
Acta Cybernetica 23 (2017) 319–326.

Overview of an Abstract Fixed Point Theory for

Non-Monotonic Functions and its Applications to

Logic Programming

Angelos Charalambidisa and Panos Rondogiannisa

Abstract

The purpose of the present paper is to give an overview of our joint work
with Zoltán Ésik, namely the development of an abstract fixed point theory for
a class of non-monotonic functions [4] and its use in providing a novel denota-
tional semantics for a very broad extension of classical logic programming [1].
Our purpose is to give a high-level presentation of the main developments
of these two works, that avoids as much as possible the underlying technical
details, and which can be used as a mild introduction to the area.

Keywords: fixed point theory, higher-order logic programming, semantics
of logic programming

1 Introduction

The purpose of this paper is to present an overview of the authors’ joint work with
Zoltán Ésik. This work [4] concerned the development of an abstract fixed point
theory for a class of functions that exhibit a type of “monotonicity in layers” but
which are overall non-monotonic. Such functions prove to be quite common in
various investigations in logic programming and formal language theory, and may
potentially have other applications. We also describe our development [1], based
on the aforementioned abstract framework, of a novel denotational semantics for a
very broad extension of classical logic programming. In the rest of this section we
provide a short description of the beginnings of our collaboration with Zoltán that
led to the above results.

In 2005, the second author together with Bill Wadge proposed [5] the infinite-
valued semantics for logic programs with negation. This particular work was some-
what ad-hoc, namely the main results relied on techniques custom-tailored for logic
programming. In 2013, the second author of the present paper, together with Zoltán

aDepartment of Informatics and Telecommunications, National and Kapodistrian University
of Athens, E-mail: {a.charalambidis,prondo}@di.uoa.gr

DOI: 10.14232/actacyb.23.1.2017.17



320 Angelos Charalambidis and Panos Rondogiannis

Ésik started a collaboration supported by a “Greek-Hungarian Scientific Collabo-
ration Program” with title “Extensions and Applications of Fixed Point Theory
for Non-Monotonic Formalisms”. The purpose of the program was to create an
abstract fixed point theory based on the infinite-valued approach, namely a theory
that would not only be applicable to logic programs but also to other non-monotonic
formalisms. This abstract theory was successfully developed and is described in de-
tail in [4]. As an application of these results, this abstract theory was used in [1] in
order to obtain the first extensional semantics for higher-order logic programs with
negation. Another application of the new theory to the area of non-monotonic for-
mal grammars was proposed in [3]. Moreover, Zoltán himself further investigated
the foundations and the properties of the infinite-valued approach [2], highlighting
some of its desirable characteristics. Unfortunately, the further joint development
of the abstract infinite-valued approach to non-monotonic fixed point theory, was
abruptly interrupted by the untimely loss of Zoltán.

In the next section we describe the basic concepts behind the abstract approach
to non-monotonic fixed point theory. In Section 3 we describe the application of
the theory to the class of higher-order logic programs with negation. The paper
concludes by giving pointers for future work.

2 Non-Monotonic Fixed Point Theory

Suppose that (L,≤) is a complete lattice in which the least upper bound operation
is denoted by

∨
and the least element is denoted by ⊥. Let κ > 0 be a fixed

ordinal. We assume that for each ordinal α < κ, there exists a preordering vα
on L. We denote with =α the equivalence relation determined by vα. We define
x <α y iff x vα y but x =α y does not hold. Finally, we define <=

⋃
α<κ <α

and let x v y iff x < y or x = y. Given an ordinal α < κ and x ∈ L, define
(x]α = {y ∈ L : ∀β < α x =β y}. We require of our relations to satisfy the
following axioms:

Axiom 1. For all ordinals α < β < κ, vβ is included in =α.

Axiom 2.
⋂
α<κ =α is the identity relation on L.

Axiom 3. For each x ∈ L, for every ordinal α < κ, and for any X ⊆ (x]α
there is some y ∈ (x]α such that:



Overview of an Abstract Fixed Point Theory 321

• X vα y, and

• for all z ∈ (x]α, if X vα z then y vα z and y ≤ z.

Axiom 4. If xj , yj ∈ L and xj vα yj for all j ∈ J then
∨
{xj : j ∈ J} vα∨

{yj : j ∈ J}.

The element y specified by the Axiom 3 above, can be shown to be unique and
we denote it by

⊔
αX.

In the following, we will often talk about “models of the Axioms 1-4” (or simply
“models”). More formally:

Definition 1. A model of Axioms 1-4 or simply model consists of a complete
lattice (L,≤), an ordinal κ > 0 and a set of preorders vα for every α < κ, such
that Axioms 1-4 are satisfied.

Under the above axioms, the following theorem is established in [4]:

Theorem 1. (L,v) is a complete lattice.

The following definition will lead us to the main theorem of [4]:

Definition 2. Suppose that L is a model and let α < κ. A function f : L → L is
called α-monotonic if for all x, y ∈ L, if x vα y then f(x) vα f(y).

The central fixed point theorem of [4] can now be stated:

Theorem 2. Let L be a model. Suppose that f : L → L is α-monotonic for each
ordinal α < κ. Then f has a least pre-fixed point with respect to the partial order
v, which is also the least fixed point of f .

The article [4] contains many more results, but one could say that the above
theorem is possibly the main technical achievement. Actually, the above theorem
is also the main tool that we will need in the developments of the next section.

3 Higher-Order Logic Programs with Negation

In this section we present the application of the non-monotonic fixed point theory
to the class of higher-order logic programs with negation. The approach presented
naturally extends the ideas behind the infinite-valued approach proposed in [5] into
a higher-order setting. The basic idea behind the approach in [5] is that in order to
obtain minimum model semantics for higher-order logic programs with negation it
is necessary to consider a multi-valued logic. We first present the syntax and then
the semantics of our language.



322 Angelos Charalambidis and Panos Rondogiannis

3.1 Syntax

Our higher-order logic programming language is based on a simple type system that
supports two base types: o, the boolean domain, and ι, the domain of individuals
(data objects). The composite types are partitioned into three classes: functional
(assigned to individual constants, individual variables and function symbols), pred-
icate (assigned to predicate constants and variables) and argument (assigned to
parameters of predicates).

Definition 3. A type τ can either be functional, argument, or predicate, denoted
as σ, π and ρ respectively and defined as:

σ := ι | ι→ σ

π := o | ρ→ π

ρ := ι | π

Definition 4. The set of expressions of our higher-order language is defined as
follows:

1. Every predicate variable (respectively, predicate constant) of type π is an ex-
pression of type π; every individual variable (respectively, individual constant)
of type ι is an expression of type ι; the propositional constants false and true
are expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are expressions of type ι, then
(f E1 · · ·En) is an expression of type ι.

3. If E1 is an expression of type ρ → π and E2 is an expression of type ρ, then
(E1 E2) is an expression of type π.

4. If V is an argument variable of type ρ and E is an expression of type π, then
(λV.E) is an expression of type ρ→ π.

5. If E1,E2 are expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2) are ex-

pressions of type π.

6. If E is an expression of type o, then (∼E) is an expression of type o.

7. If E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

8. If E is an expression of type o and V is a variable of type ρ then (∃ρVE) is
an expression of type o.

The notions of free and bound variables of an expression are defined as usual.
An expression is called closed if it does not contain any free variables.

A program clause is a clause p ←π E where p is a predicate constant of type π
and E is a closed expression of type π. A program is a finite set of program clauses.



Overview of an Abstract Fixed Point Theory 323

3.2 Semantics

We start by examining the semantics of types. The most crucial case is that of the
boolean domain o. The boolean values range over a partially ordered set (V,≤) of
truth values. The number of truth values of V will be specified with respect to an
ordinal κ > 0. The set (V,≤) is the following:

F0 < F1 < · · ·< Fα < · · ·< 0 < · · ·< Tα < · · ·< T1 < T0

where α < κ. Intuitively, F0 and T0 are the classical False and True values and 0 is
the undefined value. The new values express different levels of truthness and falsity.
The order of a truth value is defined as follows: order(Tα) = α, order(Fα) = α and
order(0) = +∞.

We define the following preorderings vα on the set V for each α < κ:

1. x vα x if order(x) < α;

2. Fα vα x and x vα Tα if order(x) ≥ α;

3. x vα y if order(x), order(y) > α.

We then have the following result from [1]:

Lemma 1. (V,≤) is a complete lattice and a model.

Let us denote by [A
m→ B] the set of functions from A to B that are α-monotonic

for all α < κ. Based on the above discussion, we can now state the semantics of all
the types of our language:

Definition 5. Let D be a nonempty set. Then:

• [[o]]D = V , and ≤o is the partial order of V ;

• [[ι]]D = D, and ≤ι is the trivial partial order such that d ≤ι d, for all d ∈ D;

• [[ιn → ι]]D = Dn → D. A partial order in this case will not be needed;

• [[ι→ π]]D = D → [[π]]D, and ≤ι→π is the partial order defined as follows: for
all f, g ∈ [[ι→ π]]D, f ≤ι→π g iff f(d) ≤π g(d) for all d ∈ D;

• [[π1 → π2]]D = [[[π1]]D
m→ [[π2]]D], and ≤π1→π2

is the partial order defined as
follows: for all f, g ∈ [[π1 → π2]]D, f ≤π1→π2

g iff f(d) ≤π2
g(d) for all

d ∈ [[π1]]D.

Moreover, we have the following relations vα on our domains:

• The relation vα on [[o]]D is the relation vα on V .

• The relation vα on [[ρ → π]]D is defined as follows: f vα g iff f(d) vα g(d)
for all d ∈ [[ρ]]D.



324 Angelos Charalambidis and Panos Rondogiannis

The following lemma can then be established following the results of [4]:

Lemma 2. Let D be a non-empty set and π be a predicate type. Then, ([[π]]D,≤π)
is a complete lattice and a model.

For the rest of the section we focus on Herbrand interpretations and we assume
for a program P, D = UP where UP is the Herbrand universe and therefore we
simple write [[τ ]] instead of [[τ ]]UP

. A Herbrand interpretation I for a program P is
a function that maps a predicate of type π to an element of [[π]]. The set of all the
interpretation of P is denoted by IP. It follows directly from the results of [4] that
IP is a complete lattice and a model. A Herbrand state s is a function that assigns
to each argument variable V of type ρ, of an element s(V) ∈ [[ρ]]UP

.
Let I be a Herbrand interpretation and s be a Herbrand state. The semantics

of expressions with respect to I and s, is defined as follows:

1. [[false]]s(I) = F0

2. [[true]]s(I) = T0

3. [[c]]s(I) = I(c), for every individual constant c

4. [[p]]s(I) = I(p), for every predicate constant p

5. [[V]]s(I) = s(V), for every argument variable V

6. [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for every n-ary function sym-
bol f

7. [[(E1E2)]]s(I) = [[E1]]s(I)([[E2]]s(I))

8. [[(λV.E)]]s(I) = λd.[[E]]s[V/d](I), where d ranges over [[type(V)]]D

9. [[(E1

∨
π E2)]]s(I) =

∨
π{[[E1]]s(I), [[E2]]s(I)}, where

∨
π is the lub function on

[[π]]D

10. [[(E1

∧
π E2)]]s(I) =

∧
π{[[E1]]s(I), [[E2]]s(I)}, where

∧
π is the glb function on

[[π]]D

11. [[(∼E)]]s(I) =


Tα+1 if [[E]]s(I) = Fα

Fα+1 if [[E]]s(I) = Tα

0 if [[E]]s(I) = 0

12. [[(E1≈E2)]]s(I) =

{
T0, if [[E1]]s(I) = [[E2]]s(I)
F0, otherwise

13. [[(∃VE)]]s(I) =
∨
d∈[[type(V)]]

D

[[E]]s[V/d](I)

Definition 6. Let P be a program and let M be a Herbrand interpretation of P.
Then M will be called a model of P iff for all clauses p ←π E of P, it holds
[[E]](M) ≤π M(p), where M(p) ∈ [[π]].



Overview of an Abstract Fixed Point Theory 325

We can now define the immediate consequence operator for our language:

Definition 7. Let P be a program. The mapping TP : IP → IP is defined for every
p : π and for every I ∈ IP as

TP(I)(p) =
∨
{[[E]](I) : (p←π E) ∈ P}

As it turns out, TP enjoys the α-monotonicity property [1]:

Lemma 3. For all α < κ, TP is α-monotonic.

We now have all we need in order to apply the main Theorem of [4], getting the
following result [1]:

Theorem 3 (Least Fixed Point Theorem). Let P be a program and let M be the
set of all its Herbrand models. Then, TP has a least fixed point MP which is the
least model of P.

4 Conclusions

We have presented an overview of the abstract fixed point theory developed in [4]
and its application [1] on a very broad class of logic programs, namely higher-order
logic programs with negation. It is our belief that the framework of [4] can find other
interesting applications, especially ones where non-monotonicity plays a prevailing
role. In particular, we believe that an area that has not yet been sufficiently
explored is that of non-monotonic formal grammars. In [3] it was demonstrated that
the semantics of Boolean grammars can be easily captured through an extension
of the framework of [4]. However, it is conceivable to have other non-monotonic
extensions of formal grammars apart from the Boolean ones, such as for example
macro-grammars with conjunction and negation in rule bodies. We believe that
the results of [1] can be used as a yardstick in order to approach the semantics of
such grammar formalisms.

References

[1] Charalambidis, Angelos, Ésik, Zoltán, and Rondogiannis, Panos. Minimum
model semantics for extensional higher-order logic programming with negation.
TPLP, 14(4-5):725–737, 2014.

[2] Ésik, Zoltán. Equational properties of stratified least fixed points (extended
abstract). In de Paiva, Valeria, de Queiroz, Ruy J. G. B., Moss, Lawrence S.,
Leivant, Daniel, and de Oliveira, Anjolina Grisi, editors, Logic, Language, In-
formation, and Computation - 22nd International Workshop, WoLLIC 2015,
Bloomington, IN, USA, July 20-23, 2015, Proceedings, volume 9160 of Lecture
Notes in Computer Science, pages 174–188. Springer, 2015.



326 Angelos Charalambidis and Panos Rondogiannis

[3] Ésik, Zoltán and Rondogiannis, Panos. Theorems on pre-fixed points of non-
monotonic functions with applications in logic programming and formal gram-
mars. In Kohlenbach, Ulrich, Barceló, Pablo, and de Queiroz, Ruy J. G. B.,
editors, Logic, Language, Information, and Computation - 21st International
Workshop, WoLLIC 2014, Valparáıso, Chile, September 1-4, 2014. Proceedings,
volume 8652 of Lecture Notes in Computer Science, pages 166–180. Springer,
2014.

[4] Ésik, Zoltán and Rondogiannis, Panos. A fixed point theorem for non-monotonic
functions. Theor. Comput. Sci., 574:18–38, 2015.

[5] Rondogiannis, Panos and Wadge, William W. Minimum model semantics for
logic programs with negation-as-failure. ACM Trans. Comput. Log., 6(2):441–
467, 2005.


