w) + kSmax

(2) opt(w) < opt(wi) + opt(w2) + kSmax

Proof. There exist satisfactions, denoted by S, Si and S2, with the costs
opt(w), opt(u)i) and opt('(«2) for the request words w, wi and w2, respectively,
in the starting configuration cr.

The satisfaction S can be decomposed as S = S'S", where S1 is a satisfaction
of wi in a, and S" is a satisfaction of w2 in as'• Observe that it is easy to
transform 5" to a satisfaction of w2 in a such that, before starting S", we change
the starting configuration a to as' by moving the appropriate servers. Clearly,
this modification costs at most k8max. Now suppose the contrary of (1), that is,
opt(wi) + opt(w2) > opt(w) + kSmax. Then, by the above results, it is easy to see
that either S' must be a more optimal satisfaction of wi than Si in a, or S" with
the above modification should cost less than S2 in a. Both contradict that Si and
S2 have optimal costs, hence the statement (1) holds.

Now consider the following satisfaction of w in a. Satisfy the prefix wi by Si,
then recover the starting configuration a and satisfy the suffix w2 by S2. The
satisfaction Si costs opt(wi), the recovery of the starting configuration costs at
most k5max and S2 costs opt (w2). Hence, the cost of the satisfaction is at most
opt(wi) + opt(w2) + kSmax, which implies (2). •

Roughly speaking, for a given metric space and number of servers, our goal is
to find satisfactions with minimal costs for request words. More precisely, we want
to find an algorithm, which gives server moving sequences with minimal cost to
satisfy any possible request word.

30 B. Csaba, G. Daiiyi

In this paper we consider such kind of algorithms, which are deterministic and
computes the satisfaction of any request word in any starting configuration, that
is, the server moving sequence of the satisfactions letter by letter. For the sort, we
call simply algorithm the ones in the sequel, which have the above properties.

Let A be an algorithm, let to be a request word and let a be the starting
configuration. Then the cost of the satisfaction of w given by A in a is denoted by
Aa(w). If a is understood, we write simply A(w).

We say that an algorithm is lazy, if, for any request and starting configuration,
it moves at most one server to satisfy the request. Otherwise, the algorithm is said
eager. Clearly, for any request word, there exists a lazy algorithm which satisfies
it. The following statement has been shown in [MMS].

Propositon 2.6 For every eager algorithm, there exists a lazy one such that, for
any request word, the satisfaction given by the lazy one costs no more than the
satisfaction given by the eager one.

This result provides that it is enough to find an eager algorithm, if we want to
show the existence of a lazy one with respect to any cost limit. If the type of an
algorithm is not defined explicitly, we mean eager one in the sequel.

There is an another classification of algorithms. An algorithm is said off-line,
if it reads the whole request word first, then computes a satisfaction of that one.
Moreover, an algorithm is called on-line, if it reads the request words from left to
right, and reading a letter it gives the satisfaction of that request before reading
the next one.

Let c > 1 be a real number and let L C V* be a language. An algorithm A
is said c-competitive on L (with the constant K), if A(w) < copt(w) + K holds
for each w £ L, where K depends on only A and L. Clearly, if an algorithm A is
c-competitive on a language L, then it is c-competitive on any sublanguage /.1 C L,
too. Hence, if an algorithm is efficient on V*, then it is efficient on any language over
V. Obviously, for any alphabet V, there exists a 1-competitive off-line algorithm
on V*.

We note that it has been proved in [CKPV] that there exists an off-line algo-
rithm, which gives the optimal satisfaction of any word w £ V* in 0{k\u>\2) time;
Hence, we can conclude that, for an arbitrary language L, there exists a polynomial
1-competitive off-line algorithm on L.

The class of on-line algorithms has not so nice property. Up to this time, the
known best competitive ratio of any on-line algorithm on V* is 2/c — 1 (see [KP]).
Moreover, a lower bound was presented in [MMS], which shows that the competitive
ratio of any on-line algorithm on V* is at least k. The question naturally arises that
is it possible to reduce the competitive factor of on-line algorithms, if we consider
only a special class of languages (e.g. ONREGo)? Recall that V* £ REG holds,
for any alphabet V, hence REG is not suitable for this purpose.

If it is not defined explicitly, by an algorithm we mean an on-line one in the rest
of the paper.

Server Problems and Regular Languages 31

A language L C V* is said c-competitive, if, for every M and k, there exists
an algorithm, which is c-competitive on it. The 1-competitive languages are called
on-line languages. The class of all on-line languages is denoted by ONLINE.

Lemma 2.7 Every finite language is on-line.

Proof. Suppose L = {wi,...,wm} is a finite language. We put I =
maxi<t<ni \wi\. Let A be an arbitrary algorithm for L. Clearly, for any w G L,
A(w) < opt(w) + lSmax. •

The properties of prefix words and prefix languages concerning the server prob-
lem are cornerstones in our proofs. Let L be an on-line language and let the algo-
rithm A be 1-competitive on L. Suppose that w £ L and w = w\w2. Then, by (2)
of Lemma 2.5, ^.(ui) = .A(wjiw2) < opt(w) + K < opt(u)i) + opt(ui2) + kSmax + K.
Now let S = S\S2 be the satisfaction of w given by A, where S\ is the satisfaction
of the prefix wi and ,S2 is the satisfaction of the suffix w2. Clearly, |Si| > opt(wi)
and kSmax + 1521 > opt(1^2)* Hence the following statements hold.

Observation 2.8 If A is a 1-competitive algorithm on a language L with the con-
stant K, w G L and w = W\W2, then

(1) A(wi) < opt(wi) + 2k5max + K and
(2) the cost of A on the suffix w2 is no more than opt(w2) -I- k6max + K.

By (1) of Observation 2.8, we have the following result immediately.

Theorem 2.9 If A is a 1-competitive algorithm on a language L with the constant
K, then A is 1-competitive on L- with the constant 2kSmax + K.

3 The languages in ONREGo are on-line
The name ONREGo refers to the property of this class that it consists of on-line
regular languages. However, it does not contain all on-line regular language.

In this section we prove that the languages in ONREGo are on-line. We do
this by executing structural induction on the rules of Definition 2.3.

As the basic step of the structural induction, we prove that the languages {w}
and {'(/;}* are on-line, for any word w (see (1) of Definition 2.3).

Lemma 3.1 Let w be an arbitrary word over an arbitrary alphabet. Then {w\ and
{w}* are on-line languages.

Proof. As for the on-lineness of the language {?/;}, it immediately follows from
Lemma 2.7. However, it also implied by the on-lineness of { w } * , since { w } C {-«;}*.

We construct a 1-competitive algorithm A on {«;}*. Informally speaking, A
works as follows. We find a satisfaction S on an appropriate »-sequence, which has
minimal cost density and results the same configuration as the starting one. Then
A applies S_ repeatedly on any w-sequence.

32 B. Csaba, G. Daiiyi

We need some preparations. A satisfaction 5 of a request word wms (ms > 1)
is called circular on w, if as = holds. Denote the set of all circular satisfactions
on w by CSATW. Moreover, a satisfaction 5 of a word wms (ms > 0) is called
noncircular on w, if either ms = 0, or ms > 1 and S = S\... Sms, where each
Si is a satisfaction of the word w and ast ^ ass, for any 1 < i < j < I. Denote
the set of all noncircular satisfactions on w by NCSATW. Observe that, since the
number of different configurations is (£), ms < (£) should hold for any noncircular
satisfaction S.

Let the satisfaction S_ € CSATW be such that is minimal in CSATW and
ms is minimal with respect to the subset of CSATW determined by the previous
condition. Roughly speaking, S is one of the shortest satisfactions in CSATW,
which has the minimal cost density.

We show that S_ exists arid it can be computed. We prove this by showing that
it is enough to consider only such kind of satisfactions S, for which ms < (1) — 1
holds. Suppose that ms > (£) — 1. Decompose S as S = S i . . . S m s , where each Si
is a satisfaction of the word w, for any 1 < i < ms- Clearly, as = <?Si = ^s = °sms

and a Si = • The number of different configurations is (£), hence at least one
of the following cases holds.

(i) There is an integer i, where 1 < i < ms, such that as; = Let S[=
Si... Si-1 and S2 = Si... Smi• Then S = 5(5^ and S[,S'2e CSATW hold.

Clearly, ms = m s ; + m S ; and \S\ = |S[| + \S^\. Hence, either Jgf < ^J or

< which contradicts the minimality of ms-

(ii) There are integers i and j, where 1 < i < j < ms, such that as, — as} • Let
S[= Si... Si-i, S2 = Si... Sj-i and S'3 = Sj... Sms. Then S_ — S^S^ and
S[S^,S!2 e CSATW hold. Clearly, ms = rnS[S'3 +ms~2 and |5| = +
It is easy to see that either j f ' '?3 ̂ < or < , which contradicts the

J mc/ c/ — ms mc/ — ms ' 13 — s2 — minimality of ms-

We have ms < (£) - 1- The subset of CSATW, which consists of the satisfactions
S obeying ms < — 1, is finite, hence S can be computed.

Let now the algorithm A work as follows. Starting the satisfaction of a re-
quest word in {iu}*, A changes the starting configuration to as, then applies the
satisfaction S repeatedly to the end of the input word. Clearly, A is on-line on
M * .

We prove that A is 1-competitive on {«;}*. Suppose that the input word is wm,
where m > 0. Let p the smallest integer such that p > Then, by the definition
of A,

A(wm) < kdmax+p\S\ (*)

holds. Denote by 5 an optimal satisfaction of wm in the given starting configu-
ration, thus |S| = opt(wm). It is an easy exercise to show that the satisfaction

Server Problems and Regular Languages 33

S can be decomposed as S — S0S1S1.5/5/, where 5i , 52 , • • •,5/ £ CSATW and
5o5i - . .5 / £ NCSATW. By the property of noncircular satisfactions, we have
mSa - Si < (fc)- Moreover, by the choice of S, < holds, for each 1 < i < I.
Now we can calculate as follows.

A(wm) - opt (u ; m) < p|5| + kSmax - J2i<i<i |5i|
(by (*) and \S\ = opt(wm))

< kSmax + (jmis-^i<i<imsi)^l
(b y M < jJd).

Moreover, since
Pms - E i ^ r c / ™ ^ ^ pms-m-1-(£)

(by m = Ei<,</m5,- +mSo-Sn mso-s, < H))

< ms + (nk)
(by the choice of p),

we have
< opt(wm) + (kSmax + |5| + - M (f)) .

m s Vs/
Hence A is 1-competitive on {w}*- •

In the next step of the structural induction, we prove that the two construction
rules defined in (2) of Definition 2.3 preserve the on-lineness.

Lemma 3.2 For any alphabet V, language L € ONREGq and word w £ V*, if L
is on-line, then L{w} and L{w}* are also on-line languages.

Proof. Since L{w} C L{w}* holds, it is enough to show that L{w}* is on-line
to prove the lemma.

The language L is on-line, hence there is an algorithm A\, which is 1-competitive
on it. Moreover, by Lemma 3.1, the language {u;}* is on-line. Let Ao be a 1-
competitive algorithm on {ui}*. We construct a 1-competitive algorithm A on
L{w}*. Informally, A applies A\ as long as possible, then finds the beginning of
the remainder -(«-sequence (if there is) and applies A2 to the end of the request
word.

Observe that every input word is of the form xwm, where x £ L and m > 0.
Let x £ L and m > 1 be arbitrary, but fixed in the sequel. (As for the case
m = 0, the 1-competitiveness of A will follow from its construction immediately.)
Observe that xwm can be decomposed unambiguously as xwmi wiw2wm2, where
m = mi + m2 + 1) w\w2 — w and xwmiw\ is the longest prefix of xwm, which is
in

Let the algorithm A work as follows.

1. While the scanned prefix of the input word xwm is in L-, A applies Ai.
Observe that in this way Ai is applied exactly on xwmi wi.

2. Then A reads the letters successing xwmiwi, satisfies them arbitrarily and
stores their concatenation, until the stored word is of the form yw or the

34 B. Csaba, G. Daiiyi

input ends. Since |xl»2| < |iw|, it should be clear that, for any input word, less
than 2\w\ letters are to be read in this step.

3. If there are no more letters left on the input, then A terminates. Otherwise,
observe that W2Wm2 = ywwm2~1y' should hold, for some y, where yy' = w2

and y' C w. Moreover, the rest of the input is wTrl2~1y', hence A) can be
applied on the remainder input without any difficulties. Let A apply A2 on
the rest of the input.

Now we prove that .4 is 1-competitive on L{w}*. Supposing xwm £ L- (m > 0),
by Lemma 2.9, A(xwm) < opt(a;u;n) + K\ 4- 2kdmax holds. Now suppose that
xwm g L-. Clearly, in this case TO > 1 should hold. We can calculate as follows.

A(xwn) < Ai(xwmiwi) + 2\w\8max + A2(wm»)
(by the construction of A)

< opt(a;u;miK;i) + Kx + 2 kSmax + opt(w™2) + K2 + 2\w\6max

(by Lemma 2.9)
< opt (xwmiw1w2) + opt (wm2) + K1+K2 + 2 (k + |w\)5max

< opt (M) m i wiw 2 w m !) + k8max + K1+K2 + 2{k + \w\)Smax

(by Lemma 2.5)
= opt(xwm) + (Ki + K2 + {3k + 2\w\)6max)

Hence A is 1-competitive on L{w}*. •

Finally, we have to check the construction rule defined in (3) of Definition 2.3
to complete the proof.

Lemma 3.3 For any languages Li,L2 £ ONREGq, if both L\ and L-2 are on-line
then the language L\ U L2 is on-line, too.

Proof. Since LI and L-2 are on-line languages, there exist algorithms AI and
A2 such that, for any words w 1 £ LI and W2 £ L2, .4i(wi) < opt(wi) 4- K\ and
A2(w2) < opt(i«2) + K2 hold, where K\ and K2 are constants. We construct an
algorithm A, which is 1-competitive on L\ U L-2.

Let the input word be an arbitrary w £ L\ U L2- The algorithm A works as
follows.

1. Reading the next letter of W, on the basis of the scanned prefix W' QW, A
tries to decide that W which of the languages LI and L2 belongs to. Recall
that both w' £ Lf or w' £ are decidable. While this cannot be decided
unambiguously, A computes the satisfactions and the new configurations de-
termined by both Ai and A2, but satisfies the request as suggested by At •
However, it stores the configuration computed by A2-

2. If A detects that w cannot be in L2, then it finishes the satisfaction of ru con-
tinuing by Ai. Otherwise, if it turns out that w is not in Lx, then A changes
the configuration to the one stored for A2, and completes the satisfaction of
w by A2.

Server Problems and Regular Languages 35

We show that it is 1-competitive on L\ U L2. Observe that, for any input word
w G L\ U L2, exactly one of the following two cases holds.

(i) w G Ly- By the construction of A, in this case A(w) = Ai(w) holds. Since
A\ is 1-competitive on L\, by Proposition 2.9 we have A(w) < opt(w) + K\ +
2к6тах , where K[is a constant.

(ii) w G (L2 — L f) . In this case A works as follows. The word го can be decom-
posed unambiguously as w — w\w2, where w\ is the longest prefix of w such
that u>i £ L f . The algorithm A implements A\ on w\, changes the config-
uration and implements A2 on w2. Recall that changing the configuration
costs at most k6max. We can calculate as follows.

_4(ги) < Ai(wi) + к6тах + opt(w2) + K2 k&max
(by (2) of Observation 2.8)

< opt(u;i) + Ki + 2 kSmax + opt(w2) + K2 + 2 k6max

(by Lemma 2.9)
< opt(i«) + (Кг + K 2 + Ш т а х)

(by (1) of Lemma 2.5)

We have that A is 1-competitive on L\ U L2. •

With this, we are ready to prove the main result of our paper.

Theorem 3.4 Every language in ONREGq is on-line. Moreover, given a language
L G ONREGo, an algorithm can be constructed effectively, which is 1-competitive
on L.

Proof. Recall that every language L G ONREGo can be constructed as de-
scribed in Definition 2.3. Hence, by the lemmas 3.1, 3.2, 3.3 and by the principline
of structural induction, we have that L G ONLINE holds. Moreover, by the ap-
plication of the constructions in the proofs of the above lemmas, a 1-competitive
algorithm can be given for L. •

Recall that opt(w) = opt(lr(w)) holds, for any word w. Moreover, the competi-
tive ratio of any algorithm on any sublanguage of a given language is no more, than
its competitive ratio on the whole language. By these observations, we can show
the on-lineness of certain other languages, which can be even not regular.

Corollary 3.5 For an arbitrary language L, if there exists a language L' G
ONREGo such that L C L' or lr(L) C L' hold, then L is on-line. Moreover,
in this case a 1-competitive algorithm can be constructed effectively for L.

Finally, we present three examples for the application of Corollary 3.5.

(1) The language Li = {anbncn | n > 0} is a well known nonregular language.
However, by Corollary 3.5, it is on-line, since lr(Li) = {e,abc} G ONREGo-

36 B. Csaba, G. Daiiyi

(2) Consider L2 = {w"w£ | n > 0}, where wi and w2 are arbitrary words. Note
that generally L2 is not regular. However, L2 G ONLINE follows from the
fact that L2 is a subset of the language (wi)*(w2)*, which is in ONREG0.

(3) It can be shown that L3 = (a U abc)* is not in ONREGo, but it is regular.
Observe that L3 can be defined by (a*abc)*a* as well. Since lr((a*abc)*a*) C
(abc)*a* G ONREGo, we have that L3 is on-line language.

4 Related results
The question obviously arises that if there exists an on-line language L, of which
the on-lineness cannot be proved by Corollary 3.5? (That is, such L that lr(Z-)
is not a subset of any language in ONREGo) Specially, is there such kind of
language in REG? These problems are open up to this time. However, we have
the following results, which shows that if there exists a language in REG with the
above property, then it should be very special one.

Recall that the construction of a language in ONREGo differs from the con-
struction of a general regular one in the point that the closure operation is al-
lowed only for singleton languages. Moreover, by Theorem 3.4, every language in
ONREGo is necessarily on-line. Hence one can guess that, roughly speaking, a
regular language may loose the on-lineness, when the closure is applied for a mul-
tielement set during its construction. The following lemma shows that this really
holds in most cases.

Theorem 4.1 Let V be an arbitrary alphabet with \V\ > 3. Consider any two
words Wi, w2 G V* such that Wi contains at least two different letters and there is
a letter in w2, which does not occur in wi. Then the language (Wi Uu^)* is not
on-line.

Proof. Assume that the number of servers (i.e. k) is 2. It is sufficient to show
that there exists a metric space M = (V, S), in which the competitive ratio of L is
greater than 1.

Denote by a the letter, which occurs in w2 and not contained by wi. For any
different letters u,v G V — {a}, let S(u,v) = 1 and, for each v G V — {a} , let
5(v, a) = D, where D is defined later-. Suppose that the starting configuration
always contains a server on a.

Let us consider a request-answer game, where a requester R plays against an
algorithm A. In each round, R gives a request, which is satisfied by A immediately.
We show that defining an appropriately large D, for any algorithm A, R has a
strategy providing that the difference of the costs of the satisfaction generated by
A and the optimal one grows unboundedly. This implies that the competitive ratio
of L is greater than 1.

Let H = {w2w\w2, • • • ,w2w[w2}, where t > 1 is defined later. We assume that
the request words composed by R are chosen from H*. Since H* C L, to prove the

Server Problems and Regular Languages 37

lemma, it is enough to show that H* is not on-line. Observe that any word w £ H*
consists of sections of the form w2w{w2, where 1 < s < t.

Let R compose its request words dynamically, sections by sections, obeying the
following rules.

Rule 1 If, for some 1 < s < t, there is a server on a, when w2wl~l is satisfied, and
A moves that server processing the next (sth) wi, then let this section be
w2wfw2- Specially, if A moves the server from a while satisfying the initial
W2, let R chose W2W\W2-

Rule 2 If A does not move the server from a while processing the wi-s, then let R
choose u)2w\w2.

We need some technical preparations. Since wi contains at least two different
letters, it should be clear that |lr(wi)| > 2. Moreover, for any wi, one of the
following cases holds, where s > 1.

Case 1 first (wi) ^ last(wi). Then |lr(wf)| = s|lr(wi)|.

Case 2 first (wi) = last(wj). Then |lr(wf)| = s(|lr(Wl)| - 1) + 1.

Suppose that a section is chosen by Rule 1. Then the cost of the satisfaction
by A is at least (s - l)|lr(iui)| + D in Case 1, and (s - 1)(|lr(it»i)| - 1) + 1 + D
in Case 2. However, if we do not move the server on a, then this section could
be satisfied with cost no more than |lr(iC2)| + s|lr(wi)| + |lr(u/2)| in Case 1, and
|lr(w2)| + s(|lr(wi)| - 1) + 1 + |lr(i02)| in Case 2. Hence, if

D > |lr(t«i)| + 2|lr(w2)|

holds, then A is more expensive on this section than the our one.
Now suppose that the section is determined by Rule 2, that is A does not move

the server from a during the processing of wi-s. Then the cost of A is at least
i|lr(wi)| in Case 1, and t(|lr(wi)| — 1) + 1 in Case 2. However, if we move the server
from a to first(wi) after the initial iw2, leave there while processing the Wi -s, and
move back to a before the final w2, then this section costs at most |lr(w2)| + D +
i(|lr(wi)|-l)+£> + |lr(w2)| in Case 1, and |lr(u>2)|+£> + f(|lr(u>i)|-2) + £> + |lr(w2)|
in Case 2. Therefore, if

t > 2|lr(u>2)| + 2D

holds, then A is more expensive than the our one.
For any words wi and w2, the values of D and t can be computed and fixed as

above. We have that, for an arbitrary on-line algorithm A, R has a strategy, which
proves that A costs more than an off-line algorithm. Since an input word w e H*
can contain arbitrary many sections, this difference grows unboundedly, hence A is
not 1-competitive. This implies that H* (and hence L) is not on-line language. •

Generally, a regular language is defined by a regular expression. The follow-
ing result shows that if a subexpression defines a not on-line language, then the
language defined by the whole expression cannot be on-line.

38 B. Csaba, G. Daiiyi

Theorem 4.2 Let the language L defined by the regular expression E. Consider
any subexpression E' of E. If the language defined by E' is not on-line then L is
not on-line, too.

Proof. It is a routine exercise to prove the theorem using structural induction
on the defining rules of REG. •

We show two examples for the application of theorems 4.1 and 4.2.

(1) The language (a U be)* is not on-line by Theorem 4.1.

(2) Consider the regular expression ((abc U bed)*d U abed)*. Its subexpression
(abcUbcd)* defines a not on-line language by Theorem 4.1, hence, by Theorem
4.2, the language defined by the whole expression is not on-line, too.

Finally, we summarize some abstract properties of the language class ONLINE
in the following theorem.

Theorem 4.3 Let Li and L2 be arbitrary on-line languages, then
(1) for any L C L\, L is on-line,
(2) £f is on-line,
(3) L\ P) L2 is on-line,
(4) if the prefix problem is decidable both for Li and L2,

then Li U L2 is on-line,
(5) LI is generally not on-line,
(6) L\ is generally not on-line.

Proof. The statements (1) and (2) have been proved earlier in this paper.
Moreover, (3) follows from (1) immediately. We can get (4) by slightly modifying
the proof of Lemma 3.3. The statement (5) can be proved by Theorem 4.1. For
proving (6), let us assume, that Li = {t/j}*, and let u be a letter, which is different
from the last letter of w. Let w\ and ui2 be any words satisfying the conditions
in Theorem 4.1. Then we have that (wiu\Jw2u)* C L\. Thus, L\ is not on-line
language. •

References
[BIRS] Borodin, A., Irani, S., Raghavan, P., Schieber, B., Competitive Paging with

Locality of Reference, STOC 91, pp. 249-259

[CKPV] Chrobak, M., Karloff, H., Payne, T. and Vishwanathan, S., New Results
on Server Problems, SIAM J. Disc. Math., Vol. 4, No. 2, May 1991, pp. 172-181

[FK] Fiat, A., Karlin, A., Randomized and Multipointer Paging with Locality of
Reference, STOC 95, pp. 626-634

Server Problems and Regular Languages 39

[KP] Koutsoupias, E. and Papadimitrou, C., On the k-Server Conjecture, STOC
94, pp. 507-511

[HU] Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Series in Computer Science, 1979

[MMS] Manasse, M. S., McGeoch L. A. and Sleator, D. D., Competitive Algorithms
for Server Problems, Journal of Algorithms 11 (1990), pp. 208-230

[ST] Sleator, D. D., Tarjan, R. E., Amortized Efficiency of List Update and Paging
Rules, Comm. of the ACM, February 1985, pp. 202-208

[W] Winskel, G., The Formal Semantics of Programming Languages, An Introduc-
tion, The MIT Press, Foundations of Computing Series, 1993

Received May, 1996

