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Validated Trajectory Tracking using Flatness

Olivier Mullierab and Julien Alexandre dit Sandrettoac

Abstract

The problem of a safe trajectory tracking is addressed in this paper. The
method consists in using the results of a validated path planner: a set of safe
trajectories. It produces the set of controls to apply to remain inside this set
of planned trajectories while avoiding static obstacles. The computation is
performed using the differential flatness property of many dynamical systems.
The method is illustrated in the case of the Dubins car model.

Introduction

In the context of cyber-physical systems, the problem of validated trajectory track-
ing is addressed. It consists in driving a controlled differiential system from an
initial state region to a given target region while avoiding collisions with static ob-
stacles. The general method relies on two steps: (i), a path planning provides one
path from the initial state to the final state and, (ii), a trajectory tracker computes
the controls that will be given to the actual controlled system to follow this planned
path. When the system is critical, it is mandatory to bring certainty on the non
violation of the constraints on the system, even when uncertainties on the model
and/or the control to be applied occur.

Related Work

A classical way for the path planning is to use the RRT algorithm [11] (Rapidly-
exploring Random Tree) and its variants. In [21, 20, 2], it has been successfully
adapted to the case of critical systems where guarantees on the result are manda-
tory and where uncertainties have to be considered. This adaptation of the RRT
algorithm uses of a set-membership computation, interval analysis, to no longer
produce a trajectory to track but a set of possible trajectories with the property
that no static obstacle can collides with the system when in this set. The generic
algorithm is then called the box1 RRT algorithm [21]. The differential flatness
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of some controlled systems is well known and studied for the control of nonlinear
systems (see, e.g. [13, 5, 6, 15]). Flatness has already been successfully applied to
trajectory tracking in the case of discrete time systems [18].

Contribution

The work here considers that a previous computation of a set of validated path
planner is performed and it results in a set of safe trajectories that avoid any static
forbidden area. From this set, one particular path is chosen to be tracked, it is
done with the computation of a cubic Hermite spline from the system position and
the desired trajectory translated in the flat output space. The controls are then
produced using an endogenous dynamic feedback using flatness.

This work is presented as follows. Section 1 recalls the notions necessary to
the presentation of our work: interval analysis, validated numerical integration
of controlled systems, box RRT algorithm and cubic Hermite spline computation.
Section 2 contains the main results of our work that is the validated tracking of a
trajectory guarranteed to avoid any static obstacle. It is then illustrated in Section 3
with the computation of the controls given to a robot to drive from a set of initial
states to a target area using the Dubins car model. Conclusion and discussions
ends our work presentation.

1 Preliminaries

This section is dedicated to the preliminary results our work is based on and in-
troduces the notions that are used through this article. Some recalls on interval
analysis and validated numerical integration scheme, differential flatness, trajectory
planning and cubic Hermite spline are given.

1.1 Interval Analysis

Interval analysis [17] is a method designed to produce outer-approximation of the
set of possible values for variables occurring in some computations in a sound
manner. Hereafter, an interval is denoted [x] = [x, x] with x 6 x and the set of
intervals is IR = {[x] = [x, x] | x, x ∈ R, x 6 x}. The Cartesian product of
intervals [x] ∈ IRn is a box (through this paper, vectors are represented in bold
font). The main result of interval analysis is its fundamental theorem [16] stating
that the evaluation of an expression using intervals leads to an outer-approximation
of the resulting set of values for this expression whatever the values considered in
the intervals.

For a given function f : Rn → Rm and a box [x] ⊂ Rn, an interval inclusion
function also known as interval extension [f ] of f can be defined and an evaluation of
[f ] over [x] gives a box [y] such that (∀x ∈ [x])(∃y ∈ [y])(y = f(x)) or equivalently,
the box [y] contains {f(x)|x ∈ [x]} the range of f over [x]. Examples of interval
extension are the natural interval extension where interval arithmetic is used to



Validated Trajectory Tracking using Flatness 87

replace all operations defining a function to its interval counterpart and the mean
value extension where the function to be extended is first linearized on a point and
a natural extension of the resulting function is applied. The interested reader can
refer, for example, to [17, 10] and references therein for more details.

1.2 Validated Numerical Integration of Controlled Systems

In our work, we deal with controlled differential systems of the form{
ẋ = f(x,u)

x(0) ∈ [x0]
(1)

with f : Rn × Rm → Rn a smooth function, x ∈ Rn the state vector of the system
and u ∈ [u] ⊆ Rm the control vector. The problem to integrate the controlled
system in Eq. (1) is to compute the value of the state vector at a time t, x(t, x0, u)
with x0 ∈ [x0] and u ∈ [u]. By considering u as constant during the time the system
is integrated, the problem in Equation (1) corresponds to solving the (ordinary)
differential equation {

ẋ = fu(x)

x(0) ∈ [x0]
(2)

with fu being a function parameterized by the the control u. The use of vali-
dated numerical integration on ODE for the problem in Equation (2) allows the
design of an interval inclusion function of x(t, x0, u). It provides the computation
of [x] (t; [x0] , [u]) which stands for an outer approximation of the solution of the
problem in Equation (1): {x(t; x0,u),x0 ∈ [x0] ,u ∈ [u]}. It corresponds to the set
of values that can take the state x at time t starting from any point x0 ∈ [x0] for
all controls u ∈ [u] applied to the system. Any bounded uncertainty in the model
can also be handled by representing it with a time constant parameter as done with
the control u in Eq. (2).

To integrate the system until time t, a sequence of time instants t1, . . . , tn
such that t1 < · · · < tn = t and a sequence of boxes [x1] , . . . , [xn] such that
x(ti+1; [xi] , [u]) ⊆ [xi+1], ∀i ∈ {0, . . . , n − 1} are computed with [xi] an outer ap-
proximation of the set of the state vectors at time ti. From the box [xi], computing
the box [xi+1] is a classical 2-step method (see [14, 19]):

Phase 1 (Picard-Lindelof operator) compute an a priori enclosure [xi,i+1] of the
set

{x(tk; xi,u) | tk ∈ [ti, ti+1] ,xi ∈ [xi] ,u ∈ [u]} ⊆ [xi,i+1]

such that x(tk; [xi] , [u]) is guaranteed to exist and is unique,

Phase 2 compute an enclosure [xi+1] of the solution at time ti+1.

By repeating this process iteratively, we are able to produce an outer approximation
of the system described in Equation (1) (see Figure 1). This scheme is used by the
box RRT algorithm to compute a set of validated paths.
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Figure 1: Illustration of the two-step method for the validated numerical integration
of dynamical systems. i = 1, ..., 5.

1.3 The Box RRT Algorithm

The first part of the proposed method is to compute a set of validated trajectories.
The box RRT algorithm and its improvements [2, 20] is a set of motion planner
for robotic vehicles that guarantees to avoid static obstacles. It uses the data
structures of the Rapidly-exploring Random Trees (RRT) to explore the state space.
A tree of random subpaths is constructed until the goal is reached while any static
obstacle is avoided. When the algorithm ends successfully, it provides, among other
information, a set of boxes guaranteed to avoid any defined static obstacle. The
result is in the form of a list of boxes {[x1] , . . . , [xN ]} all sorted by the time they
are reached (see, for example, Figure 5 representing an example of the result of the
algorithm described thereafter in Section 3). The box RRT algorithm provides
also the control used during the seek of the set of trajectories but this information
is not mandatory to the use of our method afterwards. Indeed, the box RRT can
be used with a simplified model for the controlled dynamical system and then the
controls u it uses are no longer relevant for the trajectory tracking part.

1.4 Differential Flatness

The differential flatness of dynamical systems is a structural property that a (pos-
sibly nonlinear) differential system can have. A system is differentially flat if
there exists a set of independent variables (equal in number to the dimension of the
control vector) referred to as flat outputs such that all states and controls of the
system can be expressed in terms of those flat outputs and a finite number of their
successive time derivatives. The mathematical definition of differential flatness is
provided in Definition 1.



Validated Trajectory Tracking using Flatness 89

Definition 1 (Differential flatness [6]). The controlled dynamical system

ẋ = f(x,u) (3)

with x ∈ Rn, u ∈ Rm is flat if there exist the maps h : Rn × (Rm)r+1 → Rm,
ϕ : (Rm)r → Rn and ψ : (Rm)r+1 → Rm such that

z = h
(
x,u, u̇, . . . ,u(r)

)
x = ϕ

(
z, ż, . . . , z(r−1)

)
u = ψ

(
z, ż, . . . , z(r−1), z(r)

)
A differentially flat system can be caracterized when considering a subset of

its state and control vectors and their associated derivatives. As recalled in the
following, a trajectory can be tracked in a flat output space. An example of
differentially flat system is given hereafter in Section 3.2.

1.5 Trajectory Tracking

The differential flatness makes possible to control a system by only using the flat
output. The next definition recalls the endogenous dynamic feedback [7] in the case
of a differentially flat system.

Definition 2 (Endogenous dynamic feedback using flatness). We consider the flat
system described in Eq. (3) with a flat output z and a given trajectory zd : R→ Rm.
Once the flat system is differentiated enough to get an equation of the type

z(p) = ω, (4)

the system can be stabilized around a trajectory by stabilizing the flat output with ω
defined as a particular control:

ω = z
(p)
d − k0(z− zd)− k1(ż− żd)− · · · − kp−1(z(p−1) − z

(p−1)
d ) (5)

with z(i) the i−th time derivative of z and k0, . . . , kp−1 such that the polynomial
sp = kp−1s

p−1 + · · ·+ k1s+ k0 has only roots with negative real part. It results in
the tracking error converging and stable.

The goal is now to construct this function zd(t) providing a trajectory in the
flat output space. In our context, it is done using the cubic Hermite splines.

1.6 The Cubic Hermite Splines

In order to use endogenous dynamic feedback using flatness, we have to compute
one particular trajectory zd from the initial state to the target the robot will have
to follow. An intermediary desired goal is required to be reached iteratively until
we reach the goal. The cubic Hermite splines [8, 4] are one way to achieve this (see,
e.g. [12] for a use in path planning and [9] for one in trajectory tracking).
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Definition 3 (Cubic Hermite Spline). Let φ : R → Rn be a diffentiable function,
t0, t1 ∈ R and two positions p0 = φ(t0) and p1 = φ(t1) with the derivatives
m0 = φ̇(t0) and m1 = φ̇(t1) respectively, the cubic Hermite spline is

P (t) = p

(
t− t0
t1 − t0

)
(6)

with

p(t) = h00(t)p0 + h10(t)m0(t1 − t0) + h01(t)p1 + h11(t)m1(t1 − t0) (7)

and

h00(t) = 2t3 − 3t2 + 1

h10(t) = t3 − 2t2 + t

h01(t) = −2t3 + 3t2

h11(t) = t3 − t2.

The error between the spline P (t) and the true trajectory φ(t) can be easily
computed as follows: there exists τ such that

φ(t)− P (t) =
φ(k)(τ)

k!

∏
i

(t− ti)ki (8)

with k the number of points, ki the number of known derivatives + 1. In our case,
the number of points is 2 and the number of derivatives is 2.

This error can be approximated using interval analysis as follow: in the time
interval [t0, t1] where the spline is defined, The error can be outer approximated by
the interval function [E] (t, [t0, t1]) such that:

φ(t)− P (t) ∈ [E] (t, [t0, t1]) =

[
φ̈
]

([t0, t1])

2
(t− t0)3(t− t1)3, ∀t ∈ [t0, t1] (9)

with
[
φ̈
]

an interval inclusion function of the second time derivative of φ. In

practice, the model being provided, the second (as well as the first) derivative over
time of φ is also available by symbolically derivating the system over time prior
to the execution of the method. A guaranteed cubic Hermite spline [P ] (t) then
consists in adding this box error:

[P ] (t) = P (t) + [E] (t, [t0, t1])

2 Validated Trajectory Tracking using Flatness

This section is dedicated to the main results on validated trajectory tracking us-
ing flatness. We consider a controlled dynamical system of the form described in
Equation (1).
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Figure 2: Block diagram representing the different components in our controller.

In this problem, the initial condition is assumed to be inside a set of values here
defined as a box [x0] and a goal [xG] is also provided such that the goal is eventually
reached at a bounded time tf 6 T , as stated by the quantified proposition

(∃u(t) : R→ Rm)(∃tf ∈ [0, T ])(x(tf ) ∈ [xG]). (10)

A set of obstacles [x]O,1 , . . . , [x]O,N is also defined and the trajectory x(t) verifying
Eq. (10) must avoid them:

(∀i = 1, . . . , N)(∀t ∈ [0, tf ])(x(t) /∈ [x]O,i). (11)

The goal of trajectory tracking is then to produce the control function u(t) such
that the system follows a trajectory that respects the propositions in Equations (10)
and (11) dealing with uncertainties maybe occurring in the model and the set of
initial and final positions. A validated numerical integration scheme as described in
Section 1.2 using interval analysis is used. We present here the method to produce
the controls that allows a cyberphysical system to follow a path. The block diagram
corresponding to the control strategy is given in Figure 2 and Algorithm 1 provides
a sketch of the proposed method after the path planner provided its result.

Path planner The initial position of the robot [xB ], the goal [xG] and the set
of obstacles {[xO]1 , . . . , [xO]N} are first given to the path planner which in return
gives a set of guaranteed trajectories {[xd]1 , . . . , [xd]N}.

Flat output Using flatness, a box [zd]i in the flat output space is provided
from the result of the path planner. This box [zd]i contains the current flat output
of the robot [zr] according to its current position [xr].

Spline A cubic Hermite spline is then computed to return the next desired flat
output z̃d for the robot. It is illustrated in Fig. 3. A particular point z̃d;i+1 ∈ [zd]i+1

is chosen to be the desired flat output for the robot (we chose the midpoint of
[zd]i+1). The spline P (t) is constructed from a point z̃r in the flat output of the
robot (we chose the midpoint of [zr] as well) to the chosen point z̃d,i+1. The
guarranteed spline [P ] (t) is also computed and a verification on it is done to check
is it remains in the union [zd]i ∪ [zd]i+1. If the verification fails, a new endpoint for
the spline is chosen, one inside the intersection [zd]i ∩ [zd]i+1. An intermediary
point z̃d on the spline is chosen to be the next position to reach for the robot.
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Input: {[zd]i}: the result of the guaranteed path planner in the flat
output space

1.1 while the robot has not arrived do
// Flat output

1.2 [zr]: the flat output of the robot from its current position [xr]
1.3 [zd]i: box the robot is in (([zr]) ⊆ [zd]i)
1.4 z̃d;i+1 = mid([zd]i+1)

// Spline

1.5 P (t) : the Hermite spline between mid([zr]) and z̃d;i+1

1.6 z̃d : next reference point on the spline for the robot
// Controller

1.7 computation of the controls using dynamic feedback with flat output zr
and z̃d for the robot to reach z̃d

// Plant

1.8 [xr] : new position of the robot after applying the controls

1.9 end

Algorithm 1: Sketch of the proposed method for the tracking of the trajectory
provided by guaranteed path planner algorithm (sketch with correspondance
with the block diagram in Fig. 2).

[z]d;i

[z]d;i+1

z̃d;i

z̃d;i+1

z̃r

z̃d

P (t)

Figure 3: Computation of the next control from the computation of the cubic
Hermite spline.
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Controller All required information for the computation of a new control are
provided: the spline provides the reference point z̃d and the current flat output [zr]
of the robot is also known. Their time derivatives are directly known as well and
a new control can be computed using the classical endogenous dynamic feedback
using flatness as described in Definition 2. The control is then tested using a
guaranteed numerical integration scheme to validate that the robot will not leave
the set of guaranteed trajectories from the path planner in the same time horizon
the controls will be applied to the robot. In the case the test fails, the time horizon
and/or the choice on the reference point z̃d should be modified. This change is not
discussed in this article.

Plant The control is applied to the robot. It eventually provides the new
position [xr] of the robot and the process can start again until the goal [xG] is
reached ([xr] ⊆ [xG]).

The next section illustrates this method on a classical Dubins car model.

3 Experiments on the Dubins Car Model

In this section is given an example of the use of the method introduced in Section 2
on the Dubins car model.

3.1 Implementation

The experiment has been conducted using a C++ implementation of the trajectory
tracking coupled with a C++ implementation of the box RRT algorithm. All the
tests have been made by simulating the behaviour of the dynamical system in a
guaranteed manner. The validated numerical integration part has been handled
using the C++ library DynIbex2 [1], a plugin of Ibex [3] on the Dubins car model,
described in the following.

3.2 The Dubins Car Model

We consider the Dubins car model
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

(12)

with (x, y)T the position of the car and θ its angle to the coordinate system. The
controls (u, v) are the angular and the longitudinal speeds of the vehicle respectively
(see Figure 4 for an illustration of the Dubins car model).

It has been proved that this system is flat [13] and z = (x, y)T is a flat output.
Indeed the state and the control variables can be written using x and y and their

2Available at: https://perso.ensta-paris.fr/~chapoutot/dynibex/
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Figure 4: The Dubins car model.

derivatives: 

x = z1

y = z2

θ = tan−1
(

ẏ
ẋ

)
= tan−1

(
ż2
ż1

)
v =

√
ẋ2 + ẏ2 =

√
ż21 + ż22

u = ÿẋ−ẍẏ
ẋ2+ẏ2 = z̈2ż1−z̈1ż2

ż2
1+ż2

2
.

The set of available positions provided by the box RRT algorithm directly gives
the flat output which is the position of the robot. In Figure 5 is given an example
of the set of boxes returned by the box RRT algorithm. The black boxes represent
the safe set of trajectories, the red ones are the obstacles, the blue one is the goal
and the green dots are the centers of the black boxes (the safe set of trajectories).
The set of trajectories given by the path planner (here the box RRT algoritm) is
not optimal but it is not an issue for our method. We apply the controls produced
by the method described in Section 2 and the results are shown in Figure 6. As in
Figure 5 the result of the box RRT is still in black, the obstacle are in red and the
goal is in blue. The green dots are the successive centers of the boxes containing the
position of the robot after each application of the computed controls and the red
dots are the reference points computed with the cubic Hermite splines. To make
the figure more readable, only the centers of the position boxes of the robot are
shown. At each step of the control to the goal, the box containing the robot [xr] is
checked to remain inside the black boxes of the box RRT algorithm as long as the
guaranteed numerical simulation of the application of the control to the robot.
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Figure 5: Example of the result provided by the box RRT algorithm. Red boxes:
static obstacles ; blue: goal ; black: validated set of trajectories; green dots: center
of the black boxes.
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Figure 6: Example of the result of the controls computed to follow the set of
trajectories from the box RRT algorithm (same as in Figure 5). Red boxes: static
obstacles ; blue: goal ; black: validated set of trajectories; green dots: center of
the robot position boxes. red dots (magnified): reference points from the cubic
Hermite spline computation.
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4 Conclusion

A validated trajectory tracking using flatness has been presented. From a guaran-
teed set of trajectory planner which provides an a priori set of guaranteed paths,
our method uses flatness to perform the computation of the controls. The Interme-
diary reference points for the system are provided using guaranteed cubic Hermite
splines. Eventually, the control to apply is proved to fulfill the requirements by
simulating in a set-membership manner the use of the controls on the system. It
allows to prove it remains inside the set of paths. This method has been illustrated
with an example of a terrestrial robot with a flat system model. The next step
will be to apply this method on a real robotic platform to validate the method
in the context of an embedded system. An extra step is required to compute
the control while the robot has not already reached its local goal provided by the
cubic Hermite spline. Another improvement will be to take into account dynamical
obstacles. It should be done by recalling the path planner each time a potential
collision is detected. Eventually the method must be extended to the case of non
flat systems.
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Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE
Transactions on Automatic Control, 44(5), 1999. DOI: 10.1109/9.763209.
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