
Acta Cybernetica 15 (2002) 601-620.

Standardized Event Pair Based Test Generation
Method Using TSS&TP

Zoltán Páp* ' Zoltán Rétháti* Róbert Horváth* and Gusztáv Adamis*

Abstract

In the software engineering test development takes significant resources.
A general method for the creation of appropriate test suites could solve the
problems of the often ad-hoc and time-consuming test generation process.
The recent method uses formal specifications to support systematic deriva-
tion of complete test suites. Prom the formal specification using a special ;

procedure a formalized document, the so-called Test Suite Structure (TSS)
and Test Pur-poses (TP) can be created. With the help of this document
developers can easily, automatically implement the test suites. The TSS&TP :
document also enables the persons who perform the tests to under-stand the
test criteria and the steps, even if they do not actually know the protocol,,
itself. We present a thorough picture of our test derivation method and show
its efficiency on the Wireless Transaction Protocol (WTP) of the Wireless
Application Protocol family (WAP). During our work in thé validation phase
we also found some operational flaws in the protocol specification.

K e y w o r d s : Test generation methods, Formal description, Test Purpose, Test Suite
Structure, Validation, WAP, W T P

1 Introduction
Conformance testing is the process for checking whether the dynamic behavior of
the already implemented protocol is in conformity with the standard. Thëre are
idealized requirements of conformance testing [1]. The test should cover the whole
protocol (check all the possible functional behaviors for different event sequences
- this is measured by the so-called coverage value which means what percentage
of the graph of .the extended state space of the automaton the test verifies). The
test should also check abnormal situations, observe reactions to improper events.
The test suite should be so created that the elements of it, i.e. the test cases,
could be executed separately. Meeting all these requirements is a big challenge.for
all participants of the telecommunication field. The standardization institutes, the

* Budapest University of Technology and Economics Department of Telecommunications and
Telematics H-1521 Budapest, Hungary, - '
e-mail: {pap, r é t h á t i , horvath, adamis}Sttt-atm.ttt .bme .hu

653

654 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

equipment manufacturers and service providers all could benefit from test genera-
tion methods that are standardized and easy to derive.

Usually highly qualified experienced engineers carry out the test generation
process. They write the tests directly in C or in formal test language, for example
in Tree and Tabular Combined Notation (TTCN), without any inner step directly
from the standard, which is mostly an informal textual description. This knowledge-
based, time consuming work leads to high costs, has lower reliability and is not
always complete. On the top of all that it begins with a long learning phase when
the developers have to get deeply acquainted with the new protocol. We call this
way of test creation the "traditional method" in this paper.

The other known way of test generation is the computer aided automatic method
[14][5]. This has also longer historical background, but until now there have been
no real public solutions or efficient algorithms to provide satisfactory coverage by
reasonable amount of test cases. The generated unstructured test suite is hard to
execute. These automatic methods require a full formal specification as input.

We worked out a special method for the test generation process of conformance
test cases that tries to mix the advantages of both previously mentioned methods.

The formal specification provides valuable information for the protocol, and
completely describes the behavior of the automata. In the course of our work we
implemented the WAP WTP [9][8] in a widely used formal description language,
in the Specification and Description Language (SDL). We created a test suite to it
starting from the SDL description and using our new method. We rationally built
up a test suite structure, in which the enhanced test purposes of systematically
divided and chosen elementary test cases are put. The enhanced test purposes con-
tain not only the textual description of the purpose of the test case, but also the
main information and properties of the test case in a regular form. The result of
this procedure is a regular and formal document that we call Test Suite Structure
(TSS) and Test Purposes (TP). This TSS&TP document contains the necessary in-
formation of the whole test suite. As each test purpose represents the description of
one test case, the TTCN, C, or other code representations can be implemented eas-
ily, automatically. We present the whole method on the WAP WTP, and compare
its properties to the traditional and computer aided solutions.

In the frame of this paper in the last chapter we note that in the model of WAP
WTP we found flaws, which could - under special circumstances - possibly cause
problems in the operation of the protocol [11].

2 Specification and Description Language
The Specification and Description Language (SDL)[12] is a formal language, which
is widely used for specifying especially telecommunications systems. The formal
description technique SDL is standardized by ITUT as Recommendation Z.100. In
general one can choose different approaches describing systems. SDL puts emphasis
on the behavior of these entities including data flow. Other fields of describing
systems are out of the scope of the language. The development of SDL started in

Standardized Event Pair Based Test Generation Method Using TS S & TP 655

1972 after observing the requirements of describing different complex systems. The
first version was released in 1976, and new versions followed in each four years. One
of the strengths of SDL is that it is a well-accepted world standard. It is supported
by the ITU-T (CCITT) and ISO, thus it can be used independently of the different
companies.

The typical properties of systems that can be effectively described in SDL are:

• The types of the systems observed can be real time or interactive

• The domain of the observation can be observation of behavior or observation
of architecture.

• Level of abstraction can range from overview to details.

The preciseness of the SDL description makes possible to compile the descrip-
tion to other lower level languages such as JAVA or C. This process can be fully
automated, so it is possible to decrease the time needed for developing systems and
it is also possible to guarantee the correct behavior. And the SDL diagrams fully
comply with the documentation and make it possible to maintain and develop the
system easily.

2.1 The SDL system
The main object in the SDL abstraction is called system. This is the formal model
of an existing or planned real system. Everything not belonging to the system is
called environment. System can be open or closed (it depends on whether it has
connection with its environment). Such a system is a collection of SDL processes
which communicate asynchronously by exchanging messages. The reception of a
message may force a process to change its state. During such a state transition, the
SDL process may send new messages and/or perform operations on local variables.
SDL processes are combined to (sub)systems by means of block diagrams. In a
block diagram, the process specifications are referenced and the communication
links among the processes and between the processes and the system environment
are defined. All of the processes have their own memory for storing their own
variables and state information, and all of them contain a FIFO buffer of infinite
length, called queue, for the incoming signals. The process reads the signals from
this queue on order of coming (this does not apply to priority signals). The process
takes the signal in the first position in the queue, if the process has a predefined
behavior for the signal, then it reacts accordingly, otherwise the process ignores the
signal and moves on to the next one.

3 The WAP WTP
3.1 The WAP
The Wireless Application Protocol is set of protocols that operate over wireless
communication networks. These protocols are designed for wireless devices such

656 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

as mobile telephones, pagers, and personal digital assistants. The specifications
extend mobile networking technologies (such as digital data networking standards)
and Internet technologies (such as XML, URLs, scripting, and various content
formats).

The WAP consists of layers that more or less correspond to the OSI layers.
Each of the layers of the architecture provides services for the layers above. The
WAP architecture can be seen in Figurel.

Applicatipn Layer (WAE)

III l ^ n l ' t i

Other Services and
Applications

Session Layer (WSP)

Transaction Layar (WTP)

Security Layer (WTLS)

B oarers:

GSM 1S-136 COMA PHS COPO PDC-P «DEN FLEX Etc...

Figure 1: The WAP Architecture

3.2 The W T P
WTP is the transaction protocol of WAP. During a browsing session, the client
requests information from a server, which may be fixed or mobile, and the server
responds with the information. The objective of the protocol is to reliably deliver
the transaction while balancing the amount of reliability required for the application
with the cost of delivering the reliability. WTP runs above a datagram service and
optionally a security service. The main features of the protocols are:

• Improved reliability over datagram services. WTP relieves the upper layer
from re-transmissions and acknowledgements, which are necessary if data-
gram services are used.

• Improved efficiency over connection oriented services. WTP has no explicit
connection set up.

• WTP is message oriented and designed for services oriented towards transac-
tions, such as "browsing".

Standardized Event Pair Based Test Generation Method Using TS S & TP 657

The WTP operates efficiently over secure or non-secure wireless datagram net-
works. There are three classes of transaction service:

• Class 0: unreliable invoke message with no result message (unreliable one-way
requests),

• Class 1: reliable invoke message with no result message (reliable one-way
requests),

• Class 2: reliable invoke message with exactly one reliable result message
(reliable two-way request-reply).

Reliability is achieved through the use of unique transaction identifiers, acknowl-
edgements and duplicate removal. This is more effective because explicit connection
open and close makes extra load on the communication link. There is an optional
user-to-user reliability: the WTP user confirms every received message. Also op-
tional is that the last acknowledgement of the transaction may contain out of band
information related to the transaction. For example, performance measurements.
Concatenation may be used, where applicable, to convey multiple Protocol Data
Units in one Service Data Unit of the datagram transport. The message orientation
means that the basic unit of interchange is an entire message and not a stream of
bytes. The transactions can be invoked at any time when needed. The protocol
provides mechanisms to minimize the number of transactions being replayed as the
result of duplicate packets. In case of not proper events an abort message is created
and the transaction is aborted. The abort message can be sent initiated from the
WTP users or initiated from the WTP providers in case of improper behavior. For
reliable invoke messages, both success and failure is reported. The Responder sends
back the result as the data becomes available.

4 The test generation process
During the development of a conformance test suite to a protocol several questions
are arising already at the very beginning [10]. Different concepts issue in different
answers. The following decisions have to be met by the test developers:

• What are the test purposes? "To analyze the right and the false behavior"
theoretical purpose has to be translated into unambiguous, well-located con-
crete tasks. Bigger tests or "micro test cases"?

• What are the formal limits of the test cases? How to choose them, how to
match them to the original test purposes? Each test case corresponds to one
test purpose? Long test cases? Shorter ones?

• How to guarantee the satisfactory coverage?

• How to collect these tests into groups to support the efficient searching and
overview? Storing them without any ordering in stack? Do we . check the
reaction to not proper events with test cases called invalid and inopportune
test cases?

658 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

Of course there are the project limits: time, human and technical resources.
Even a small difference of the answers at any of these points results in a com-

pletely different test suite. As there are no central rules to have standardized tests,
the test suites even for the same protocol can be completely different at different
manufacturers. Later, during the interoperability tests, when the co-operation of
different, implementations is checked, several difficulties may come up. If there
were any test or test generation procedure developed showing good performance
in these fields and being recommended by a central organization, all market ac-
tors would benefit from it, and the R&D, installation and supervision costs would
reduce significantly.

4.1 Computer Aided Test Generation
For some problems CATG [2] could give a solution. The time and human resource
need seems to fall down to zero, and theoretically very high coverage can be reached
"without work".

The experience shows a more pessimistic picture of the CATG concept [13] [6].
First it can not miss the developers' active participation: the input of any test
generator program has to be a formal unambiguous specification implemented in
any computer language that can be processed by the program. This takes much
time, and the time gain reached by CATG can not be as great as it seems to be at
first sight. Moreover, creating input specification for a program needs much effort
and attention, any small mistakes may lead to program errors or erroneous work.
It is very hard to analyze codes generated using CATG, so the faults usually turn
out only later in real life usage.

The bigger problem is the question of selecting the algorithm to be used. The
NP-complete problem of state space exploration of a Communicating Extended Fi-
nite State Machine (CEFSM) makes it impossible to completely solve the computer
aided test generation. The number of the generated test cases is not linearly pro-
portional to the coverage level, as it gets close to a high percentage, and the ratio
of pointless test cases increases. State space exploration algorithms derive the test
cases, therefore, depending on the algorithm, two neighbor test cases may come
from totally different areas of the state space. They have different length, there are
no formal rules, many test cases are parts of other ones, etc.

And to top it all, the whole test suite is in an unstructured stack, and the
overview or the execution of subsets according to separable protocol functions is
almost impossible. There is also no solution for the proper and reasonable handling
of inopportune and invalid test cases.

4.2 Atomic - event pair - test case generation through Test
Suite Structure and Test Purposes

Both the traditional and the computer aided ways of test creation have strengths
and weaknesses. The traditional method has the advantage of a limited set of proper
and easily executable test suite, the CATG methods shorten the development time,

Standardized Event Pair Based Test Generation Method Using TS S & T P 659

etc. We developed a method that takes the advantages and avoids the disadvantages
of both older ones [11]. The goal was to develop a systematic way of test generation
that has at least average performance in every test suite properties. In order of the
points the answers in the test generation process are:

• Each test case has to verify one transition of the SDL diagram. Often, an
event pair can be observed by the tester, an input and an output, so we call
a single, atomic transition test case an event pair test case.

• The formal appearance and the derivation algorithm have to be common for
all test cases. Each test purpose corresponds to one test case, and describes
all the necessary information.

• Systematically exploring the whole SDL diagram all the "transition ele-
ments", all the event pair test cases can be created. From these elements
satisfactory big test suite size can be built up, so the coverage level can meet
high requirements. There are no senseless test cases, and no redundancy.

• We collect these test cases during the derivation process into test groups. The
test groups identify separable functionality. The groups and the naming con-
ventions support the easy overview and maintenance. We also create invalid
and inopportune tests.

We start from a CEFSM, e.g. an SDL specification, which has to contain all the
possible events and the whole automata. In contrast to the CATG method in this
case the SDL diagram can have informal parts, the aim is to contain the "driver
information"- the information needed to understand the functioning of the system.

To develop the whole test, the Abstract Test Suite (ATS) for a system, instead of
the traditional, "directly-from-the-standard" method there are three smaller basic
steps to be made. The first is to identify the test groups of the Test Suite Structure
(TSS). The second is to write down the actual test cases concentrating on the
test purposes - to completely define the TSS. We found a systematic procedure to
derive the test cases. The last task is to implement the test cases (C code or TTCN
tables), and it is almost automatic. Summary: this method consists of smaller, well
localized and described tasks automated in many terms. It can be carried out with
more efficiency and with less human competence, working experience and protocol
behavior information. There are rules for the derivation process and formalisms
that make the standardization of this method possible.

4.3 Identifying test groups
When defining the outline of the structure of the system we divide the test cases
into basic groups. The question is whether a protocol parameter or variable is a
test group identifier. The parameters that are set at the beginning of the test and
do not change value during the test (e.g. the class identifier in a test of a classX
transaction of the WTP) can be test group identifiers. During the execution of the

660 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

tests, test groups are usually run together to exhaustively test a given functionality.
This is the reason to keep them in a common group.

The basic groups differ the communicating parts (e.g. Client - Server, Initiator
- Responder). These groups contain the test of the parts separately, once only tests
from one group have to be executed.

The different service groups are the next subgroup in the test suite. Further
subgroups are formed based on other relevant features, e.g. optional services.

There are always four different standard test groups at the leaves of the test
group tree of the test suite structure hierarchy.

• CA - Capability Tests. The test subgroup provides limited test of the major
capabilities of the Implementation Under Test (IUT) aiming to assure that the
claimed capabilities are correctly supported, in accordance with the Protocol
Implementation Conformance Statement.

• BV - Valid behavior tests. The subgroup verifies that the IUT reacts in
conformity with the standard, on receipt or exchange of a valid Protocol
Data Unit (PDU). Valid PDU means that the exchange of messages and the
content of the exchanged messages are considered as valid.

• BI - Invalid behavior tests. The subgroup verifies that the IUT is in confor-
mity with the standard, on receipt of a syntactically invalid PDU.

• BO - Inopportune behavior tests. The test subgroup verifies that the IUT is
capable of a valid reaction, when an inopportune protocol event occurs. Such
an event is syntactically correct but it occurs when it is not expected.

Presentation of this step of the procedure on the WTP:
The basic groups distinguish the Initiator from the Responder side. The differ-

ent transaction classes are the next subgroups (there are three services in WTP,
the Class 0, 1 and 2 transaction classes). User acknowledgement is another distinct
feature in the WTP. This feature is mandatory and is very important for the user
applications. This is why we chose the user acknowledgement as a subgroup of our
system. The test group tree of the WTP is shown in Figure 2.

4.4 Defining the Test Suite Structure
After completing the test groups the next step is to create test cases and to add
them to the corresponding group. While defining the test purposes, the essential
information has to be extracted from the specification. The transitions consist of
four main parts:

1. Event - specifying the incoming signals.

2. Condition - that must hold to execute the Action - can also be zero Condition.

3. Action - this is to be done if both the appropriate signal arrives and the
Condition holds. Tasks and output signals.

4. Next State - this is the state in which the transition leads the system.

Standardized Event Pair Based Test Generation Method Using TS S & TP 661

WTP INIT CLD
CL1 NOJJACK

UACK

CA, BV, BI, BO
CA, BV, BI, BO
CA, BV, BI, BO

CL2 NOJJACK
UACK

CA, BV, BI, BO
CA, BV, BI, BO

. RESP CLO
CL1 . NO_UACK

.UACK

CA, BV, BI, BO
CA, BV, BI, BO
CA, BV, BI, BO

CL2 .NO_UACK
UACK

CA, BV, BI, BO
CA, BV, BI, BO

Figure 2: Test group structure of WAP WTP

When specifying test cases we set the following rules:

1. Each "normal" entry corresponds to a single test case. We call an entry a
"normal" entry if it contains a single signal and no Condition.

2. Each entry with multiple Conditions corresponds to as many test cases, as
many branches of the Conditions are present.

3. Each compound entry (which is for invalid and inopportune signals) corre-
sponds to the following number of test cases:

num sig

Number_of_cases < ^^ {Sig_errr_fieldssigi}
i=l

where:

• Number_of_case: number of test cases to make,

• SIG_err_fields: number of signal fields that can contain invalid or inconsis-
tent values,

• num_sig: number of signals that the system can normally receive during
normal operation.

We systematically explore the SDL diagram. We start from the "root", the
state the automaton enters after start. We describe the test cases that belong to
this state, based on the branches of the SDL diagram. We create the formal Test
Purpose representations (TP) and place them in the corresponding test group.
After completing the test cases for one state, we go to one of the states of the next

662 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

state level in the hierarchical order of the SDL diagram, and repeat the procedure.
All the test cases starting from this new state get the path of a valid test case -
starting from the root and resulting in this new state - as preamble. This preamble
sets the proper state of the automaton for the test case at the actual testing.

The TP in the TSS&TP document have a strictly defined appearance form.
The following Table 1 pattern shows what information the TP provide about the
given test cases.

TP Group Reference
TP Id Initial condition

Stimulus
Expected Behavior

1 Table 1: Test Purpose representation definition rules

The fields have the following meanings:

• TP Group: This shows the directory structure of the group to which the test
case belongs.

• TP Id: The TP Id is a unique identifier of the test case that is specified
according to naming conventions defined in the sub clause below.

• Reference: The reference should contain the references of the subject to be
validated by the actual test case (specification reference, clause, paragraph).

• Initial condition: The condition defines in which initial state the IUT has to
be to apply the actual test case.

• Stimulus: The stimulus defines the test event to which the test case is related.

• Expected Behavior: The expected behavior is the definition of the events that
are expected from the IUT to conform to the base specification. This has to
be verified by the test.

We use naming conventions in the TP definitions. The following line shows the
rule of names:

Identifier: TP < f m > [< f m > . . .] x-<nnn>
where

TP: Test Purpose
<fm>: functional module
x: type of testing (CA, BV, BO, BI)

With the help of these formula and rules we manage to make a TSS&TP doc-
ument where each test purpose representation alone is also capable of telling the
user immediately which part of the specification is verified by the given test case.

Standardized Event Pair Based Test Generation Method Using TS S & TP 663

Presentation, of this procedure step on the WTP: For the WTP we had the
following test purpose naming conventions for the functional modules:

N INITIATOR C CA, CAPABILITY TESTS
R RESPONDER V BV, VALID BEHAV. TESTS
0 CLASS 0 0 BO,INOPORTUNE BEHAV. TESTS
1 CLASS 1 I BI, INVALID BEHAV. TESTS
2 CLASS 2
U USER ACK
E NO USER ACK

For example the identifier name TPR1EV-006 means: test purpose on the Re-
sponder side, Classl, no user acknowledgement, valid behavior test, and this test
purpose is the 6th in the group. In Figure 3. the SDL and the test purpose repre-
sentation can be seen.

The complete TSS&TP document defines the test cases and the test informa-
tion, the whole dynamic behavior of the test. The test code can be easily created
with the help of this document.

RE^ULT_RESP_Vy>IT

It res)
~r

A b o rt<p d u^ab o rt_J n)

s borttransactio i

abort.indlnandle:-n&ndle_aJct. aborLInd!: ibor<_code:—pdu_abort_ln!abc rt^reason

TR_Abort.ind^il>ortincf)
~I7

WTP//INIT/CL2/NO_UACK/
TPN2EV006

Initial condition: IUT has entered the
RESULT_RESP_WAIT state.
Stimulus: An Abort PDU arrives.
Verify that the IUT enters the NULL
state and sends a TR Abortind ASP.

Figure 3: Derivation of a TP for a test case

664 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

4.5 Comparison to the traditional and CATG methods

Today's protocol specifications are usually based on the EFSM semantics. With
the introduction of variables state space explosion may occur. So, the state space of
an EFSM model can be. extremely large and even infinite. Theoritically, the whole
state space has to be explored and on each possible state transition a decision has
to be made, if it is to be included in the test suite. This is a complex problem, that
is hard to formalize. Thus, the selection of a limited appropriate set of traces - i.e.
the test cases - using CATG methods, which are based on the current technology
and theoritical background, fails to be useful in practice.

Our experience shows the same, the different CATG techniques resulted in an
unstructured set of inefficient test cases on WAP WTP and other protocols[ll].
After checking our method on these protocols and reading additional reports 5on
CATG, we concluded the performance factors presented in Figure 4 [6][5]. The
main reason for this result is easy to explain. Many parts of the test generation
process can be automatized. Nevertheless, beyond a certain limit human intelli-
gence cannot yet be substituted by pure computer based solutions. Our method
tries to utilize systematic standard steps, but retains human intelligence for meeting
complex decisions.

According to the previous statements, we found that our method is more prac-
tical than the traditional ones, if there is lack of highly experienced developers
and the high quality of the test suite is a requirement. The Event pair TSS&TP
method provides better overview, execution and easier maintenance than the CATG
methods.

Method Traditional CATG Event pair TSS&TP
Starting condi-
tions

No (directly derived
from the,standard)

Restricted full formal
specification

Formal spec. with:
"driver information"

Expertise needed Very high Medium Medium
Time need High Medium High or medium
Grouping Incidental No. Stack Standardized, High
Eorm rules Incidental No Standardized, high
Steps of the
technique

One direct. Two smaller Three smaller

Coverage Incidental,, no algo-
rithms

High coverage, by
algorithms

High coverage by
systematic exploration -

Number of- test
cases

Limited Huge:;at high cover-
age

Reasonable

Figure 4: Comparison of test generation methods

Standardized Event Pair Based Test Generation Method Using TS S & TP 665

5 The checking of the model of the WAP WTP
standard

In the frames of this paper we also want to note that during our work, at the
verification phase [3][7] preceding the test generation process, we checked the model
of the WAP WTP. Interestingly, we found flaws in the specification, which could
possibly cause problems in the operation of the protocol. We validated [4] and
simulated the SDL system to examine the protocol specification itself and two
shortcomings arose.

5.1 Result waiting feature that may cause a problem
The first problem arises during a Class 2 transaction, if the next higher layer of the
protocol on the Responder side stops its operation in a certain transaction period.
In this situation both the WTP Responder and the WTP Initiator are in the state
called RESULT WAIT, according to the standard. The WTP Responder is waiting
for the corresponding incoming abstract service primitive (ASP) signal. If it does
not come and there are no timers running, both communicating parts could wait
forever for an event - that is an error on the Responder side, which inhibits the
functioning of the Initiator. This is practically a deadlock, which is not resolved in
this layer according to the specification. Right now the only solution could be to
implement some kind of a timer in the next higher layer oyer the Initiator, which
starts when this situation could possibly happen, and that sends an ASP signal to
the Initiator after a long time without response. The first message sequent chart
shows the critical situation in Figure 5.

Figure 5: Critical situations in the WAP WTP model.

666 Zoltán Pap, Zoltán Rétháti, Róbert Horváth, and Gusztáv Adamis

5.2 The transaction identifier verification problem
The second problem can arise during either a Class 1 or a Class 2 transaction. The
transaction identifier verification process ensures the proper sequence of the WTP
PDUs. If this function has to run, and the connection between the Initiator and
the Responder temporarily fails, the Responder can get stuck in the state called
TIDOK WAIT. The only way to move the process out of this state is with the help
of the WTP Initiator, which has to send a particular PDU signal. If this does not
arrive to the Responder than it gets stuck. There is no timer that could move the
process out of this state, and the next higher layer does not even get a notice about
the state of the process, so a timer can not be implemented either. Even if the
connection is restored, the process remains in this state. This situation can also
arise, if a bad or intentionally modified Initiator implementation does not perform
the right functioning. A malice communicating part can open several transactions,
and leave them in deadlock in the Responder side. The second message sequent
chart shows the critical situation in Figure 5.

6 Conclusion
Our test generation method consists of smaller well localized and described tasks,
automated in many terms. It can be carried out with more efficiency and less human
competence, working experience and protocol behavior information. There are de-
fined formalisms and rules for the derivation process. With the help of the TSS&TP
document it is now possible to test implementations of the protocol without know-
ing the protocol itself. It enables generating fully formal test step descriptions (for
example TTCN tables) almost automatically. This test suite is more standardized,
can provide high coverage, and has good or at least average performance in almost
every problematic field of the test generation process.

During our work we found some flaws in the WAP WTP protocol specification,
which could - under special circumstances - possibly cause problems in the operation
of the protocol.

References
[1] Gregor V. Bochmann and Alexandre Petrenko. Protocol testing: review of

methods' and relevance for software testing. International Symposium on Soft-
ware Testing and Analysis, pages 109 - 124, 1994.

[2] C. Bourhfir, R. Dssouli, and E. M. Aboulhamid. Automatic Test Generation
for EFSM-based Systems, http://citeseer.nj.nec.com/114451.html.

[3] EG 201 383 ETSI Guide. Methods for testing and specification (mts); use of sdl
in etsi deliverables; guidelines for facilitating validation and the develop-ment
of conformance tests, 1999.

http://citeseer.nj.nec.com/114451.html

Standardized Event Pair Based Test Generation Method Using TS S & TP 667

[4] TCTR 004 ETSI Technical Committee Technical Report. Methods for testing
and specification (mts); reports on experiments in validation methodology.
Technical report, ETSI, 1996.

[5] TR 101 051 ETSI Technical Report. Methods for testing and specification
(mts); report of the catg applications. Technical report, ETSI, 1999.

[6] TR 101 279 ETSI Technical Report, 1948.

[7] ETR 184 ETSI Technical Review. Methods for testing and specification (mts);
over-view of validation techniques for european telecommunication standards
(etss) containing sdl. Technical report, ETSI, 1995.

[8] WAP Forum. Wireless application protocol architecture specification, April
1998.

[9] WAP Forum. Wireless application protocol wireless transaction protocol spec-
ification, February 2000.

[10] B. Gregor and V. Petrenko. Protocol testing: review of methods and relevance
for software testing, 1994.

[11] R. Horváth, Z. Pap, and Z. Rétháti. Methods for telecommunication protocol
development and conformance testing. Student Conference BUTE, 2000.

[12] ITU-T. Recommandation Z.100: Specification and Description Language,
1992.

[13] B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt. Autolink a tool for
automatic test generation from sdl specications, 1998.

[14] Gang Luo, Gregor v. Bochmann, and Alexandre Petrenko. Test selection
based on communicating nondeterministic finite-state machines using a gener-
alized Wp-method. IEEE Transactions on Software Engineering, 20(2) :149-
162, February 1994.

