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Watson-Crick Walks and Roads on DOL Graphs* 

Arto Salomaa * 

Abstract 
Apart from the massive parallelism of DNA strands, the phenomenon 

known as Watson-Crick complementarity, is basic both in the experiments 
and theory of DNA computing. The parallelism makes exhaustive searches 
possible, whereas the complementarity is a powerful computational tool. This 
paper investigates complementarity as a language-theoretic operation: "bad" 
words obtained through a generative process are replaced by their comple-
mentary ones. While this idea is applicable to any generative process, it seems 
particularly suitable for Lindenmayer systems. DOL systems augmented with 
a specific complementarity transition, "Watson-Crick DOL systems", are in-
vestigated in this paper. Many issues involved are conveniently expressed in 
terms of certain paths, "Watson- Crick walks", in an associated digraph. 

Keywords: DNA computing, Lindenmayer systems, DOL sequences, Watson-
Crick complementarity. 

1 Introduction 
Adleman's celebrated experiment, [1], demonstrated how methods of molecular 
biology can possibly be applied to problems intractable by ordinary computational 
methods. Since then the interest in "DNA computing" has been growing rapidly, 
see the list of references in [6]. The impact of the resulting new notions and ideas 
to the theory of formal languages is visible from the recent Handbook, [8]. 

A keynote in theoretical studies about DNA computing is a phenomenon known 
as Watson-Crick complementarity. DNA (deoxyribonucleic acid) consists of poly-
mer chains, referred to as DNA strands. A chain is composed of nucleotides or 
bases. The four DNA bases are customarily denoted by A (adenine), C (cytosine), 
G (guanine) and T (thymine). A DNA strand can be viewed as a word over the 
DNA alphabet %DNA = {A,C, G,T}. The familiar DNA double helix arises by 
the boundage of two strands. The Watson-Crick complementarity comes into the 
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picture in the formation of such double strands. The bases A and T are comple-
mentary, and so are the bases C and G. Bonding occurs only if the bases in the 
corresponding positions in the two strands are complementary. 

Consider the letter-to-letter endomorphism hw of S*DNA defined by 

hw{A) = T, hw{T) = A, hw{G) = C, hw(C) = G. 

The morphism hw will be referred to as the Watson-Crick morhism. Thus, a DNA 
strand X bonds with hw{x) to form a double strand. (We ignore here the orien-
tation of the strands, indicated customarily by speaking of the 5'- and 3'-ends of a 
strand. We also would like to point out that we use the nowadays standard term 
"DNA computing" although, in our estimation, "DNA-based computing" would 
be more appropriate.) The complementarity of two strands leads (under appropri-
ate conditions) to bondage. By encoding information on the original strands in a 
clever way, far-reaching conclusions can be made from the mere fact that bondage 
has occurred. This means that the phenomenon of complementarity provides com-
puting power. The idea of using the fundamental knowledge, concerning how the 
double strands have possibly come into being, is central in Adleman's experiment, 
[1]. The idea is also behind the computational universality of many models of DNA 
computing, [9], [6]. 

Complementarity can be viewed also as a language-theoretic operation. As such 
hw is only a morphism of a special kind. However, the operational complementarity 
can be considered also as a tool in a developmental model: undesirable conditions in 
a string trigger a transition to the complementary string. Thus, the class of "bad" 
strings is somehow specified. Whenever a bad string x is about to be produced by a 
generative process, the string hw(x) is taken instead of x. If the generative process 
produces a unique sequence of strings (words), the sequence continues from hw(x). 
The class of bad strings has to satisfy the following soundness condition: whenever 
x is bad, the complementary string hw{x) is not bad. This condition guarantees 
that no bad strings are produced. 

While the operational complementarity can be investigated in connection with 
any generative process for words, it seems particularly suitable for Lindenmayer 
systems, the systems themselves being developmental models. The simplest L sys-
tem, namely the DOL system, has been thoroughly investigated, [7]. A DOL system 
generates a sequence of words. When it is augmented with a trigger for complemen-
tarity transitions, as described above, the resulting sequences contain no bad words. 
The study of such "Watson-Crick DOL systems" was begun in [4] and [5], and will 
be continued in the present paper. The present paper is largely self-contained. 
In particular, no knowledge of [4] and [5] is required on the part of the reader. 
For more information about formal languages, L systems or DNA computing, the 
references [10], [7] or [6], respectively, may be consulted. 

The formal definitions will be given below. An important remark should be 
made already at this stage. So far we have spoken only of the four-letter DNA 
alphabet but in our theoretical considerations below the size of the alphabet will 
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be arbitrary. Indeed, we will consider DNA-like alphabets 

£ n = {a1 ; . . . , a„, ai, . . . , a „ } (n > 2) 

and refer to the letters ai and ai, i — 1, ..., n, as complementary. The endomor-
phism hw of £* defined by 

hwifli) = ai, hw{a.i) = ai, i = 1, ..., n, 

is also now referred to as the Watson-Crick morphism. When we view the original 
DNA alphabet in this way, the association of letters is as follows: 

ai = A, a-2 = G, ai = T, a-2 = C. 

(Observe that this conforms with the two definitions of hw •) The nucleotides A and 
G are purines, whereas T and C are pyrimidines. This terminology is extended to 
concern DNA-like alphabets: the non-barred letters ai, . . . , an are called purines, 
and the barred letters ai, . . . , an are called pyrimidines. The class of bad words, 
considered most frequently in the sequel, consists of words where the pyrimidines 
form a majority. 

In spite of their formal simplicity, Watson-Crick DOL systems have quite re-
markable properties. This observation made already in [4] and [5] will be further 
substantiated in this paper. In particular, we will be concerned with basic decision 
problems. The following decision problem turns out to be very significant. 

Problem Zpos. Decide whether or not a negative number appears in a given 
Z-rational sequence of integers. 

The decidability status of Zpos is open, although the problem is generally be-
lieved to be decidable. The input is of course assumed to be given by some effective 
means such a linear recurrence with integer coefficients, or a square matrix M with 
integer entries such that the sequence is read from the upper right corners of the 
powers Ml, i = 1 , 2 , 3 , . . . . Further discussion about this problem and its different 
representations can be found in [3] and [7]. 

Ordinary DOL systems have been widely investigated and their properties are 
fairly well understood, whereas rather little is known about Watson-Crick DOL 
systems. It was already observed in [5] that graphs associated to them, as well 
as certain paths in such graphs, are very useful for studying the systems. Such 
"Watson-Crick walks and roads" will be investigated in this paper from a more 
general point of view. 

2 Graphs associated to DOL systems 
We will use standard language-theoretic notation. In particular, A is the empty 
word, |w| is the length of the word w, and \w\a (resp. |W|e) is the number of 
occurrences of a (resp. letters of £ ) in w. The minimal alphabet of a word w is 
denoted by alph(w). 
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An equivalence relation = on £* is called a morphic equivalence if it preserves 
all endomorphisms of £*, that is, whenever h is an endomorphism of £* and x = y 
then also h(x) = h(y). Typical examples of morphic equivalences are: 

(i) alph(x) = alph(y), 

(ii) x and y are powers of the same primitive root, 

(iii) x and y have the same Parikh vector. 

Of (i)-(iii), only (i) is of finite index. Note also that the equivalence defined by 
\x\ = |?/| is not morphic. 

A DOL system is a triple G = (S,g,wo), where £ is an alphabet, w0 £ £* 
(the axiom) and g is an endomorphism of £*. (In the sequel g is often defined in 
terms of productions, indicating the image of each letter.) A DOL system defines 
the sequence S(G) of words un, i > 0, where un+1 = g(wi), for all i > 0. It defines 
also the language L(G), consisting of all words in S(G), the length sequence \u>i\, 
i > 0, as well as the growth function f(i) — \wi\. 

Given a DOL system G = (£, g, wo) and a morphic equivalence = on £*, the 
associated graph H(G, = ) is defined as follows. As a preparation for the sequel, we 
give this simple definition inductively, denoting the equivalence class of a word w 
by [i/;]. First the initial node of H, labeled by the equivalence class [wo], is created. 
Whenever a node labeled by [wj] has been created but no node labeled by [g(wL)} 
has been created, then the latter node is created and an arrow labeled by 0 is drawn 
from the former to the latter node. If the node labeled by the equivalence class 
[(/(wj)] has already been created and denoted by, say, [wj] then an arrow labeled 
by 0 is drawn from the node [iUj] to the node [w^]. 

Thus, all arrows (edges) in the (di)graph H are labeled by 0. (This is because 
H is a special case of the definition in the next section, where two labels are needed 
for the arrows.) The graph H is infinite if all words in S(G) belong to different 
equivalence classes of =. Starting from the initial node, an i-step walk (path) ends 
at a node labeled by the equivalence class [«;,], where wi is the ith word in the 
sequence S(G). If = is of finite index, the digraph H is finite and can be separated 
into an "initial mess" and a "loop" in the customary fashion. This fact can also be 
expressed as the following theorem. 

Theorem 2.1 Let G be a DOL system and = a morphic equivalence (with the same 
alphabet) of finite index. Then the equivalence classes represented by the words in 
S(G) form an ultimately periodic sequence. 

Proof. The claim follows by the construction of the graph H. Since = is 
of finite index, some word in the sequence S(G), say Wi = g(wi- i ) , represents an 
equivalence class already represented by wj, for some j < i. If i has its smallest 
possible value, the words wo, . . . , represent equivalence classes in the "initial 
mess" and the words Wj, . . . , W{ equivalence classes in the "loop" of the ultimately 
periodic sequence. • 
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Theorem 2.1 is a general formulation of many known periodicity results concern-
ing DOL sequences. For instance, the alphabets alph(wi) and prefixes or suffices of 
fixed lengths form ultimately periodic sequences, [7]. Such results are immediate 
corollaries of Theorem 2.1. 

Observe that the graph H may be finite although = is of infinite index. For 
instance, assume that x = y iff x and y are powers of the same primitive root 
and that the DOL system G is determined by the axiom ab and produtions a 
aba, b —» a. Then the graph H(G,=) consists of only one node because all words 
in the sequence S(G) are powers of the word ab. 

Assume now that the alphabet E of the given DOL system G = (E, g, wo) 
actually is a DNA-like alphabet, E = E„, and that the Watson-Crick morphism 
hw is defined as in Section 1. (Observe that some letters of £ n might not occur in 
5(G).) Then we define the Watson-Crick graph Hw{G,=) associated to G and a 
morphic equivalence = as follows. We are now dealing with two morphisms: g and 
the composition hwg (meaning that first g, then hw is applied). The edge labels 
0 and 1, respectively, are associated to these morphisms, respectively. 

To construct Hw(G,=), we again first create the initial node labeled by [i/;o]-
Assume that a node labeled by [w] has already been created and no node labeled 
by [$(«;)] (resp. [/ivy^(«;)]) has been created, then the latter node is created and 
an arrow labeled by 0 (resp. by 1) is drawn from the node [w] to the newly created 
node. If a node labeled by [<?(w)] (resp.[/iw0(w)]) has been created and denoted 
by, say, [u/] (resp. [w"]) then an arrow labeled by 0 (resp. by 1) is drawn from the 
node [w] to [w'] (resp. to [«/']). 

Thus, Hw is a (possibly infinite) (di)graph, where exactly two arrows emanate 
from each node. A sufficient but not necessary condition for the fimteness of Hw is 
that the morphic equivalence = is of finite index. The smallest possible graph Hw 
consists of a single node [uio] with two arrows, labeled by 0 and 1, emanating from 
and going into [u>o]- This situation arises, for instance, if x = y is defined by the 
condition alph(x) = alph(y), and every letter of E occurs in every word of S(G). 
(It is easy to verify that in such a case an application of hwg never leads to smaller 
alphabets.) This smallest possible graph Hw(G,=) is referred to as trivial. 

A walk W in the graph Hw{G, = ) is any finite path beginning from the initial 
node. Walks in graphs H(G, = ) can be described (equivalently) either by the 
sequence of nodes or by the sequence of edges because there is only one possibility 
at each node. In graphs Hw(G, = ) there are two possibilities, perhaps both leading 
to the same node (as is the case, for instance, with the trivial graph). Consequently, 
walks in Hw must be described by listing the sequence of edges visited. In this 
fashion, we get a one-to-one correspondence between walks in Hw and words over 
the binary alphabet {0, 1}. 

Many types of questions can be asked concerning the notions introduced in this 
paper - we will focus on some decision problems. Therefore, the following general 
observation is significant. Consider decision problems (for instance, the emptiness 
problem) involving languages of the form LnK, where L is a DOL language and K is 
in one of the classes of the Chomsky hierarchy. Such problems are usually decidable 
(resp. undecidable) if K ranges over regular (resp. context-sensitive) languages. 
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If K ranges over context-free languages, the decidability is often hard to settle, 
although intuitively the problem might seem to be decidable. Such problems are 
often algorithmically equivalent to the problem Zpos. 

3 Watson-Crick DOL systems 
Consider again a DNA-like alphabet £ n and the Watson-Crick morphism hw- A 
trigger TR is any recursive subset of £* satisfying the following condition: whenever 
x is in TR, then hw{is in the complement of TR, that is, in £* — TR. 

According to our terminology in the Introduction, TR consists of "bad" strings. 
The restriction imposed on TR is our soundness condition: no "bad" strings result 
if emerging "bad" words are always replaced by their complementary ones. We now 
come to our central definitions. 

A Watson-Crick DOL system is a construct 

Gw = {G, TR), 

where G = (£n, g, wo) 15 a DOL system, TR is a trigger and wo G £* — TR. The 
sequence S(Gw), consisting of words Wi, i = 0, 1, . . . , is defined by the condition 

_ i hw(g(wi)) if g(wi) G TR, 
W l + 1 \ g(wi) otherwise, 

for all i > 0. The language, length sequence and growth function of Gw are defined 
for S(Gw) as for ordinary DOL systems. 

The Watson-Crick graph Hw{Gw, =) associated to a Watson-Crick DOL 
system Gw = (G,TR) and morphic equivalence = equals, by definition, the 
Watson-Crick graph Hw(G,=). (Thus, Hw(Gw, = ) is independent of the trig-
ger.) A Watson-Crick walk WW(Gw, = ) associated to Gw and = is the walk in 
Hw{Gw, = ) determined by the binary word ui...uk such that, for 1 < i < k, 
Ui = 0 (resp. Ui = 1) if Wi = ff(iui-i) (resp. w{ = hw{g{wi-i))) in S(Gw)-

Thus, the binary word Ui . . .Uk, determining the sequence of edges visited, is 
actually independent of the equivalence =. If we are only interested in the sequence 
of edges, we may speak of the Watson-Crick walk of Gw, without specifying the 
equivalence. The latter becomes important if we are interested in the sequence of 
nodes visited. Observe that, viewed as a sequence of edges, the Watson-Crick walk 
in the trivial graph can be quite complicated. This is exemplified in Theorem 3.3 
below. The next theorem follows directly from the definitions. 

Theorem 3.1 Viewed as binary words, all Watson-Crick walks WW (Gw, =) arc 
prefixes of the same infinite (binary) word WW(Gw)• Thus, each Watson-Crick 
walk of Gw is completely determined by its length. • 

The infinite word WW(Gw) is called the Watson-Crick road of Gw- Two 
Watson-Crick DOL systems are called road equivalent if they have the same Watson-
Crick road. A Watson-Crick DOL system Gw is called stable if its Watson-Crick 
road equals 0W (that is, the infinite word consisting of 0s). 
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Thus, the Watson-Crick road completely characterizes the complementarity 
transitions: letters 1 occur in positions such that a transition takes place at the 
corresponding step. A system being stable means that no complementarity transi-
tions occur, that is, the sequence is obtained as in an ordinary DOL system. The 
stability problem is basic in the study of Watson-Crick DOL systems. In general, 
the problem is undecidable. We have the following more specific results. 

Theorem 3.2 The stability problem is decidable for Watson-Crick DOL systems 
with regular trigger but undecidable for systems with context-sensitive triggers. 

Proof. A Watson-Crick DOL system Gw = (G, TR) is stable iff the intersec-
tion L(G) fl TR is empty, where L(G) is the language of G, viewed as an ordinary 
DOL system. But the emptiness of such an intersection is decidable (resp. unde-
cidable) for regular (resp. context-sensitive) triggers TR, see [7] (resp. [2]). • 

We now show that Watson-Crick roads can be arbitrarily complex, even if at-
tention is restricted to systems whose Watson-Crick graph is trivial. Let ip be a 
recursive function mapping the set of positive integers into {0, 1}. We denote by 
uv the infinite binary word whose ith letter equals 1 exactly in case ip(i) = 1, for 
all i > 1. 

Theorem 3.3 For every recursive function cp, a Watson-Crick DOL system whose 
Watson-Crick road equals uv can be effectively constructed. Moreover, the items 
involved can always be chosen in such a way that the morphic equivalence is defined 
by the relation alph(x) = alph(y) and that the associated Watson-Crick graph is 
trivial. 

Proof. Given ip, we construct a Watson-Crick DOL system Gw = (G, TR) as 
follows. The alphabet of the DOL system G is S2 = {a 1 ; a2, ai, a2}. We prefer 
to write S 2 as the original DNA alphabet {A, T, C, G} in the way indicated in 
Section 1 (trusting that the slight notational ambiguity causes no confusion). The 
axiom of the system is ACGT, and the morphism g is defined by the rules 

A A, C - > C 2 , G G2, T - > T . 

The morphic equivalence is defined by the condition: x = y iff alph(x) = alph(y). 
Then (independently of TR which we have not yet defined) the Watson-Crick graph 
Hw(Gw, = ) is trivial. This follows because each word in the sequence S(Gw) 
equals either wi(i) = AC2'G2'T or w2(i) = TG2'C2' A, for some i. 

We now define the trigger by 

TR={Wl(i), w2(i)\i e </>-1(l)}. 

Clearly, TR is recursive. It is also easy to verify that this construction satisfies the 
theorem. • 
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A very natural trigger (and the only one considered in [5]) is the set of words, 
where the pyramidines (barred letters) are in strict majority. Thus, we denote 
Ep y r = {¿¿i, . . . , a n ) and consider the language 

Clearly, PYR satisfies the soundness condition. Watson-Crick DOL systems 
(G, PYR) will be referred to as standard. Consequently, for a standard system 
Gw, in every word of S(Gw) there are at least as many purines as pyrimidines. 

Observe that PYR and its complement are context-free nonregular languages. 
Thus, considering Theorem 3.2, we are closer to the borderline between decidability 
and undecidability. Indeed, the following result was established in [5]. 

Theorem 3.4 The stability problem for standard Watson-Crick DOL systems is 
algorithmically equivalent to the problem Zpos. • 

An infinite binary word is referred to as ultimately periodic if it is of the form 
uvu, where u £ {0, 1}* and » e (0, 1 } + . The trigger used in the general result 
Theorem 3.3 is very complicated. However, all ultimately periodic roads can be 
realized with simpler triggers. 

Theorem 3.5 Every ultimately periodic Watson-Crick road can be expressed in 
the form WVV(GW) where Gw. is standard (resp. Gw has a finite trigger). 

Proof. Assume uvu is the given word, where 

u = b1...bk, v = bk+1...bl, k> 0, l>k + 1, bj e {0, 1}. 

We construct a Watson-Crick DOL system Gw = (G, TR). The alphabet of G 
equals {<2o, • • •, ai, «o, • • •, a,i}, the axiom is ao and the morphism is defined by 
the productions 

a-j —¥ aj-|-i or aj —¥ aj+1, depending whether bj+i — 0 or bj+\ = 1, 
0 < j < I - l ; 
ai -t a,t+i or a; ak+1, depending whether bk+1 = 0 or = 1; 
aj —> a,j, 0 < j < I. 

If we now choose TR = PYR or TR = { ¿ i , . . . , a;}, the resulting system Gw 
has the Watson-Crick road uvw. • 

For any Watson-Crick DOL system Gw and any morphic equivalence = , every 
node in the graph Hw{Gw, =) is reachable in the sense that there is a walk 
ending with that node. This follows by the construction of Hw• However, the 
Watson-Crick road of Gw does not necessarily pass through all nodes of Gw-By 
the reachability problem we understand the problem of deciding, given Gw, = and 
a node N in Hw, whether or not the Watson-Crick road of Gw passes through N. 
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In this context we assume that the morphic equivalence is defined by the condition 
alph(x) = alph(g), implying that Hw is finite. Examples can be given of cases, 
where N actually is reachable but the shortest prefix of the Watson-Crick road of 
Gw ending with N is very long (for instance, in terms of the number of nodes of 
Hw)- This is natural, in view of the following theorem. 

Theorem 3.6 The reachability problem, is undecidable. For standard Watson-
Crick DOL systems Gw, any algorithm for solving the reachability problem can 
be converted into an algorithm for solving the problem Zpos. 

Proof. The second sentence has been established in [5]. To prove the first 
sentence, we show that the decidability of the problem would imply the decidability 
of the emptiness problem for languages L(G) f)K, where K is context-sensitive and 
G is a DOL system. However, the latter problem is known to be undecidable. 

Given K and G over the alphabet £ = {ai, . . . , a„ } , we construct a Watson-
Crick DOL system Gw — (G', K). (Without loss of generality, we assume that 
the language K does not contain A.) The DOL system G' is almost the same 
as G; we only extend the alphabet £ to the DNA-like alphabet £ „ and add the 
productions a-i —» ai, 1 < i < n. Clearly, K satisfies the soundness condition for 
triggers because, for x £ K, hw{x) consists of pyramidines and K contains no such 
words. 

Two possibilities arise. If L(G) (1 K = <j> then S{Gw) — S(G) because no 
complementarity transition takes place. If L(G) f~l K ^ <j> and Wi is the first word 
in S(G) belonging to K (we may assume that Wi is not the axiom), then S(Gw) 
coincides with S(G) up to Wi-i, after which S(Gw) consists of only repetitions 
of Wi- Because of our agreement concerning the morphic equivalence, the latter 
alternative occurs exactly in case the Watson-Crick road of Gw passes through 
some node in Hw labeled by pyramidines. This is a question we can settle if we 
can decide the reachability problem. • 

We conclude this section with an example of a standard Watson-Crick DOL 
system Gw, due originally to [4]. The alphabet of Gw is £3, the axiom is 0,10,203, 
and the productions are 

ai —>• ai, a-2 —> o2, a3 03, ai —> aia2, a2 -4 a2, a3 —» S3. 

The graph Hw(Gw, = ) where = is again defined as in Theorem 3.6, consists of 
two nodes: the initial node N1 labeled by {ai , a2 , <23}, and the node N2 labeled 
by {ai , a2, a 3 } . The arrows labeled by 0 preserve both nodes, whereas the arrows 
labeled by 1 interchange them. The Watson-Crick road of Gw begins with the 
word 1011051101711. In general, there is an exponentially growing sequence of Os 
between words 11. Explicitly, after the first position the bit 1 occurs exactly in 
positions 3 i + 1 + i and 3 l + 1 + i + 1, for all i > 0. It is interesting to note that only 
three of the four arrows of Hw are used on the Watson-Crick road; the arrow from 
N\ to itself is never used. The example shows the validity of the following theorem. 

Theorem 3.7 The Watson-Crick road of a standard system is not necessarily ul-
timately periodic. • 
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Theorem 3.7 should be contrasted to the many results about context-free lan-
guage showing ultimate periodicity; recall that the trigger in a standard system is 
context-free. 

The growth function of the system Gw fluctuates between a linear function 
(due to the productions ai —> aia2, a2 —> 0.2) and an exponential function (due to 
a3 —>03). Such a fluctuation is not possible for DOL growth functions. Indeed, it 
is shown in [4] that the growth function of Gw is not Z-rational. The system Gw 
is the smallest standard system with these properties (strange growth function and 
nonperiodicity) we have been able to find. It would be interesting to have similar 
examples with the original DNA alphabet or, equivalently, £2. 

4 Equivalence problems 
The decidability of various equivalence problems constitutes a central chapter in 
the history of L systems, see [7]. We use here the standard terminology. Thus, the 
sequence (resp. growth) equivalence problem for DOL systems consists of deciding 
of two given DOL systems whether or not they generate the same sequence (resp. 
growth function). For DOL systems, the decidability of the growth equivalence 
problem was settled first. It was also shown quite early, that the decidability of the 
sequence equivalence implies the decidability of the language equivalence and vice 
versa, whereas the decidability itself remained as a celebrated open problem, until 
it was finally settled in the late 70s, see [7]. 

Clearly, the sequence, language and growth equivalence problems can be formu-
lated for Watson-Crick DOL systems exactly as for ordinary DOL systems. In 
addition, we have the very natural road equivalence problem for Watson-Crick DOL 
systems: given two systems, decide whether or not they define the same Watson-
Crick road. Thus, the road equivalence of two Watson-Crick DOL systems means 
only that the complementarity transitions occur in the two sequences at the same 
steps; the two sequences themselves can be very different. For instance, two stable 
systems are always road equivalent. 

Thus, road equivalence does not imply sequence, language or growth equiv-
alence. On the other hand, sequence equivalence (which implies language and 
growth equivalence) does not imply road equivalence. For instance, consider two 
standard Watson-Crick DOL systems G\ and G2 over the DNA alphabet. The 
axiom of both systems is AG. The productions in G\ are 

A^T, G C, C-^C2, T -> T 2 , 

whereas in G2 they are 

A - > A , G ^ G , C ^ C 3 , T - > T 3 . 

Then S(Gx) = S(G2) but G\ and G2 are not road equivalent. In fact, the Watson-
Crick roads of Gi and G2 are lw and 0", respectively. (Observe that it is irrelevant 
in both systems how we choose the productions for C and T.) 
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It is also possible that two systems are sequence equivalent when viewed as 
ordinary DOL systems but not as Watson-Crick DOL systems, and vice versa. We 
have seen that the above systems Gi and G2 are sequence equivalent when viewed 
as standard (implying that TR = PYR) Watson-Crick DOL systems. They are 
clearly not sequence equivalent when viewed as ordinary DOL systems: after the 
axiom the two sequences differ at every step, and even the word lengths differ from 
the third word on. On the other hand, consider two systems G3 and G4 with the 
axiom A, where the productions in G3 are 

A-+CTC, C-^CTC, T A, G - > G 3 , 

and those in G4 are 

A CTC, C^C, T-^TCCT, G - > G 4 . 

Viewed as ordinary DOL systems, G3 and G4 are sequence equivalent. Indeed, 
5(G 3 ) = S(G4 ) begins with A, followed by the words {CTC)2', i > 0. If G3 is 
viewed as a standard Watson-Crick DOL system, the sequence S(G3) consists of 
the words 

A, GAG, G3CTCG3, G3'+1 (CTC)2'G3'+1, i > 1. 

If G4 is viewed similarly, the sequence S(G4) consists of the words 

A, GAG, G 4 CTCG 4 , G 4 i + 1 (GTG) 2 i G 4 i + 1 , t > 1. 

Consequently, G3 and G4 are not sequence equivalent. Observe, however, that G3 
and G4 are road equivalent: both define the Watson- Crick road 10w. 

The above examples serve the purpose of illustrating the great variety of prob-
lems of new types brought forward by the different notions of equivalence. Indeed, 
some challenging decision problems in this area remain open. According to the 
general observation made at the end of Section 2, it is to be expected that equiv-
alence problems involving arbitrary (resp. regular) triggers are undecidable (resp. 
decidable). The case of arbitrary (context-sensitive) triggers will be dealt with in 
Theorem 4.1, whereas we hope to return to regular triggers in a forthcoming paper. 
Equivalence problems involving context-free triggers (as is the case with standard 
systems) are very challenging. Intuitively, the problems seem to be decidable. But, 
as shown in Theorem 4.2, they are at least as hard as the problem Zpos. 

Theorem 4.1 The road, growth, sequence and language equivalence problems are 
all undecidable for Watson-Crick DOL systems with context-sensitive triggers. 

Proof. We use again the undecidability of the emptiness of the intersection 
L(G) D K, where G is an ordinary DOL system and K is a context-sensitive lan-
guage. Indeed, the argument is similar to the one used in the proof of Theorem 
3.6. 

Assume that we are given a DOL system G and a context-sensitive language K 
over the alphabet E. Without loss of generality, we assume that L(G) is infinite 
and that the axiom of G is not in K. We can also find a word u G £ + not in L(G). 
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We now construct two Watson-Crick DOL systems G' and G" by taking the 
axiom of G, extending the alphabet £ to a DNA-like alphabet £ n by adding to £ 
the barred version a of each letter a and, finally, by adding to G all productions 
a —• a. where a 6 E. The systems G'and G" are identical except that G' has the 
trigger {u} , whereas K is the trigger of G". 

It is now easy to verify, exactly as in the proof of Theorem 3.6, that G'and G" 
are road, growth, sequence or language equivalent exactly in case L(G) C\ K = 4>. 
Indeed, the Watson-Crick road of G' equals 0" , and the growth function, sequence 
and language of G' coincide with that of G. Each of these statements holds for G" 
exactly in case G" is stable, that is, L(G) fl K = 4>. (Our assumption concerning 
the infinity of L(G) is needed to justify this conclusion for growth functions.) • 

Theorem 4.2 Any algorithm for solving the road, growth, sequence or language 
equivalence problem for standard Watson-Crick DOL systems can be converted into 
an algorithm for solving the problem Zpos. 

Proof. By Theorem 3.4, it suffices to show that an algorithm for solving any 
of the four equivalence problems for standard Watson-Crick DOL systems can be 
converted into an algorithm for solving the stability of standard Watson-Crick DOL 
systems. 

Thus, we have to decide whether or not a given Watson-Crick DOL system 
Gw = {G, PYR) is stable, where G = (£„, g, w0) is a DOL system. Here £ n 

is a DNA-like alphabet and, thus, consists of 2n letters. We now extend £ n to a 
DNA-like alphabet E2n = En U E„, where En consists of barred versions of letters 
of £ n . (The new bars should not be confused with those appearing in letters of 
£ n . ) In connection with £2n , the letters of £ „ are considered pyrimidines and 
the set PYR C £?;„ is defined accordingly. Consider also the extension g' of g 
to £2«, where g'(a) = a for all a 6 £ n , and define the standard Watson-Crick 
DOL system G'w = (G1, PYR), where G' = (£2„, g', w0) and PYR is defined 
in connection with E2ti. Clearly, G'w is stable and defines the Watson-Crick road 
0'-"'. Consequently, Gw is stable exactly in case Gw and G'w are road, sequence or 
language equivalent. This means that an algorithm for deciding one of these three 
equivalence problems decides also the stability problem. 

The same conclusion cannot be made directly as regards the growth equiva-
lence problem: it is conceivable that Gw and G'w are growth equivalent although 
complementarity transitions take place in Gw- However, the proof of Theorem 3.4 
in [5] is easily modified to exclude this possibility. In this proof, the Z-rational 
sequence (given for the problem Zpos) was expressed as the difference of two DOL 
length sequences, generated by systems both having n letters. When the systems 
are run simultaneously and the letters of the original systems are viewed as purines 
and pyrimidines, the combined system is stable exactly in case the ^-rational se-
quence assumes never a negative value. We now consider two new letters an+1 
and a n + 2 , as well as their complementary ones an+\ and an+2. The axiom of the 
combined system is catenated with the word a'n+la%n+2, where the new letters have 
the productions an+1 —> aJn+l and o n + 2 —d 3 n + 2 . Here i and j are large enough 
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for the new letters to dominate the growth function of the combined system. (The 
new letters contribute the same number of purines and pyrimidines and, thus, do 
not affect membership in PYR.) The choice a n + 1 , an +2 —> now 
guarantees that a complementarity transition changes the growth function. • 

We do not know whether Theorem 4.2 holds in the reverse order, that is, whether 
an algorithm for solving the problem Zpos can be converted into an algorithm for 
solving the equivalence problems. 

5 Conclusion 
In Watson-Crick DOL systems one investigates a classical topic, Lindenmayer sys-
tems, from the new angle provided by the idea of complementarity in DNA com-
puting. In this paper we have focused our attention to the fundamental information 
brought forward by the associated Watson-Crick road. Many problems in this area 
are very challenging, especially because of their interconnection with some cele-
brated open problems. It would be a fascinating project to apply DNA computing 
itself towards the solution of these problems. 
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