
Acta Cybernetica 25 (2022) 753–779.

Towards a Generic Framework

for Trustworthy Program Refactoring∗

Dániel Horpácsiabc, Judit Kőszegibd, and Dávid J. Némethbe

Abstract

Refactoring has to preserve the dynamics of the transformed program with
respect to a particular definition of semantics and behavioural equivalence.
In general, it is rather challenging to relate executable refactoring implemen-
tations with the formal semantics of the transformed language. However, in
order to make refactoring tools trustworthy, we may need to provide formal
guarantees on correctness. In this paper, we propose high-level abstractions
for refactoring definition and we outline a generic framework which is capable
of verifying and executing refactoring specifications. By separating the var-
ious concerns in the transformation process, our approach enables modular
and language-parametric implementation.

Keywords: refactoring, domain-specific language, refactoring methodology,
formal verification

1 Introduction

The idea of refactoring is as old as high-level programming. A program refac-
toring [7] is typically meant to improve non-functional properties, such as the in-
ternal structure or the appearance, of a program without changing its observable
behaviour. Tool support is necessary for refactoring in large-scale: it has to be en-
sured that program changes are complete and sound, the behaviour is intact and no
bugs are introduced or eliminated by the transformations. Refactoring tools may

∗The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

aProject no. ED 18-1-2019-0030 (Application domain specific highly reliable IT solutions sub-
programme) has been implemented with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
funding scheme.

bELTE Eötvös Loránd University, Budapest, Hungary, and Faculty of Informatics, 3in Research
Group, Martonvásár, Hungary

cE-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091
dE-mail: koszegijudit@elte.hu, ORCID: 0000-0003-1915-4176
eE-mail: ndj@inf.elte.hu, ORCID: 0000-0002-1503-812X

DOI: 10.14232/actacyb.284349

mailto:daniel-h@elte.hu
https://orcid.org/0000-0003-0261-0091
mailto:koszegijudit@elte.hu
https://orcid.org/0000-0003-1915-4176
mailto:ndj@inf.elte.hu
https://orcid.org/0000-0002-1503-812X
https://doi.org/10.14232/actacyb.284349


754 D. Horpácsi, J. Kőszegi, and D. J. Németh

carry out extensive modifications in large projects, which are hard to be performed
or comprehended by humans.

Generally speaking, the primary goal of a refactoring framework is to provide
automatic tool support for behaviour-preserving (semantics-preserving) program
rewriting. Additional general design goals may include support for interactive
execution, multiple target languages or extensibility via user-defined transforma-
tions. Trustworthiness of refactoring implementations is usually backed by excessive
amounts of testing, but research keeps looking for possibilities of formally specifying
and verifying the correctness of program transformations. Whether a refactoring
tool gets widely adopted highly depends on the extensibility and the trustworthiness
of the solution.

Refactoring, from the programmer point of view, is an editor or dedicated tool
function that helps modify the program in a well-understood way, increasing code
quality. From the tool designer point of view, it is a complex process of creating and
analysing a program model, locating elements of interest, and rewriting of the model
to an equivalent model. In the typical case, these aspects of the process are mixed
up, resulting in a hardly extensible, language-specific tool, which is unreasonably
difficult to formally verify.

Our aim with this paper is to outline a generic design for a refactoring framework
that has all the above-mentioned features: it uses executable and extensible defini-
tions, supports multiple languages and enables semi-automatic formal verification.
In particular, we present abstractions for program representation and refactoring
definition, and we describe a language-parametric architecture that can be tailored
to programming languages of different paradigms by supplying the formal defini-
tion of the language along with some refactoring schemes. The main contributions
of this paper are:

• Design of a generic refactoring approach that supports executable and semi-
automatically verifiable transformations via language-specific semantic pred-
icates and refactoring schemes;

• Description of a language-parametric framework with language-specific arte-
facts and language-independent components, with a guideline on how the
framework is tailored for a particular language;

• Testimonials of applying the above-mentioned framework to languages of two
different programming paradigms.

We structure the rest of the paper as follows. First, we survey related work in
Section 2, focusing on language-agnostic approaches and proven-correct refactoring.
Then, we present high-level abstractions for defining transformations, which enable
language-parametric implementation and formal verification (Section 3); this sec-
tion is partly based on our previous work [11]. It is followed by the demonstration
of the generic refactoring framework and its components in Section 4, and then
we outline the main concerns with instantiating the framework for functional and
object-oriented languages (Section 5). Finally, we conclude the paper after a brief
discussion of our results.



Towards a Generic Framework for Trustworthy Program Refactoring 755

2 Related work

There are various approaches to specifying and implementing refactoring, which
vary in terms of the model they use for representing programs, in the abstraction
level they use for specifying program semantics and program transformations, as
well as in the level of guarantees they can provide on correctness. In this section,
we overview the most important and influencing related work.

Preliminaries. In this paper, we use the terms object language or target language
when referring to the programming language we aim to refactor. By static seman-
tics, we mean the context-dependent part of the syntax (e.g. name binding and type
information), as well as additional (possibly dynamic) semantic properties that can
be statically extracted from, or approximated based on, the source code (such as
purity, control flow and data flow). Dynamic semantics is the formal definition of
program run-time behaviour, presumably given in small-step operational style or
in reachability logic [24]. By refactoring correctness we mean that the transforma-
tion turns any program into a semantically equivalent program. This correctness
property could be checked after each application of the refactoring (i.e. whether a
particular execution of a transformation was correct), but in our research we aim
at verifying the definition itself, i.e. formally reasoning about the transformation
being correct applied to any program.

Compositional definition of refactoring. Although the abstractions for defin-
ing refactoring are varying from approach to approach, almost all solutions incorpo-
rate the fundamental work of Opdyke [21] that suggests refactorings be composed
of basic steps called micro-refactorings. Simpler transformations are easier to read,
write and to verify; on the other hand, decomposition of extensive refactorings
to simple steps may require experience and considerable effort. Having said that,
the compositional approach enables modularity both in definition, execution and
in verification, and is therefore inevitable in designs where generality and formal
verification are among the design goals.

Refactoring framework. Roberts [22] designed one of the first dedicated frame-
works for implementing refactoring transformations. He states that refactoring
tools should a) be completely automated; b) be provably correct and c) offer com-
plex refactorings composed from primitive ones. We strongly share these funda-
mental design goals in our own approach, and in addition, we believe that even the
primitive refactorings should be user-definable.

Widely used general-purpose programming languages have all gained their own
language processor environments which support analysis and transformations on a
model of the program, even functional programming languages, such as Haskell or
Erlang. In fact, our approach born as a generalization of a refactoring framework [2]
and its API designed for the Erlang programming language. The Erlang-specific
solution was summarized along with a case study in [11].



756 D. Horpácsi, J. Kőszegi, and D. J. Németh

Language-agnostic approaches. Language-independent specification of refac-
torings is an idea that pops up regularly, addressing the problem of semantics-
preserving program transformation with generic program representations, analysis
and traversal functionality. Lämmel [14] proposes a generic refactoring system
based on Strafunski-style generic functional programming. It states that a refac-
toring can be described by a number of steps of the following kind: a) identification
of fragments of a certain type and location; b) destruction, analysis, and construc-
tion; c) checking for pre- and postconditions and d) placing, removing or replacing
a focus. Just like with work by Roberts, we strongly agree with Lämmel’s thoughts
about separation of concerns. In particular, we suggest that refactoring should
be phrased as a composition of analysis and transformation, where transformation
consists of pre-condition checks and actual rephrasing of the program model by
using language-agnostic strategies.

Another branch of language-independent transformation specification is based
on an XML-based program representation. RefaX [20] brings the premise of a fully
language- and model-independent refactoring tool by using XML, while Jrbx [19]
generalizes this idea by adding fairly generic static semantic analysis. We share the
aim of these approaches, but we add verifiability of transformations at reasonable
cost as an additional primary requirement.

Specific languages for refactoring. Designing domain specific languages for
refactoring programming is also an established idea, there are related results for
different object languages with different representations. Some of these define the
entire code transformation logic including term-level rewriting, while some only
offer a formalism for composing atomic steps in a convenient way.

In the former case, when the refactoring operates on the level of the program
model, the actual program representation highly determines the abstraction level
of the patterns and the transformation primitives. Gómez et al. [10] introduce a
generic model for representing programs and their history, pushing the boundaries
of regular program representations in order to support a wide variety of language
processing methods.

Rewrite-based transformation languages use different kinds of patterns to match
and construct program models. Leitão [16] gives an executable, rewrite-based refac-
toring language with expressive patterns, Verbaere et al. [28] propose a compact,
representation-level formalism for executable definitions. These formalisms are ex-
pressive and language-independent, but at this level of generality, correctness checks
for refactoring definitions would become practically unfeasible. Rich and high-level
program patterns are presented by Gil et al. [9] in their language for defining pro-
gramming idioms in Java.

Languages for composing already existing transformations exist as well: Kniesel
and Koch [12] put the emphasis on ensuring correct composition of transformations,
and for Erlang, Li and Thompson [17] define an API for describing prime refactor-
ings and a feature-rich language for interaction-aware composition.



Towards a Generic Framework for Trustworthy Program Refactoring 757

Proven-correct refactoring. For the object-oriented paradigm, Schaefer and de
Moor introduce a system [26] in which they reason about semi-formal definitions
of a set of basic refactorings. This is a very influencing piece of work, but they
focus on preserving static semantic properties, not dynamics. Roberts [23] applies
a different definition style, with an emphasis on the side-conditions and proper
composition of the base refactorings. Neither of them provides formally verified
and executable definitions.

There are some results [27] in defining provably correct refactorings for simple
languages, and also some mechanised proofs exist even for modern laguages and
real-world use cases [6, 25]; on the other hand, these are specific to one particular
transformation, and do not allow for defining custom transformations or provide
verification for those. [8] presents a preliminary work on defining verifiable and
executable refactoring in Maude, with a similar approach to ours as to rewriting-
based definitions, but their definitions are very low-level and hardly readable, out
of reach for the average programmer to specify their own transformations.

3 Refactoring definition

Before describing the refactoring framework itself, we elaborate on the abstractions
to be used for defining refactoring program transformations. We start by separating
concerns. Analysis, condition checking and transformation are seemingly interde-
pendent phases of the refactoring process, but by careful separation we can make
the definition less error-prone [18] and enable a more modular implementation.
Then, we introduce the refactoring definition abstractions that allow us to define
transformations in a high-level and compositional way and enable semi-automatic
formal verification for consistency. We end this section by exploring the conse-
quences of defining the transformation with the proposed abstractions, and analyse
how it loosens and simplifies the dependencies among the various components of
the refactoring framework. This refined dependency structure lets the language-
independent components be parametrised with language-specific artefacts and will
lead us to a language-parametric framework.

3.1 The refactoring business logic

Refactoring implementations define their input and output as program text in con-
crete language syntax; however, under the hood, the text is usually turned into
an intermediate representation (model) which is further analysed and transformed,
and finally, the model is printed back to text. If we properly separate these phases,
we can define the refactoring as a composition of analysis, transformation and
synthesis.

Text
analysis−−−−−−−−−−−→Model

transformation−−−−−−−−−−−−−−−−−−−→Model
synthesis−−−−−−−−−→ Text



758 D. Horpácsi, J. Kőszegi, and D. J. Németh

The model we talk about here is a high-level program representation, such as an
abstract syntax tree (AST), a higher-order abstract syntax tree or an abstract
semantic graph (ASG). In this model, we do not suppose the program logic or
high-level architecture to be present (like a UML model) — it is more like a graph
that captures the grammatical structure and possibly the static semantic properties
of the transformed program. The level of detail in this graph model may vary, we
address this question in the next section.

Let us define what we mean by the phases of refactoring:

• Analysis is the process of extracting the information from the textual format
that is necessary for checking the refactoring side-conditions and locating
program elements to be changed by the transformation.

Analysis can be further divided into two steps: syntactic analysis (parsing)
and semantic analysis. Parsing yields a structure tree for the text, then
static semantic analysis computes an approximation of fundamental seman-
tic properties of program entities, such as binding relations, data-flow and
control-flow.

• The model transformation is the actual business logic of the refactoring. It
takes place in the middle of the process, given as a (deterministic) relation
that maps program models to equivalent program models.

Transformation : Model→ Model

Typically, this function is defined as the semantics of an algorithm written
in a programming language or a description in a domain specific language,
which does traversals on the model to gather semantic information and carry
out rewriting.

• Synthesis turns the model back to textual format and obtains the result of
the refactoring. We suppose that the model contains the original layout and
names of the program and it can be pretty-printed to concrete syntax, but we
note that for some higher-level models it may be necessary for the synthesis
to incorporate the original text as well.

The strict separation of analysis, model transformation and synthesis simplifies
the definition and verification of refactoring transformations, yet the composition
of these steps can precisely define the original text transformation. Refactorings
may have context-sensitive side-conditions requiring thorough inspection of static
semantic properties and therefore complex semantic analysis, but in the rest of the
paper, we focus on the model transformation phase.

In particular, from now on by refactoring we mean the model transformation
and not the text transformation. In the refactoring definition we omit the collection
or extraction of static semantic information, and the formal verification of our
refactoring definition only proves the model transformation correct, not the text
transformation – analysis and synthesis are trusted components in the system.



Towards a Generic Framework for Trustworthy Program Refactoring 759

Level of model abstraction

The complexity of the refactoring definition highly depends on the program model,
and the abstraction level of the model affects the complexity of the analysis as well.
As it will be demonstrated, the boundary between analysis and transformation is
movable by adjusting the level of detail in the model. In this sense, analysis is not
the process of building the program model but the extraction of static semantics,
which may happen alongside the transformation. Apparently, the more detailed
the model is, the less analysis-related traversal takes place during transformation.

Simple model. If the model does not contain details on the static semantics of
the program, the transformation gets more complex as it has to carry out analysis
tasks. In a corner case, the analysis only does parsing; thus, the program model is
a syntax tree and the transformation has to conduct semantic analysis (syntax tree
traversals) for checking the side-conditions of the refactoring (see Figure 1). In this
case, transformation definitions are overly complex and they are out of reach when it
comes to formal verification of semantics-preservation, or even to check termination
properties of analysis and transformation. For instance, in the optimisation steps
discussed in [3], traversal strategies carry out behaviour-preserving transformations
by linking analysis and term rewriting, and the drawbacks of this approach are
discussed in [18].

Text
parsing−−−−−→ AST

analysis+transform.−−−−−−−−−−−−−→ . . .
analysis+transform.−−−−−−−−−−−−−→ AST

deparsing−−−−−−→ Text

Figure 1: Refactoring with tree rewriting

Detailed model. A complex enough static analysis can build a model detailed
enough that enables the transformation to check the side conditions by simple
queries in the model. This is a trade-off: a more complex static semantic analysis
may be harder to reason about, but cuts the complexity from the transformation,
making both of them tractable. In the corner case, the model can be so detailed so
that predicates in side-conditions are one-to-one mappings to model elements and
no analysis-related operations take place during transformation (see Figure 2).

Text
parsing−−−−−→ AST

analysis−−−−−→ ASG
transform.−−−−−−−→ . . .

transform.−−−−−−−→ ASG
synthesis−−−−−−→ Text

Figure 2: Refactoring with graph rewriting

Since our main goal with this refactoring framework is to make definitions generic
and trustworthy, we aim at using a high-level and detailed program model. This
model extends the syntax tree with information on binding, types, data-flow and



760 D. Horpácsi, J. Kőszegi, and D. J. Németh

control-flow, and even on purity and non-functional properties, so that the refac-
toring definition side-conditions can be expressed in terms of concepts of the pro-
gramming language we refactor, and more importantly, analysis and transformation
concerns are fully separated. In the case of the Erlang prototype implementation of
the proposed framework (see Section 5.2), we rely on the semantic program model
introduced in [2].

Tree rewriting in the graph. According to Figure 2, the refactoring trans-
formation is a mapping from semantic graphs to semantic graphs, which suggests
that it is easiest defined with a graph rewrite system. Nonetheless, the figure also
suggests that any AST can be mapped to the corresponding ASG with static se-
mantic analysis. In practice, the ASG is a proper extension of the AST, containing
additional edges and nodes that represent static semantic information.

In our approach we divide the model into its syntactic and semantic parts and
work with the model like this: we carry out a transformation on the syntax tree
whilst using the semantic layer for checking transformation validity. The result of
the transformation is semantic graph containing no semantic elements, so it is re-
analysed to obtain the semantic graph prior to further transformation. Since both
the AST and the ASG are understood as properly formed models, we can refine the
previous signature for transformations discussed in the beginning of this section:

Transformation : ASG→ AST

Note that although this approach alternates analysis and transformation (see Fig-
ure 3), it keeps these phases completely separated (unlike in Figure 1), so still realise
separation of concerns . Implementing the transformation as a function from graphs
to trees provides a good strategy towards defining trustworthy refactoring in terms
of semantics-constrained term rewrite rules for which we introduce abstractions in
the following section.

. . . AST
analysis−−−−−→ ASG

transformation−−−−−−−−−→ AST
analysis−−−−−→ ASG

transformation−−−−−−−−−→ . . .

Figure 3: Refactoring with semantics-constrained tree rewriting

Summary of assumptions on the model. In the rest of the paper, we assume
that the refactoring is defined on a high-level model that captures program syntax
and static semantics. The transformation on this model maps the tree along with
the static semantic properties into a transformed tree. We will also assume that the
model’s semantic layer captures all program properties that may be needed to tell
side-conditions of refactorings (e.g. name references, data-flow relations or purity of
expressions). These target language-level concepts are defined by a set of so-called
semantic predicates, which will be used in the side-conditions of refactorings.



Towards a Generic Framework for Trustworthy Program Refactoring 761

3.2 Abstractions for defining transformations

This section surveys how refactorings in the proposed framework are defined such
that they provide trustworthiness and enable genericity. These goals are mainly
achieved by keeping the refactoring definition high-level (independent of the repre-
sentation and the target language), declarative (expressing what to do rather than
how to do) and compositional (small definitions combined into bigger ones). We
review the refactoring definition abstractions proposed in our previous work [11],
and at the same time, we investigate how these abstractions allows for a generic
and modular implementation of interpretation and verification.

First of all, higher abstraction level in the definition means less details men-
tioned explicitly, which reduces the complexity of the definition and the potential
for making mistakes. This may come with a performance penalty, but assuming
that trustworthiness is more important than efficiency, it is reasonable to opt for
higher-level abstractions (as opposed to low-level transformation primitives). For
instance, in the context of refactoring, using term rewriting is clearly safer than
direct manipulation of the syntax tree as it excludes the risk of constructing struc-
turally invalid subtrees and therefore creating an invalid model.

Careful selection of the transformation abstractions can also make the defini-
tions more amenable to formal verification, further increasing trustworthiness: for
instance, refactoring schemes allow us to argue about the correctness of the pro-
gram transformations in terms of verifying a set of program patterns for semantics
equivalence instead of proving imperative term rewrite algorithms correct. This is
similar to composing imperative programs with algorithmic skeletons that correctly
implement compound control patterns and enable programmers to write complex
programs without mentioning the low-level details. Again, this comes with a rea-
sonable penalty: not all program transformations will be expressible with this set
of abstractions, but the goal is to be able to define meaningful refactorings in a way
that allows for semi-automatic formal verification.

Last but not least, the high-level definitions can be given in a language that does
not depend on the representation of programs nor on the particularities of the tar-
get programming language, enabling a fairly generic implementation parametrised
with language-specific components. The resulting modular framework showcases
reusable, language-independent components, as well as it provides trustworthiness
by reducing the complexity of individual components (see details in Section 4).

Strategic term rewriting with semantic predicates

The transformation function over models could be defined imperatively, but we
aim at defining it as declaratively as possible — as mentioned above, declarative
programs contain less details as to how the execution takes place and thus they
tend to be more reliable. As one of the building blocks, we employ conditional
term rewrite rules to define local tree transformations. This formalism abstracts
over the imperative steps of term traversal, pattern matching and replacement
construction, serving as a declarative description of simple rewrite steps.



762 D. Horpácsi, J. Kőszegi, and D. J. Németh

Conditional term rewrite rules consist of two patterns and a condition expres-
sion:

matching pattern
conditions

replacement pattern

In such a rule, the matching and replacement patterns are first-order terms: they
can contain metavariables to extract subterms and use those to construct new terms.
In the typical formalisation, the condition is a statement on the rewrite relation
itself, potentially referring to the metavariables bound via pattern matching. The
set of rules can be interpreted as a normalising term rewrite system by assuming
exhaustive application of rules.

Strategic term rewriting improves on ordinary systems by introducing explicit
control and context for rewrite rule applications, which is more suitable for defining
refactoring transformations. We will use a generalised variant of strategic term
rewriting to define transformations over the syntactic part of the semantic program
model. In order to accommodate the principle of separation of concerns explained
in the previous section, we generalise strategic term rewriting in several aspects:
we define conditions in terms of a logic formula using language-specific semantic
predicates (metatheory), as well as we introduce strategies that use static semantic
properties to control the term rewrite rule application. This latter idea of semantics-
driven strategies, so-called refactoring schemes, provides fully declarative definition
for extensive program transformations as it hides the rule application control under
generic control schemes.

Semantic conditions. As mentioned already, [18] gives in-depth explanation
of how difficult it may be to reason about side-conditions expressed in terms of
reachability statements. To overcome this issue, unlike traditional term rewriting,
we do not refer to the rewrite relation in the condition; instead, the conditions
are logic formulae over a predicate set characterising the abstractions of the object
language. With this design decision, we fully detach analysis and transformation
in the refactoring definition, which will allow for a generic implementation in the
framework.

Semantic predicates in our approach have two interpretations: they can be eval-
uated over a particular program model, or can be mapped to a set of axioms in the
dynamic semantics of the target language. This latter is of great importance from
the verification point of view. For instance, the predicate pure can be evaluated by
checking the expression for any side-effects, while the axiomatic specification tells
that such an expression can be moved in the control chain while preserving control
and data flow (for example usage, see Listing 3).

Refactoring schemes. In general, single conditional rewrite rules can only define
local changes, so-called local refactorings. On the other hand, many refactorings
span over entire projects and are inherently extensive: they affect many locations
in the program, which have to be modified consistently. Strategic term rewrit-
ing offers simple operations [29] for combining simple (or local) transformations



Towards a Generic Framework for Trustworthy Program Refactoring 763

with e.g. sequential composition, branching or fixed-point operation, but from the
trustworthiness point of view, these combinators are too permissive and tedious
to formally tackle. Refactoring is a very special case of program transformation,
which gives rise to the idea of strategies specific to program refactoring. We call
these refactoring schemes.

Schemes are special strategies that combine conditional rewrite rules, and are
defined using ordinary control strategies as well as target modifying strategies com-
bined with semantic predicates. They provide a high-level notation for extensive
changes, hiding the control primitives and providing a surface language for defining
consistent program transformations in a declarative way. Again, schemes pose a
restriction on the sorts of expressible transformations, but dividing the definition
to multiple levels will allow us to implement the execution modularly and carry out
semi-automatic formal verification.

Consistency. The key concept behind schemes is dependency: extensive trans-
formations have to follow dependency chains in the program, visit and change those
program elements consistently that are interdependent. Schemes can be driven by
dependencies induced by data flow or name binding. Correctness proof for a scheme
is as hard as proving an imperative strategy correct; however, the method divides
the proof in half: verification of the scheme and the verification of the instantia-
tion. In our design, the second half can be carried out semi-automatically as it
boils down to machine-checkable expression pattern equivalences.

Dependencies vary from language to language; hence, our method supposes
that the set of pre-verified refactoring schemes are defined for each object language
the framework is instantiated for, based on the static semantics of the language.
Consequently, although the idea of schemes is language-independent, the concrete
schemes we define the transformations with are specific to the object language. In
the following section, schemes will be identified as artefacts attached to the object
language definition.

Refactoring compositionality

The abstractions for defining local and scheme-based extensive refactorings are
supposed to be micro-refactorings: they carry out the least possible amount of
transformation steps which form a consistent change in the program. The smaller
the steps, the more trustworthy and more easily verifiable they are. Once such
a micro-step is proven to be semantics-preserving, it can be combined with other
refactoring steps, and the result will be another, compound refactoring.

Our specification language facilitates a sub-language specific to combining refac-
toring transformations. The steps can be combined by means of basic imperative
control: sequencing, branching and (bounded) iteration. These combinators are
compositional: if the steps they combine are behaviour-preserving, the resulting
transformation will be behaviour-preserving as well. In the end, complex refactor-
ings are defined by decomposition to smaller refactoring steps that are defined as
instances of refactoring schemes.



764 D. Horpácsi, J. Kőszegi, and D. J. Németh

Examples of refactoring definitions

To facilitate the refactoring definition abstractions introduced in this section, we
propose a domain-specific language (DSL) [13] for refactoring. Definitions in the
refactoring specification language are both executable (can be mapped to a com-
putable model transformation function) and are semi-automatically verifiable (be-
haviour preservation can be formally checked by verification of automatically syn-
thesized formulae).

Syntax rewrite rules are written in the inference rule notation, patterns are ex-
pressed in the concrete syntax of the object language. In the patterns, metavariables
are distinguished from ordinary variables by using a kind of quotation syntax (e.g.
#varname) or extra predicates (e.g. is_var(VarName)). In the Erlang prototype, the
normal variable syntax is used for metavariables and target language variables are
matched with conditions. Metavariables followed by double-dot match consecutive
syntactic elements. Schemes are instantiated with rewrite rules, and refactorings
are combined in simple scripts. We showcase some examples borrowed from [11],
defined for Erlang [4] as the object language.

Local refactoring. Simple, local changes are expressed with conditional term
rewrite rules, where conditions are first-order logic formulae constructed with se-
mantic predicates defined by the language metatheory. Listing 1 defines a transfor-
mation that encloses an expression into a lambda-abstraction, supposing that the
expression does not bind any variables that are referred to by its context (predicate
non_bind). This definition also demonstrates the usage of matching conditions [29]:
the list of free variables (free_vars) is bound to a metavariable (Vars..) and is being
used in the replacement pattern.

local refactoring wrap()
E
-------------------------------
(fun(Vars ..) -> E end) (Vars ..)

when
Vars.. = free_vars(E) and non_bind(E)

Listing 1: Wrap expression refactoring

Extensive refactoring. Extensive changes are defined as reductions to refac-
toring schemes. For instance, a scheme for Erlang is function refactoring, which
takes two rewrite rules and visits the definition and the references of the function.
References may include intra-module and inter-module function applications, both
first-order and higher-order. The patterns given in the parameter rewrite rules de-
fine the way the dependent program parts are changed. For the scheme instance
to be correct, the two parameter rewrite rules have to be consistent.

The function refactoring scheme can be used for implementing various refactor-
ing steps: renaming a function (Listing 2), reordering and grouping its arguments.



Towards a Generic Framework for Trustworthy Program Refactoring 765

function refactoring rename_function(NewName)
definition

Name(Args ..) -> Body..
-------------------------
NewName(Args ..) -> Body..

reference
Name(Args2 ..)
---------------
NewName(Args2 ..)

Listing 2: Rename function refactoring

Interestingly enough, the very same scheme can be used to move a binding from
the function body to its signature, introducing a new parameter to the function. In
this latter case (see Listing 3), the scheme instantiation contains an extra condition
expressing that the expression moved from the body to the call site is pure (does
not cause any side effects) and closed (does not contain any free variables).

function refactoring var_to_param(X)
definition

Name(Args ..) -> X = E, Body..
-----------------------------
Name(Args.., X) -> Body..

reference
Name(Args2 ..)
----------------
Name(Args2.., E)

when pure(E) and closed(E)

Listing 3: Top-level local variable to function parameter refactoring

Composite refactoring. Let us consider a simple refactoring that lifts a local
variable from the function body to the function scope, as a new parameter. This
transformation can be decomposed to 1) iteratively lifting the variable to outer
scopes (outer_variable) and 2) adding it as a parameter (var_to_param) once it is
a top-level variable. This composition of refactorings can be expressed by itera-
tion and sequential composition, as scripted on Listing 4 (the pseudovariable This

refers to the object language variable that was selected as the target of the trans-
formation). Note that in these composite refactorings, transformations are applied
to program elements determined by so-called selector functions; in this example,
function selects the enclosing function of the variable originally chosen as refactor-
ing target.

refactoring to_function_parameter ()
do

iterate This.outer_variable ()
function(This).var_to_param(This)

Listing 4: Local variable to function parameter refactoring



766 D. Horpácsi, J. Kőszegi, and D. J. Németh

Dependencies untangled

A refactoring framework is said to be language-generic if it is either language-
parametric or easily adapted to different programming languages. This aim is highly
supported by the abstractions with which we express the implemented refactorings.
In this section, we have explained the assumptions we make on the refactoring
definition and the abstractions we use for specifying transformations. In particular,
term rewriting lets us abstract over tree manipulation, semantic predicates and
conditions let us separate analysis from transformation, whilst refactoring schemes
serve as another parameter to a generic yet trustworthy implementation.

The refactoring specification formalism, apart from the syntax of the patterns
in the rewrite rules, is independent of the object language (we note that although
predicates are language-dependent, the condition language over predicate symbols
is language-independent). We achieve this language-independence by untangling
the dependencies among parsing, semantic analysis, condition checking, transfor-
mation and synthesis, and by incorporating the idea of algorithmic skeletons into
refactoring. With this, we can decouple the language-independent parts from the
language-specific elements, and we can define the latter as plug-in components. In
particular, the object language is injected into the framework in terms of defini-
tions for syntax (context-free grammar with metavariable format), static semantics
(axiomatic semantic predicates), dynamic semantics (small-step rules) and schemes
(semantics-directed strategies).

4 Refactoring framework

The previous section described the abstractions we can use for specifying refactor-
ing transformations in a rather generic way. The proposed specification language is
independent of the object language1, and it can be interpreted in a generic frame-
work parametrized by the definition of the object language. In this section, first we
overview the artefacts that parametrise the framework for a particular program-
ming language, then we introduce the components that implement execution and
verification of refactoring definitions.

4.1 The object language definition

The following artefacts define the programming language whose sentences are to
be refactored. Essentially, they provide a formal definition of the language in
question, as well as they define the refactoring idioms that transform program
entities according to their control and data dependencies in the object language.

1Although if we use concrete syntax in term rewrite rules, the syntax definition of the object
language is needed for parsing first-order terms.



Towards a Generic Framework for Trustworthy Program Refactoring 767

Context-free syntax

Parsing and deparsing of both input programs and program patterns in rewrite rules
can be driven by a single context-free grammar definition, with pattern parsing
also guided by the definition of metavariable format [15]. The definition of the
object language syntax can be given in the usual BNF-like notation, and bottom-
up parsers can be generated from it. In addition, it has to contain the abstract
syntax description since the internal representation of both programs and program
patterns is based on the AST.

Static semantics (metatheory)

The metatheory is defined in terms of a set of decidable semantic predicates supplied
with two different interpretations (or semantics if you like):

• Evaluation of the predicate on a given model, yielding true or false. This part
of the definition is used in the execution components of the framework, in
particular the condition evaluation directly refers to the predicate evaluation
defined in the metatheory.

• Axiomatic specification in terms of semantic rules which can be used when
arguing about semantic equivalence. This part of the definition is used by the
verification component in the framework: when proving conditional pattern
equivalence, the semantic conditions are mapped to a set of hypotheses in
terms of small-step semantic rules.

It is apparent that these two interpretations of the predicates need to be consistent:
every time a predicate evaluates to true, the hypotheses on the dynamic semantic
have to be valid. This can be checked with respect to the dynamic semantics
definition of the language, but the details of this problem are out of the scope of
this paper.

Dynamic semantics

The semantics artefact for the object language contains two definitions: the speci-
fication of program behaviour and the characterisation of semantic equivalence be-
tween programs, program fragments or program configurations.

The framework is designed to facilitate a small-step operational-style definition
of semantics. During verification, the semantics rules can be used for symbolic
rewriting of program patterns checked for semantic equivalence [5]. Recall that
neither the semantics nor the behavioural equivalence is incorporated in the refac-
toring side-condition specification; thus, the execution part of the framework is
independent of the dynamic semantics of the object language.



768 D. Horpácsi, J. Kőszegi, and D. J. Németh

Figure 4: Components and artefacts in the refactoring framework

Refactoring schemes

Schemes are language-specific refactoring idioms (or transformation templates),
which are parametrised by conditional term rewrite rules. Like for semantic pred-
icates, for schemes we need to provide two interpretations (or semantics) in their
definition:

• From the operational point of view, schemes are transformation skeletons,
which can be expanded to strategic term rewritings. Thus, it has to be
defined how the declaratively specified scheme is expressed in an imperative
strategy that applies rewrite rules at appropriate locations in the program
model.

• From the verification point of view, schemes need to be mapped to logic formu-
lae that express the correctness property of the extensive refactoring described
with them. Our proof-of-concept implementation translates scheme instances
to a set of conditional equivalence formulas over the dynamic semantics of
the language.

4.2 Framework components

As discussed above, the framework (see Figure 4) is parametrised by the definition
of the object language given with carefully designed abstractions. Once the frame-
work is tailored to a language, language-specific transformations can be checked
for correctness or can be run. In particular, the refactoring definition (given as



Towards a Generic Framework for Trustworthy Program Refactoring 769

a specification in the formalism discussed in Section 3.2) determines a semantics-
constrained term rewriting relation, which can either be checked for correctness, or
it can be executed on a particular input program by the framework implementation.

The framework accommodates a frontend and two backends for the two pur-
poses. The frontend, using a lightweight analysis of the refactoring definition,
creates the intermediate representation (IR) of the refactoring specification, whilst
the two backends implement the two different sorts of semantics for the refactoring
specification. In principle, the two backends can be used independently: one can
verify refactoring definitions without execution, and the other way around, execute
a definition without verification. Nevertheless, this latter brings the risk of alter-
ing the program behaviour during transformation, but it is not prohibited for the
sake of situations where the formal verification of the refactoring is practically not
feasible in a certain time limit, but the refactoring has to be executed anyway.

Frontend

The refactoring definition enters the framework via the frontend component. It
parses and analyses the definition, and yields an intermediate representation for
the transformation specification which can be fed into either the execution or the
verification backend. The refactoring specification language, originated from the
Erlang prototype, features no static or strong typing; thus, the frontend only does
simple sanity checks on the definitions before passing them to one of the backends.

Since the rewrite rules are composed of first-order terms (syntax patterns) writ-
ten in the concrete syntax of the object language, parsing of the refactoring def-
inition requires parsing of object language syntax patterns. For this, we use the
context-free syntax definition of the object language, generalize it to allow metavari-
ables in place of subexpressions and parse the patterns with it into an AST with
metavariables. As a result, we obtain a refactoring definition IR in which we embed
object language ASTs.

Execution

One way the refactoring IR can be interpreted is application on a given input
program. This is implemented by the compound execution backend, which utilises
all object language artefacts except dynamic semantics, and consists of the following
components (with the last four grouped into ’Refactorer’ in Figure 4):

• Parser / Deparser (uses: Syntax)
The input to the refactoring interpreter is program source code, which has to
be parsed into a syntax tree before transformation, and needs to be turned
back into text following the model transformation. Thus, the context-free
syntax definition of the object language is fed into the parser/deparser com-
ponents which implement the text-to-AST and the AST-to-text conversions,
respectively.



770 D. Horpácsi, J. Kőszegi, and D. J. Németh

• Scheme expander (uses: Schemes)
As it was discussed in Section 4.1, schemes have two interpretations, one of
which is a translation to lower-level strategies. In this sense, the scheme is
a program template for refactoring with holes to be filled with rewrite rules.
This component instantiates it with the supplied rewrite rule arguments and
yields an imperative term rewrite program.

• Strategy interpreter
This component implements the basic strategies such as composition, left-
choice, all-top-down and congruence. Furthermore, we support a number of
strategies that rely on the applied program model (abstract semantic graph
with references, see [2]), such as applying a rewrite rule on a node, or all
of its subtrees, by reference. This component also implements metavariable
environments: the metavariables bound with pattern matching are shared
with subsequent rewrite rules, thus providing per scheme instance namespaces
of metavariables.

• Condition evaluator (uses: Metatheory)
The semantic conditions of term rewrite rules are given in terms of object
language level predicates combined with simple first-order logic operators.
This condition language is interpreted by the condition evaluator component,
which relies on the evaluation of predicates over the semantic model of the
program. The metavariables used in these formulae are stored in an envi-
ronment, which is populated by pattern matching executed by the rewrite
engine.

• Term rewrite engine
The term rewrite engine carries out the program model transformation (in
fact, syntax term transformation) based on the matching and replacement
patterns present in the rewrite rules. The current prototypes support expres-
sive syntactic patterns, such as metavariables for matching multiple consec-
utive nodes in the AST and non-linear patterns, but semantic patterns are
not available yet. In addition, in some cases we make use of simple abstract
syntax patterns that allow for matching seemingly different concrete syntactic
terms.

The rewrite rules are interpreted in the usual match-and-build semantics:
the pattern is matched against the target AST node, creates a substitution
(binds the metavariables), builds the replacement subtree, and finally the
original node is replaced by the newly created one. Between matching and
replacement, the condition evaluator component checks the side-conditions,
and the semantics of term rewriting is failure-aware: unsuccessful matching
or falsified conditions result in failure of the rewrite rule, which indicates that
the rewrite rule was not applicable. Failure is propagated in rule combinators.



Towards a Generic Framework for Trustworthy Program Refactoring 771

Verification

Complementing the execution backend, the verifier implements the other semantics
to refactoring definitions: statically check their correctness. Ideally, this happens
prior-execution, but as discussed before, the framework does not enforce correct-
ness within the execution backend. The verification backend takes the refactoring
specification IR, turns it into correctness formulas and verifies their validity. It is
implemented in terms of the following two main components:

• Verifier (uses: Schemes)
Correctness of refactoring definitions (the property of semantics-preservation)
is defined by the validity of a set of logic formulae expressing conditional se-
mantic equivalence of program patterns. The verifier component is responsi-
ble for associating the refactoring definition with this set of formulae.

In our system, refactoring steps are all phrased as a composition of in-
stances of parametrically verified transformation schemes, and these pre-
verified schemes determine how the correctness formula is synthesized for
the transformation. For a transformation to be correct, its scheme has to
be correct as well as the instantiation has to be correct. The formulae that
this component synthesises express the correctness of the instantiation. The
latter formulae in many cases can be automatically proven with respect to
the definition of dynamic semantics and semantic equivalence [11].

• Prover (uses: Semantics, Metatheory)

This component checks the validity of the formulae synthesized by the veri-
fier. The prover builds on the metatheory definition by utilizing the axiomatic
definition of the semantic predicates, the pattern equivalence is proven upon
the definition of dynamic semantics and the definition of semantic equiva-
lence. Once the prover has validated the formulae produced by the verifier
component, the transformation is guaranteed to preserve the semantics of any
program when applied to by the execution backend.

5 Proof of concept

In order to demonstrate the applicability of this generic framework architecture, we
investigated instantiating it for two highly different languages: Erlang and Java.
This means that we prepared the artefacts detailed in the previous section, i.e. with
the appropriate formalism we defined the syntax, static and dynamic semantics for
these object languages, as well as we determined some language-specific refactoring
schemes with which we can express meaningful refactoring transformations. In this
section, we overview the challenges of instantiating the framework for programming
languages in general, and for Erlang and Java in particular.



772 D. Horpácsi, J. Kőszegi, and D. J. Németh

5.1 Parametrising the framework

Beside providing a formal definition of the object programming language from syn-
tax to semantics, instantiation needs the identification of recurring transformation
patterns and understanding of dependencies induced among program elements. Ide-
ally, when parametrising the framework for yet another language, the formal defini-
tion already exists (syntax, operational semantics, static semantic analysis), yet it
is challenging to find those reusable and verifiable schemes for transformations. In
the following sections we discuss our framework and its prototype implementations
from this perspective.

Defining the metatheory

The semantic predicates provide a high-level interface for embedding static seman-
tic information about the target language into both schemes and scheme instances.
Most notably, the metatheory defines what predicates refactoring preconditions
should be built from. Constructing the right metatheory for a specific target lan-
guage is about finding a characterization of its abstractions suitable for both the
execution and verification backend.

Naturally, the chosen characterization must be expressive enough to make the
preconditions of schemes and scheme instances specifiable. In addition, its elements
should also be computable from the underlying program model while executing a
concrete refactoring. When composed correctly, the identified functions and pred-
icates must carry enough information to make verification possible.

A starting point towards an appropriate metatheory can be based on the ab-
stractions of the target language, which, of course, are highly influenced by its
paradigm(s). Then, the chosen semantic predicates can be iteratively refined in
accordance with the requirements above.

Defining semantic equivalence

The underlying notion of semantic equivalence is probably the most determining
aspect of a refactoring. Indeed, it is the basis of both intuitional and formal correct-
ness. An oversimplified definition of equivalence can be as abstract as demanding
observed programs to produce the same output for the same input. The problem
with this, however, is that it is not concrete enough to be conveniently expressible
using a proper metatheory. Therefore we propose to replace the aforementioned
definition of equivalence with one of its – more easily specifiable – characterizations,
e.g. the conformity of data flow, control flow and binding.

We also have to consider that a refactoring usually transforms only some parts of
a program instead of its entirety. Generally, a transformation scope specifying the
extent of the modified code can be attached to each refactoring. Our assumption
is that rather than using a general notion of equivalence – or one of its charac-
terizations –, it is more intuitive to introduce a stricter, but localized variant for
each possible transformation scope. In our framework, transformation scope, and
therefore equivalence level, can be matched with refactoring schemes.



Towards a Generic Framework for Trustworthy Program Refactoring 773

Designing language-specific schemes

As mentioned earlier, designing refactoring schemes can be the most challeng-
ing part of the framework specialization process. There are several key aspects
which should be taken into consideration, e.g. generality, usability, verifiability,
etc. Schemes must be general enough to be reusable, but not too general, as that
would make their instantiation undesirably difficult. On the other hand, we must
aim for schemes which optimally split the verification problem, that is checking the
general correctness of a scheme wrt. to a contract concerning the rewrite rules it is
parameterized by, and checking whether scheme instances satisfy these contracts.

We propose two iterative methods for scheme construction: top-down and
bottom-up. The top-down approach starts from a higher level of abstraction, e.g.
the level of language elements, and tries to identify schemes based on possible de-
pendencies between the discussed entities. The basis of the bottom-up direction is
a number of complex, desirably representative refactorings of the target language,
which are then decomposed to microsteps, from which schemes are obtained by
appropriate generalization.

Both methods have their advantages and disadvantages. With the top-down
method, schemes are inherently general, but not necessarily usable. On the con-
trary, schemes obtained with the bottom-up method are usable by definition, but
their generality is not guaranteed. In both cases, further refinement iterations are
required to mitigate these weaknesses. In the former case, more high-level concepts
can be added to the dependency analysis; in the latter, more refactorings can be
considered during the generalization.

5.2 Erlang

The first implementation of our refactoring framework was made for the Erlang
programming language, via generalization of an analysis and transformation tool [2]
implemented in Erlang. This preliminary work had a high influence on how we
model the program, split syntax and semantics, and even on the separation principle
of analysis and transformation. The analysis and transformation system the Erlang
implementation of the framework is built on uses automatic, incremental static
analysis to keep the semantic layer consistent with the AST; in fact, our framework
implementation makes heavy use of the underlying original transformation system.

Erlang has a fairly simple syntax. The static semantics is mainly about language
abstractions (modules, functions, variables, types) and their static semantic prop-
erties (such as scopes or purity). Basic schemes for Erlang were constructed upon
primary sources of data and control dependencies in the language: function calls,
variable binding, data-flow have been identified as schemes of extensive changes.
Some case studies have been formalized already in the refactoring specification
language with the Erlang-specific schemes, one of those is available in detail in [11].



774 D. Horpácsi, J. Kőszegi, and D. J. Németh

5.3 Java

The metatheory we constructed for the Java prototype characterizes abstractions
from the object-oriented paradigm, most notably inheritance, polymorphism and
dynamic binding. Here we used the bottom-up approach to obtain schemes by
choosing the lift segment2 refactoring as the base transformation. Its decomposition
and generalization resulted in four schemes – local, block, lambda and class – and
three equivalence levels – local, block and class. For the verification backend, we
used K-Java [1] as operational semantics.

The implementation is built on top of a DSL-engineering framework called
Xtext, which comes with Xbase, a reusable, Java-like expression language. By mod-
ifying its grammar to resemble Java more closely and to accommodate metavari-
ables, a parser for refactoring definitions could be generated automatically. These
definitions are compiled on-the-fly to Java code which uses the refactoring API of
the Eclipse IDE. Finally, the translated code is dynamically loaded into the under-
lying JVM instance and made available from an Eclipse plugin. Our approximation
of the metatheory is implemented with the Java Development Tools (JDT).

6 Discussion

The ideas discussed in this paper were inspired by a study on high-level, declarative
refactoring definitions for Erlang [11]. The concepts of semantic predicates, refac-
toring idioms and composition operators all seemed to be language-independent,
so we adapted the original idea to Java by re-implementing the entire project with
JDT and Xtext. After that, we were certain that the two solutions should share a
couple of elements that are fairly language-independent.

Apparently, the existing concepts and implementations had to be redesigned
in order to expose and extract those language-independent portions, but we man-
aged to obtain a generic design. Although Section 4 presented a fully language-
parametric architecture, the proof of concept implementations for Erlang and Java
do not share all these language-independent components yet. Nevertheless, realisa-
tion of the generic framework for these two substantially different languages justifies
that the concept is viable; it is our long-term plan to implement the Erlang and
Java tools as proper instances of the language-generic framework.

Before concluding the paper, we briefly evaluate how, and to what extent, the
proposed approach allows for generic and trustworthy implementation of refactor-
ing. We also address the idea of language-independent schemes and discuss work
in progress on changing the way verification is built into the process.

6.1 Genericity

The proposed design is language-generic: the refactoring specification language is
independent of the object language, as well as the implementation framework is

2Refactoring lift segment lifts a code segment into the superclass as a newly introduced method.



Towards a Generic Framework for Trustworthy Program Refactoring 775

language-parametric. Namely, when a new language needs to be supported, the
framework is instantiated for the particular programming language by providing a
formal definition of the language (syntax, static and dynamic semantics) along with
refactoring schemes (transformation idioms). The main components of execution
and verification are shared between instances for different languages.

How do we achieve this? We sort of rephrase and restructure the usual way of
defining and implementing a refactoring, and this rephrasing allows us to cut out
and abstract away some language-specific elements. In particular, the high-level
program model lets term rewrite rules incorporate semantic predicate conditions,
and it allows strategies to control term traversal based on semantic dependen-
cies. This separation of transformation concerns leads to a clear separation of the
so-called refactoring business logic, which, on the other hand, can be defined in
a declarative and language-independent way. The language-independence of the
refactoring specification directly implies that the interpretation of specifications
can rely on components parametrised with language-specific artefacts.

Language-independence of refactoring schemes. Language-level refactoring
schemes enable high-level description of transformations that respect lower-level de-
pendencies. Parametric verification of schemes involves definition of specific equiv-
alence classes of programs, which in turn imply full semantic equivalence under cer-
tain circumstances. Even though schemes seem to be totally language-dependent,
we have identified some schemes of schemes: for instance, in many programming
languages the abstraction of subroutines exists in some way. Function refactoring
in Erlang and method refactoring in Java may be understood as specialisations of
a language-independent scheme. Schemes may stem from concepts that are shared
among different languages, and in the long term, we plan to investigate the possibil-
ity of implementing a set of schemes that are defined in terms of concepts common
in various languages.

6.2 Trustworthiness

Trustworthiness comes in many forms, ranging from simplicity, modular implemen-
tation or open-source code base with excessive testing. In our paper, we focused
on enabling semi-automatic formal verification for behaviour-preservation in se-
mantic program model transformations. We managed to split the transformation
definition to traversal control and actual term rewriting in a semantics-driven way,
which in turn allows these two parts be verified separately, with the latter done
semi-automatically.

How do we prove transformations correct? Local refactorings are fairly
simple to check. Since these are composed of one single rewrite rule, the correctness
is expressed as one conditional equivalence statement of two program or expression
patterns. If, under the side-conditions, the rewriting preserves the semantics, the
transformation is correct.



776 D. Horpácsi, J. Kőszegi, and D. J. Németh

For changes that span over multiple expressions, subroutines or even modules, a
notion of “completeness” and “consistency” is needed. Namely, the rewriting has to
visit all interdependent elements in the program and carry out consistent modifica-
tions to preserve the semantics of the entire program. These properties are ensured
by the schemes, which provide a declarative means to express complex refactorings.
For these extensive changes, we synthesise a set of equivalence formulas that are
checked for validity by using the dynamic semantics of the language.

With schemes, we reduce the global equivalence problem to multiple local equiv-
alence problems. This is enabled by decoupling traversal control and actual rewrit-
ing. Schemes are verified with respect to some conditions on the rewrite rules they
are parametrized with. Verification of schemes requires manual proving; however,
having the pre-verified schemes, the instantiation conditions may be automatically
checked, making the scheme-based refactoring definitions automatically verifiable.
The conditions are equivalence statements on term patterns. Verification of pat-
tern equivalence is not decidable, but in a lot of cases, advanced, problem-specific
proof tactics can lead to equivalence proofs. If we express the equivalence for-
mula in reachability logic, there is an algorithm [5] that can be used to determine
whether the two patterns can be rewritten to the same form by using rules in the
the operational semantics of the language.

Although automatic verification of scheme instances would be a convenient fea-
ture from the user’s perspective, due to the undecidability of pattern equivalences,
in most cases the proving requires some human assistance. We started to redesign
the framework such that the object language semantics is formalised in a proof
assistant and the pattern equivalence proofs are written by hand. This is funda-
mentally different from the K framework based solution, but gives more control
and opportunities to the user of our system.

7 Conclusion

Refactoring program transformations are essential in large-scale software develop-
ment for maintaining code quality. Tools that carry out such transformations need
to be trustworthy: there has to be an evidence that the program after the refac-
toring still behaves the same as before. Correctness of the transformation can be
checked for each and every application instance, but the ultimate guarantee on
correctness is obtained by the static verification of the refactoring definition.

In our previous work, we have investigated refactoring definition abstractions
for different object languages, which allow for semi-automatic verification for cor-
rectness. In this paper, we have advanced these previous results by generalising
our approach over different object languages and designing a unifying refactoring
framework. We have shown that the high abstraction level of the definition enables
a fine-grained separation of the various components in a refactoring tool, which in
turn allows the recognition and extraction of language-dependent elements, leading
to a language-generic implementation. Our proposed solution facilitates execution
and static verification of refactoring definitions for different object languages.



Towards a Generic Framework for Trustworthy Program Refactoring 777

References

[1] Bogdănaş, Denis and Roşu, Grigore. K-Java: A Complete Semantics of Java. In
Proceedings of the 42nd Symposium on Principles of Programming Languages
(POPL’15), pages 445–456. ACM, January 2015. DOI: 10.1145/2676726.
2676982.

[2] Bozó, István, Horpácsi, Dániel, Horváth, Zoltán, Kitlei, Róbert, Kőszegi, Ju-
dit, Tejfel, Máté, and Tóth, Melinda. RefactorErl – Source Code Analysis and
Refactoring in Erlang. In Proceedings of SPLST’11, pages 138–148, Tallin, Es-
tonia, 2011. URL: https://www.researchgate.net/publication/289641474.

[3] Bravenboer, Martin, van Dam, Arthur, Olmos, Karina, and Visser, Eelco.
Program Transformation with Scoped Dynamic Rewrite Rules. Fundam. Inf.,
69(1-2):123–178, July 2005. ISSN: 0169-2968.

[4] Cesarini, Francesco and Thompson, Simon. ERLANG Programming. O’Reilly
Media, Inc., 1st edition, 2009. ISBN: 0-596-51818-8.

[5] Ciobaca, Stefan, Lucanu, Dorel, Rusu, Vlad, and Rosu, Grigore. A Language-
Independent Proof System for Full Program Equivalence. Formal Aspects of
Computing, 28(3):469–497, May 2016. DOI: 10.1007/s00165-016-0361-7.

[6] Cohen, Julien. Renaming Global Variables in C Mechanically Proved Correct.
In Hamilton, Geoff, Lisitsa, Alexei, and Nemytykh, Andrei P., editors, Pro-
ceedings of the Fourth International Workshop on Verification and Program
Transformation, Eindhoven, The Netherlands, 2nd April 2016, Volume 216 of
Electronic Proceedings in Theoretical Computer Science, pages 50–64. Open
Publishing Association, 2016. DOI: 10.4204/EPTCS.216.3.

[7] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999. ISBN: 0-201-48567-2.

[8] Garrido, A. and Meseguer, J. Formal Specification and Verification of Java
Refactorings. In 2006 Sixth IEEE International Workshop on Source Code
Analysis and Manipulation, pages 165–174, Sept 2006. DOI: 10.1109/SCAM.
2006.16.

[9] Gil, Yossi, Marcovitch, Ori, and Orrú, Matteo. A nano-pattern language for
java. Journal of Computer Languages, 54:100905, 2019. DOI: 10.1016/j.
cola.2019.100905.

[10] Gómez, Verónica Uquillas, Ducasse, Stéphane, and D’Hondt, Theo. Ring:
A unifying meta-model and infrastructure for smalltalk source code analysis
tools. Computer Languages, Systems & Structures, 38(1):44 – 60, 2012. DOI:
10.1016/j.cl.2011.11.001, SMALLTALKS 2010.

https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://www.researchgate.net/publication/289641474
https://doi.org/10.1007/s00165-016-0361-7
https://doi.org/10.4204/EPTCS.216.3
https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1016/j.cola.2019.100905
https://doi.org/10.1016/j.cola.2019.100905
https://doi.org/10.1016/j.cl.2011.11.001


778 D. Horpácsi, J. Kőszegi, and D. J. Németh

[11] Horpácsi, Dániel, Kőszegi, Judit, and Horváth, Zoltán. Trustworthy Refac-
toring via Decomposition and Schemes: A Complex Case Study. In Lisitsa,
Alexei, Nemytykh, Andrei P., and Proietti, Maurizio, editors, Proceedings
Fifth International Workshop on Verification and Program Transformation,
Uppsala, Sweden, 29th April 2017, Volume 253 of Electronic Proceedings in
Theoretical Computer Science, pages 92–108. Open Publishing Association,
2017. DOI: 10.4204/EPTCS.253.8.

[12] Kniesel, Günter and Koch, Helge. Static Composition of Refactorings. Sci.
Comput. Program., 52(1-3):9–51, August 2004. DOI: 10.1016/j.scico.2004.
03.002.

[13] Kosar, Tomaž, Bohra, Sudev, and Mernik, Marjan. Domain-Specific Lan-
guages: A Systematic Mapping Study. Information and Software Technology,
71:77–91, 2016. DOI: 10.1016/j.infsof.2015.11.001.

[14] Lämmel, Ralf. Towards Generic Refactoring. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Rule-based Programming, RULE ’02, pages 15–28,
New York, NY, USA, 2002. ACM. DOI: 10.1145/570186.570188.

[15] Lecerf, Jason, Brant, John, Goubier, Thierry, and Ducasse, Stéphane. A
Reflexive and Automated Approach to Syntactic Pattern Matching in Code
Transformations. In 2018 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018,
pages 426–436, 2018. DOI: 10.1109/ICSME.2018.00052.

[16] Leitão, António Menezes. A Formal Pattern Language for Refactoring of Lisp
Programs. In Proceedings of CSMR ’02, pages 186–192, Washington, DC,
USA, 2002. IEEE Computer Society. DOI: 10.1109/CSMR.2002.995803.

[17] Li, Huiqing and Thompson, Simon. A Domain-Specific Language for Scripting
Refactorings in Erlang. In Proceedings of FASE’12, pages 501–515, Berlin,
Heidelberg, 2012. Springer-Verlag. DOI: 10.1007/978-3-642-28872-2 34.

[18] Lämmel, Ralf, Thompson, Simon, and Kaiser, Markus. Programming errors in
traversal programs over structured data. Science of Computer Programming,
78(10):1770 – 1808, 2013. DOI: 10.1016/j.scico.2011.11.006.

[19] Maruyama, Katsuhisa and Yamamoto, Shinichiro. Design and Implementation
of an Extensible and Modifiable Refactoring Tool. In 13th International Work-
shop on Program Comprehension (IWPC’05), pages 195–204. IEEE, 2005.
DOI: 10.1109/WPC.2005.17.

[20] Mendonca, Nabor C., Maia, Paulo Henrique M., Fonseca, Leonardo A., and
Andrade, Rossana M. C. RefaX: A Refactoring Framework Based on XML.
In Proceedings of the 20th IEEE International Conference on Software Main-
tenance, ICSM ’04, pages 147–156, Washington, DC, USA, 2004. IEEE Com-
puter Society. DOI: 10.1109/ICSM.2004.1357799.

https://doi.org/10.4204/EPTCS.253.8
https://doi.org/10.1016/j.scico.2004.03.002
https://doi.org/10.1016/j.scico.2004.03.002
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/570186.570188
https://doi.org/10.1109/ICSME.2018.00052
https://doi.org/10.1109/CSMR.2002.995803
https://doi.org/10.1007/978-3-642-28872-2_34
https://doi.org/10.1016/j.scico.2011.11.006
https://doi.org/10.1109/WPC.2005.17
https://doi.org/10.1109/ICSM.2004.1357799


Towards a Generic Framework for Trustworthy Program Refactoring 779

[21] Opdyke, William F. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645. URI: http://hdl.handle.net/2142/72072.

[22] Roberts, Don, Brant, John, and Johnson, Ralph. A Refactoring Tool for
Smalltalk. Theor. Pract. Object Syst., 3(4):253–263, October 1997. DOI:
10.1002/(SICI)1096-9942(1997)3:4〈253::AID-TAPO3〉3.3.CO;2-I.

[23] Roberts, Donald Bradley. Practical Analysis for Refactoring. PhD thesis,
University of Illinois, 1999. URI: http://hdl.handle.net/2142/81948.

[24] Roşu, Grigore, Ştefănescu, Andrei, Ciobâcă, Ştefan, and Moore, Brandon M.
One-Path Reachability Logic. In Proceedings of the 28th Symposium on Logic
in Computer Science (LICS’13), pages 358–367. IEEE, June 2013. DOI:
10.1109/LICS.2013.42.

[25] Rowe, Reuben N. S., Férée, Hugo, Thompson, Simon J., and Owens, Scott.
Characterising renaming within OCaml’s module system: theory and imple-
mentation. In McKinley, Kathryn S. and Fisher, Kathleen, editors, Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
950–965. ACM, 2019. DOI: 10.1145/3314221.3314600.

[26] Schaefer, Max and de Moor, Oege. Specifying and Implementing Refactor-
ings. SIGPLAN Not., 45(10):286–301, October 2010. DOI: 10.1145/1932682.
1869485.

[27] Sultana, Nik and Thompson, Simon. Mechanical Verification of Refactorings.
In Proceedings of PEPM ’08, pages 51–60, New York, NY, USA, 2008. ACM.
DOI: 10.1145/1328408.1328417.

[28] Verbaere, Mathieu, Ettinger, Ran, and de Moor, Oege. JunGL: A Scripting
Language for Refactoring. In Proceedings of ICSE ’06, pages 172–181, New
York, NY, USA, 2006. ACM. DOI: 10.1145/1134285.1134311.

[29] Visser, Eelco and Benaissa, Zine-El-Abidine. A core language for rewriting.
Electr. Notes Theor. Comput. Sci., 15:422–441, 1998. DOI: 10.1016/S1571-
0661(05)80027-1.

http://hdl.handle.net/2142/72072
https://doi.org/10.1002/(SICI)1096-9942(1997)3:4<253::AID-TAPO3>3.3.CO;2-I
http://hdl.handle.net/2142/81948
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1145/3314221.3314600
https://doi.org/10.1145/1932682.1869485
https://doi.org/10.1145/1932682.1869485
https://doi.org/10.1145/1328408.1328417
https://doi.org/10.1145/1134285.1134311
https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1016/S1571-0661(05)80027-1

	Introduction
	Related work
	Refactoring definition
	The refactoring business logic
	Abstractions for defining transformations

	Refactoring framework
	The object language definition
	Framework components

	Proof of concept
	Parametrising the framework
	Erlang
	Java

	Discussion
	Genericity
	Trustworthiness

	Conclusion

