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Improvements of Hungarian Hidden Markov
Model-based Text-to-Speech Synthesis*

Balint Tétht and Géza Németh'

Abstract

Statistical parametric, especially Hidden Markov Model-based, text-to-
speech (TTS) synthesis has received much attention recently. The quality of
HMM-based speech synthesis approaches that of the state-of-the-art unit se-
lection systems and possesses numerous favorable features, e.g. small runtime
footprint, speaker interpolation, speaker adaptation. This paper presents the
improvements of a Hungarian HMM-based speech synthesis system, including
speaker dependent and adaptive training, speech synthesis with pulse-noise
and mixed excitation. Listening tests and their evaluation are also described.

Keywords: Hungarian HMM speech synthesis, speaker adaptation, pulse-
noise excitation, mixed excitation

1 Introduction

Several TTS methods were created in the last decades, including rule based artic-
ulatory [1] and formant synthesis [2], which try to model the speech production
mechanism; diphone, triphone based concatenative synthesis [3] and corpus-based
unit selection synthesis [4], which are based on recordings from a speaker; and sta-
tistical parametric synthesis, which became a focused research are in the past few
years.

The voice characteristics of automatic rule based articulatory and formant mod-
els can be widely modified, although the quality of these systems is not satisfactory,
as the applied rules are not precise enough. Diphone and triphone based methods
produce constant quality and the voice characteristics can be modified to some
degree, but they still sound unnatural. Corpus-based unit selection systems pro-
duce high quality, natural sounding voice, but the quality is not constant, the voice
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characteristics cannot be modified and for the best quality large runtime databases
are required.

In statistical parametric synthesis usually the hidden Markov Model paradigm is
used [5]. It has numerous advantages compared to other methods: it has compara-
ble voice quality to that of the state-of-the-art unit selection methods, the runtime
database is small (2-10 MB) [6], the voice characteristics can be changed by speaker
adaptation [7][8] and interpolation [9] and emotions can also be expressed [10].

HMM-based TTS is categorized as a kind of unit selection speech synthesis,
although in this case the units are not waveform samples, but spectral and prosody
parameters extracted from the waveform. HMMs are responsible for selecting those
parameters which most precisely represent the text to be read and a vocoder gen-
erates the synthesized speech from these parameters. Different vocoder techniques
can be applied, generally pulse-noise or mixed excitation is used (the latter has
better quality, but its runtime database and computational cost is higher).

The first section of the current paper gives an overview about the architecture
of HMM-based speech synthesis (that is the basis for our TTS system). It inves-
tigates the two basic training (speaker dependent, speaker adaptive) and the two
basic synthesis methods (pulse-noise excitation, mixed excitation) that are applied
in order to improve the systems quality. In the second part of the paper Hungarian
specific solutions of the system are discussed and a listening test and its evalua-
tion are carried out, which involves diphone-based, corpus-based unit selection and
HMM-based Hungarian TTS systems.

2 HMM-based text-to-speech synthesis

Hidden Markov models are often used to simulate the behavior of physical processes
based on observations. In speech technology HMMs can successfully model the
behavior of human speech. Both in speech recognition and synthesis descriptive
parameters of a speech corpus are used as observations, which is much more efficient
than wave sample based observations. HMMs have already been applied in speech
recognition for a long time [11]. In the last decade HMM-based speech synthesis
became a focused research area. It differs from the method applied in speech
recognition in three main parts:

e In case of speech synthesis at the last step instead of ”pattern matching”
”pattern selection” is executed, so the most likely parameters (e.g. spectral
coefficients, pitch, state duration) are selected. Speech is generated by a
vocoder from the selected parameters.

e Prosody is also modeled in speech synthesis, including pitch and phoneme
durations.

e In speech synthesis a more complex acoustic model is used instead of tri-
phones, which involves segmental and supra-segmental information. This is
described by context dependent labels (see subsection 2.1.3).
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Figure 1: Block diagram of speaker dependent training.

HMM-based TTS consists of two main tasks: the training and the speech synthe-
sis task. In the training task the HMM parameters are trained by a large, precisely
labeled speech corpus. As a result a small HMM database is created, which includes
the representative parameters of the speech corpus (training). From this database
the best matching parameters of the text to be read are selected and the utterance
is generated by a vocoder (synthesis).

2.1 Training

There are two main types of HMM training: the speaker dependent and the speaker
adaptive training methods.

2.1.1 Speaker dependent training

For speaker dependent training (see Figure 1) a rather larger speech corpus (min-
imum 1-1.5 hours of speech) from a given speaker, the phonetic transcription and
precise phoneme boundary labeling are required. The spectral parameters (e.g.
features derived by linear prediction analysis), their first and second derivatives,
the pitch, its first and second derivatives are extracted from the waveform.

As the next step phonetic transcriptions are extended to context dependent
labels (see subsection 2.1.3.). When all these data are prepared, the training pro-
cedure is started. During training the HMMs learn the spectral and excitation
parameters according to the context dependent labels of the given corpus. To be
able to model parameters with varying dimensions multi-space distribution HMMs
(MSD-HMMs) are used [12] (e.g. logFO0 in case of voiced/unvoiced regions is mod-
eled by 2 dimensional HMMs). To model the rhythm of the speech state dura-
tion densities are calculated for each phoneme. The set of state durations of each
phoneme HMM is modeled by a multi-dimensional Gauss distribution.
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Figure 2: Block diagram of speaker adapted training.

2.1.2 Speaker adaptive training

Speaker adaptive training is divided into two parts (Figure 2). First the so called
average voice must be constructed, then the average voice is adapted to the target
speakers voice. For the average voice speech corpora (minimum 1-1.5 hours/speaker)
from numerous speakers (minimum 4-5) is required. The excitation and spectral
parameters and their first and second derivatives are extracted from the corpora.
The average voice model is trained with this data and with the related phonetic
transcriptions and context dependent labels. If an average voice is available, a much
smaller speech corpus of 5-10 minutes is sufficient for adaptation. The same train-
ing data are extracted from the adaptation corpus for completeing the adaptation
phase.



Improvements of Hungarian HMM-based Text-to-Speech Synthesis 719

2.1.3 Context dependent labeling and decision trees

To describe the features of a phoneme in detail - to be able to select the most likely
units in the synthesis phase - a number of phonetic features should be defined.
These features are calculated for every sound. Labeling is done automatically, which
may include errors (e.g. finding the accented syllables, defining the part of speech).
This effect is likely not to influence the quality much, if the same algorithm is used
in speech generation, thus the parameters are chosen by the HMMs consistently.
In subsection 3.3. the features that were used in the Hungarian version of our
HMM-based TTS system are described.

The combination of all possible context dependent features is a huge number.
If only the possible variations of quintphones (this is a basic context dependent
feature, see subsection 3.3.) are taken into account, that is over 160 million and this
number increases exponentially if further context dependent features are included
as well. Consequently it is impossible to design a speech corpus, which contains all
combinations of context dependent features. To overcome this problem decision tree
based clustering [13] is used. As different features influence the spectral parameters,
the pitch values and the state durations, decision trees are separately handled for
each. In subsection 3.3. the general questions used for building the decision trees
in the Hungarian version of HMM-based synthesis are introduced.

2.2 Synthesis

The speech synthesis method is the same in the case of both training methods:
the HMMs generate the most likely parameters (including pitch, state durations
and spectral parameters) belonging to the text and then the speech is generated
by a vocoder method. Depending on the type of the parameters, that were used
during training, the vocoder may be a simple vocoder (e.g. LPC-10), although
mixed excitation vocoders perform much better, as they significantly reduce the
buzzyness of the speech. Certainly different vocoder techniques influence the choice
of the parameters, that are to be extracted from the waveform, and they may also
influence the training methods of the HMMs (e.g. pitch modeling requires MSD-
HMMs).

In this study we have tested the two most commonly used vocoder techniques
in HMM-based speech synthesis, the pulse-noise and mixed excitation vocoders.

2.2.1 Pulse-noise excitation vocoder

The pitch (voiced regions) or a binary flag (unvoiced regions), the spectral parame-
ters and the state durations should be extracted from the speech corpus and trained
for the HMMs in the pulse-noise excitation model. To be able to model voiced and
unvoiced regions, MSD-HMMs are used. In the synthesis phase the excitation is
modeled as periodic pulse trains at the rate of the pitch that was generated by the
HMMs (voiced phonemes) or as white noise (unvoiced phonemes). This excitation
signal is filtered by a Mel-Log Spectral Approximation (MLSA) filter [14] and the
synthesized speech is generated (see Figure 3).
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Figure 3: Block diagram of HMM TTS with pulse-noise excitation.

The advantage of pulse-noise excitation is the simplicity, furthermore a small
footprint runtime database is enough and the computational cost mainly depends
on the order of the MLSA filter. The main disadvantage is the buzzyness of the
synthesized voice.

2.2.2 Mixed excitation vocoder

To make the synthesized voice more natural and to eliminate the buzzyness mixed-
excitation vocoders were introduced [15]. In the mixed excitation model (see Figure
4) the pitch, the bandpass voicing strengths and spectral parameters are extracted
and trained for the HMMs. In the synthesis phase the parameters of the bandpass
filters for the periodic pulse train and for the white noise excitation are generated
by the HMMs (bandpass voicing strengths). After the excitation signals passed
through the bandpass filters, the results are summed and filtered by an MLSA
filter. As a result the synthesized voice is generated.

The main advantage of using mixed excitation is the good, natural sounding
quality, although more computational cost is required as the number and the or-
der of filters increases. Further improvements in quality can be achieved by post
filtering the synthesized voice [16].

3 Improvements of Hungarian HMM-based TTS

Several language specific steps are necessary to create a Hungarian HMM-based
text-to-speech engine. The basics of a Hungarian HMM-based speaker dependent
text-to-speech engine are described in [17]. In this chapter the most significant
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Figure 4: Block diagram of HMM TTS with mixed excitation.

issues of creating a Hungarian HMM-based speaker adapted text-to-speech system
are investigated.

3.1 Speech databases

Five speech databases were recorded: four males and one female, for the average
voice. The utterances are well designed, phonetically balanced sentences . The con-
tent of the utterances was manually verified. Phoneme boundaries were determined
by forced alignment with a wide beam. The properties of the speech databases are
shown in Table 1.

Table 1: Speech corpora for the average voice (44 kHz, 16 bit, mono format)

| Speaker | Number of sentences | Duration |  Size |
1. male speaker 1941 170 minutes | 857 MB
2. male speaker 1938 137 minutes | 694 MB
3. male speaker 1944 191 minutes | 966 MB
4. male speaker 1938 214 minutes | 1082 MB
5. female speaker 1940 129 minutes | 652 MB

For adaptation we used several different databases, including semi-spontaneous
political speeches, weather forecasts, price list utterances (planned speech), and
general, phonetically balanced utterances. The length of the adaptation speech
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databases was between 5-15 minutes. In the current paper adaptation with a
general, phonetically balanced database is investigated (see section 4.) with the
properties shown in Table 2.

Table 2: Speech corpus for adaptation (44 kHz, 16 bit, mono format)

’ Speaker \ Number of sentences \ Duration \ Size ‘
’ Female speaker \ 117 \ 8 minutes \ 40 MB ‘

The speech databases were resampled at a rate of 16 kHz on 16 bits and win-
dowed by a 25 ms Hanning-window with 5 ms shift. The feature vectors consisted
of 39 mel-cepstral coefficients (including the Oth coefficient), logF0, aperiodicity
measures, and their dynamic and acceleration coefficients.

3.2 Adaptation technique

There are two main techniques of speaker adaptation in the HMM paradigm: max-
imum likelihood linear regression (MLLR) [7] and maximum a posteriori (MAP)
estimation [8]. MLLR is applied when the amount of adaptation data is small, for
MAP more data is required as the Gaussian distributions are updated individually.

The Hungarian version uses the MLLR adaptation method. MLLR modifies the
parameters of the average voice to the target voice by linear transforms. In this
case the state outputs are:

bj(o:) = N(os; fij, ) (1)
fij = Ay + by (2)
% = H] 2 ) (3)

b; corresponds to the output probability function, o, is the observation vector,
p; and ¥; are the original mean vector and covariance matrix. fi; is the linearly
transformed mean vector of the j-th state output distribution and 3; is the linearly
transformed covariance matrix of the j-th state output distribution. The covariance
matrix adaptation is performed after the mean vector adaptation. A,(;y, by(;) and
H,(jycorrespond to the mean linear transformation matrix, to the bias vector and
to the covariance linear transformation matrix for the r;-th regression class.

Generally there are two types of MLLR adaptation. If A and H linear transfor-
mation matrices are the same, than we talk about constrained MLLR (CMLLR),
otherwise it is unconstrained MLLR. We used CMLLR for adaptation. The state
output distributions are clustered by regression class trees; in a given class we use
the same transformation matrices and bias vectors. The linear transform is de-
rived from the labeled adaptation data. In order to perform adaptation with less
data, the context-dependent models with regression or decision trees are used. The
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complexity and generalization abilities of the adaptation can be controlled by ad-
justing the size of the regression-class / decision tree to the size of the adaptation
data. CMLLR is the most commonly used adaptation technique, but other, more
sophisticated schemes are available as well [18].

Classic speaker adaptation uses precise phonetic transcriptions, manually tran-
scribed or automatically annotated segmentation and linguistic labels - this is called
supervised speaker adaptation. In the unsupervised case the adaptation process
does not require any manual interaction. The advantages of unsupervised adapta-
tion are quite appealing: the creation of target voices becomes automatic which is
favorable if several voices are required or if no pre-processing of the speech data
is possible. There are some solutions for unsupervised speaker adaptation, which
are introduced in [19], [20] and [21]. We also conducted some experiments of ASR
transcription based unsupervised adaptation in Hungarian with promising results
[22].

The gender of the average voice database speakers is an important question. If
large speech corpora are available then creating gender dependent average voices
is ideal. In practice only some speech corpora are available from both males and
females, thus a mixed gender average voice is used often. [23] introduces a method,
which causes minimal quality degradation in case of adapting a mixed gender aver-
age voice to male or to female voices, compared to the gender dependent case. As
shown in Table 1 four male and one female speakers were used in our experiments
for the average voice. According to some inner tests in our laboratory, there was no
significant difference between adapting to male or to female voices from the average
voice.

3.3 Context dependent labeling and decision trees

In 2.1.3. context dependent labels and decision trees were introduced in general.
In this subsection we investigate their language specific features. Table 3 shows
the context dependent labels, which were used in the Hungarian HMM-based TTS
system. An example for a context dependent label looks like the following;:

a”l-al+bb=i@2_1/A:2_1/B:0-202-1&6-6$2-0;0-...

The questions for the decision tree building algorithm have been defined ac-
cording to these features. Depending on the modeled parameter (spectral, pitch,
duration) the most significant question varies, although generally the questions
regarding to phonemes are dominant. These questions are determined by the be-
havior of the Hungarian phonemes [24]. Table 4 shows some important features
that are used for the creation of the decision trees.

Figure 5 shows an example for decision trees in the case of spectral features. C_,
L_ and R- denote the central, left and right neighbouring phonemes that are under
examination. The figure shows that the ”Is the central phoneme in the quintphone
a vowel?” was the most significant question in this case (it is on the ”top” of
the decision tree). On the next level there are the ”Is the center phoneme a low
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Table 3: The main features used by Hungarian context dependent labeling.

Sounds

The current and the two previous and the two following
sounds/phonemes (quintphones). Pauses are also marked.

Syllables

Mark if the current / previous / next syllable is accented.

The number of phonemes in the current / previous / next syllable.
The number of syllables from / to the previous / next accented syl-
lable.

The vowel of the current syllable.

Word

The number of syllables in the current / previous / next word.
The position of the current word in the current phrase (forward and
backward).

Phrase

The number of syllables in the current / previous / next phrase.
The position of the current phrase in the sentence (forward and back-
ward).

Sentence

The number of syllables in the current sentence.
The number of words in the current sentence.
The number of phrases in the current sentence.

Table 4: The most important features used for building the decision tree.

Phonemes | Is it vowel or consonant?

Is it short or long?

Is it stop / fricative / affricative / liquid / nasal phoneme?
Is it front / central / back vowel?

Is it high / medium / low vowel?

Is it rounded / unrounded vowel?

Syllable Is it a stressed or a not stressed syllable?
Numeric parameters (see Table 3).

Word Numeric parameters (see Table 3

Phrase

Sentence Numeric parameters (see Table 3

( )-
Numeric parameters (see Table 3).
( )-

vowel?” and the ”Is the center phoneme unvoiced stop?” questions. The same idea
is followed at lower levels.

4 Results

A modified version of the HTS framework with STRAIGHT [6] was applied for
training and for generation. The speech corpora shown in Table 1 was processed to
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Figure 5: Example for decision trees (spectral features).

create the models of the average voice and the speech corpus in Table 2 was used for
adaptation. A listening test was carried out to evaluate the quality of comparable
Hungarian TTS systems.

4.1 Experimental conditions

Five TTS systems were involved in the listening test: a triphone based system
(System A); a general domain corpus based unit selection system (System B);
a domain specific corpus based unit selection system (System C); a HMM-based
speaker adapted system with pulse-noise excitation (System D) and a HMM-based
speaker adapted system with mixed excitation (System E). The original speaker
(from whom the speech corpora were recorded) was the same in case of all TTS
systems. The corpus based unit selection system had all the waveforms from one
speaker in the runtime database. The HMM-based speech synthesis system had
the waveforms in the training database from five (average voice) plus one speaker
(adaptation), as it is described in 4.1. The language of the test was Hungarian.
The properties of the different systems are shown in Table 5.
The listening test consisted of two parts:

e the first part was a Comparison Mean Opinion Score (CMOS) test;

e the second part was Mean Opinion Score (MOS) test.
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In the first part test subjects had to decide on a five point scale from two
synthesized samples which one sounds more natural. On the scale 3 meant the
quality of the two samples are considered same, higher values meant that the second
sample was considered more natural (4 more natural, 5 much more natural), lower
values meant that the first sample was considered more natural (2 more natural,
5 much more natural). The text of the utterance in a pair was the same. In a pair
different speech synthesis systems were used. Altogether 9 pairs were played; each
pair was played twice (normal and inverted order). CMOS pair comparison as the
first part of the test is favorable, as subjects get used to the synthetic voice and
they will give consistent answers for the MOS tests in the next part. In the second
section the test subjects had to mark on a five point scale the naturalness of 20
samples, 4 samples from each system. Lower values meant worse naturalness, higher
values meant better naturalness. In the second section the text of the utterances
was different.

We have chosen this order of the two main parts to minimize the chance that
the test subjects memorize the different systems. The samples were selected from
a larger set of sentences in order to get the desired information about the systems
and not about the speech samples. Furthermore the samples were sorted in dif-
ferent pseudo-random orders for every test subject to avoid memory effects. The
distribution of the samples and the systems was kept even.

The authors carried out a pre-test with five subjects to verify the effectiveness
of the test design. The results of the pre-test were adequate, so the same design
was kept and the results of the pre-test were also included in computing the final
results.

Altogether 24 test subjects (7 female, 17 male) were involved in the test. All
the test subjects were native Hungarian speakers with no known hearing loss. The
test was internet-based, the average age was 32, and the youngest subject was 22,
the oldest 67 years old. 7 test subjects were speech experts.

4.2 Analysis of the results

The results of the listening text are shown in Table 6 and Table 7. Table 6 contains
the general preference scores of the CMOS test and the results of the MOS test. In
Table 7 the particular values related to the HMM-based speech synthesis systems
are shown. The results are represented in Figure 6 on boxplot diagrams according
to the guidelines of [25]. On boxplot diagram systems can easily be compared by
the median (black thick line), by the 1st and 3rd quartiles (bar), by the whiskers
and outliers. The most significant information are the median, the 1st and the
3rd quartiles. As it was expected System A scored the worst in both parts of the
test. Although the naturalness of System A is much worse then the naturalness
of other systems, it has got a small footprint and its computational costs are very
low, so it can be applied in low resource systems. The naturalness of System B was
considered also quite low and its runtime database is large and the computational
costs are also high.

System D achieved the third position. Its global preference score is almost
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Table 5: Speech synthesis systems involved in the listening test

| System [ Technique | Training database | Runtime database |

A Triphone based unit | - 285 MB (triphones)
selection

B Corpus based unit se- | - 4634 MB (one
lection (general do- speaker, 44 kHz,
main) 16 bit, mono wave-

forms)

C Corpus based unit se- | - 3113 MB (one
lection (domain spe- speaker, 44 kHz,
cific) 16 bit, mono wave-

forms)

D HMM-based speech | 4251 + 40 MB (five + | 2 MB (HMM param-
synthesis (speaker | one speakers, 44 kHz, | eters, decision trees)
adapted, pulse-noise | 16 bit, mono wave-
excitation) forms)

E HMM-based speech | 4251 +40MB (five+ | 11 MB (HMM pa-
synthesis (speaker | one speakers, 44 kHz, | rameters, decision
adapted, mixed | 16 bit, mono wave- | trees)
excitation) forms)

the same as the score of System B, but its general naturalness and CMOS score
compared to System B are higher. In addition System B has a small runtime
database.

System C and System E performed the best in the listening test. System C
was considered better than System E in the pair comparison part (on Figure 6
they have the same median, but System C has higher 3rd quartile), in the general
naturalness part System E was considered better. These differences are mostly not
significant and the reason, why the two systems performed different in the two parts
is that their naturalness is quite close to each other. The only significant difference
is the median of the systems in the MOS test, where System E performs better
(see Figure 6). In case of more test subjects the scores of systems C and E may
get closer. However System C performed well only in a given domain with a large
runtime database, System E performed the same quality on general sentences with
a small runtime database.

5 Conclusions

In the current paper the basics of HMM-based speech synthesis are introduced,
including speaker dependent and speaker adaptive training, furthermore two dif-
ferent speech generation techniques, the pulse-noise and mixed excitation based
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Table 6: Results (mean + variance) of the listening test. Higher numbers mean
better naturalness.

CMOS (Global preference score)
Compared naturalness of speech
synthesis systems

MOS General naturalness of the
systems

System A | 2.3 £ 1.14 2.14+0.9
System B | 2.8 £ 1.27 26+ 1.1
System C | 3.6 £ 1.3 32+ 1.1
System D | 2.9 4+ 1.27 3.1+1.2
System E | 3.4 + 1.22 3.5+ 1.0

Table 7: CMOS pair comparison values for System D and System E (3 means
identical naturalness, higher values mean that the system in the row was considered
more natural, lower values mean that the system in the column was considered more

natural)
| System | A \ B \ \ D \ E ‘
D 33£115 | 33+£13|27£14 N/A 25 £1.0
E 39+£11 | 356+£13|27£13|35+£1.0 N/A
5 5
4 4
3 = 3
2 T 2
1 1
A c D E A B & D E

Figure 6: Boxplot showing compared naturalness of the speech synthesis systems
(left) and general naturalness of the speech synthesis systems (right).

vocoders are described. The Hungarian version of a speaker adapted HMM-based
speech synthesis engine was investigated, and the most important language specific
features are shown. To measure the quality of the system a listening test was car-
ried out with some Hungarian speech synthesis engines. The results showed that
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HMM-based speech synthesis with mixed excitation performs with a small runtime
database on general sentences like the state-of-the-art corpus-based unit selection
system with a large runtime database on domain specific sentences.

In the future we plan further error corrections and more precise labeling of
the training data, as it is likely to increase the quality of the synthesized voice.
Additionally the solution will be optimized for embedded environments. Other
voice coding algorithms will also be applied.
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