
Acta Cybernetica 26 (2024) 501–528.

Standardized Telemedicine Software Development

Kit with Hybrid Cloud Support∗

Zoltán Richárd Jánkiab and Vilmos Bilickiac

Abstract

In modern Web development, it is expected that systems operating in
the same area can be easily integrated. For common integration points, it
is recommended to use a standardized data model and a common interface
during the development as this will facilitate further integrations. The use
of the cloud infrastructure is increasingly popular in telemedicine, but taking
into account the goals, the productivity of the development, the availability
of the system and the various regulations, choosing the right solution is not
trivial. Inclouded platform consists of numerous currently active telemedical
microservices that are working with a common software development kit.
This tool provides a standardized data model for document-oriented database
systems, has support for public and private clouds by using the classic Data
Access Object (DAO) analogy and contains a lot of convenient functions as
well. Furthermore, it is found that our solutions can significantly increase
development productivity and is confirmed by measurements taken which
involved software developers.

Keywords: telemedicine, hybrid cloud, software development kit, produc-
tivity

1 Introduction

Telemedicine applications are getting more and more attention. Google Trends
shows that after the appearance of coronavirus disease the number of available

∗This research was supported by the EU-funded Hungarian grant GINOP-2.2.1-15-2017-00073,
project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021-NVA funding scheme; project no. II-NKFIH-1528-1/2021 has
been implemented with the support provided by the Ministry of Innovation and Technology of
Hungary from the National Research, Development and Innovation Fund, financed under the II-
NKFIH-1528-1 funding scheme. This study was also supported by the Ministry of Innovation and
Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory
Program (RRF-2.3.1-21-2022-00004).

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: jankiz@inf.u-szeged.hu, ORCID: 0000-0003-1829-5663
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.299460

mailto:jankiz@inf.u-szeged.hu
https://orcid.org/0000-0003-1829-5663
mailto:bilickiv@inf.u-szeged.hu
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.14232/actacyb.299460


502 Zoltán Richárd Jánki and Vilmos Bilicki

telehealth applications increased, not only in the mobile stores but on the World
Wide Web (WWW), too. In telemedicine, electronic healthcare records (EHRs)
are considered as sensitive data, so it is really important to take into account the
regulations.

Since 2018, access to patient healthcare records are governed by the General
Data Protection Regulation (GDPR) [13] and individuals have a right to access
their own healthcare data, but in limited circumstances they can get information
about other people, too. However, the data handlers have to ensure that sensitive
data cannot be transferred outside the country. Sometimes it is required to host
everything within the boundaries of an organization. In some cases, it is allowed
to use the public cloud but data must be stored in an encrypted form. These
are limitations which can affect not only the economic solutions but can affect
the development processes as well. Today, there is no publicly available software
development kit (SDK) that conforms to such requirements and supports both
public and private cloud solutions.

The degree of maturity of a research field can be measured by the number of
available standards and protocols that belong to the given field. In telemedicine,
many standards are adapted from other fields, and only a handful of them are
telemedicine specific [4]. The most well-known standard is called Fast Healthcare
Interoperability Resources (FHIR)1 that provides a data model for real telemedicine
use-cases. Thanks to its practical design and loose structure, it easily fits into any
application.

FHIR defines only the resources that can be present in a medical environment
and lists the attributes that can be used to describe these resources. FHIR itself is
not appropriate to standardize every component of a telemedicine application but
it has recommendations on what and how to use, so it gives vent to other standards,
too.

Since FHIR is not a security protocol, it does not provide ready-to-use solutions
for authorization, synchronization and digital signatures, but has recommendations.
Using OAuth2 for user authentication is suitable for web-centric applications, but
the SMART-On-FHIR3 specification can be used as an alternative solution.

Clinical terms are also managed by different standards. The most widely spread
one is SNOMED CT published by SNOMED International4. Diagnoses, clinical
documents, vital signs and other data that can be measured are systemized in the
so-called LOINC5 standard. Both standards categorize different terms with coding
systems that help group data of the same type. In addition to the recommended
standards, FHIR provides the opportunity to extend the predefined data model
of resources with custom elements that are not originally part of the standard.
However, all extensions must be well defined so that the data stored in an extension

1HL7. Fhir overview. https://www.hl7.org/fhir/overview.html
2OAuth. Oauth 2.0 - oauth. https://oauth.net/2/
3SMART on FHIR. Smart on fhir: Introduction - smile cdr documentation. https://smilecdr.

com/docs/smart/smart_on_fhir_introduction.html
4International, SNOMED. Snomed - home — snomed international. https://www.snomed.org/
5Institute, Regenstrief. Home - loinc. https://loinc.org/

https://www.hl7.org/fhir/overview.html
https://oauth.net/2/
https://smilecdr.com/docs/smart/smart_on_fhir_introduction.html
https://smilecdr.com/docs/smart/smart_on_fhir_introduction.html
https://www.snomed.org/
https://loinc.org/


Standardized Telemedicine Software Development Kit 503

field can be easily identified. Data from special systems such as Enterprise Resource
Planning (ERP) and Customer Relationship Management (CRM) systems do not
have an appropriate place within FHIR, even though these concepts are critical
for performing logistics and health management tasks. FHIR provides a number
of extension profiles but it can be time consuming and difficult to find the one
that describes the data. If there is no suitable extension profile in the standard,
developers have to create a new one.

As the number of EHRs is rapidly increasing, the benefits of cloud solutions can
be utilized. However, as we mentioned earlier, there can be project specific regula-
tions that determine which type of cloud infrastructure can be used. To begin with
using a public cloud, both the development and the maintenance can be convenient
and the performance can be significantly high, but if there are restrictions on the
location of the servers in the project, shared infrastructure cannot be an option.
Private cloud is also a well-scalable solution, but the additional tasks associated
with configuration and maintenance should also be considered. A hybrid solution in
which a combination of private and public cloud services are available, can perform
well because most of the load is on the public cloud and the critical tasks related
to data and security can be handled by the private cloud.

In telemedicine, various data types can be present. An EHR can be a simple
JavaScript Object Notation (JSON) object or it can be a high resolution image. In
some cases, a Relational Database Management System (RDBMS) is sufficient but
if the performance is critical then a non-relational database can be a better choice.
Hence, it is recommended to introduce the so-called polyglot persistence concept so
that we can use different data storage techniques and vary them to meet the needs.
However, it is not trivial how different storages communicate with each other.

In telemedicine, offline capability can be critical. Web applications often go
to offline status for seconds but occasionally they cannot come back online for
hours. Besides offline status, the performance can be increased by adding caches
to the data path. In our recent study, we elaborated a taxonomy for telemedicine
applications and provided an easily tunable solution that helps in the design of
telemedicine systems taking into account their offline capability. There should be
various caching techniques that are available and finely tunable depending on the
use-case.

The rest of the paper is organized as follows. Section 2 provides an overview of
well-known telemedical platforms and the current status of the areas covered by our
SDK. In Section 3, statistical information about FHIR and its prevalence in software
development is presented. Section 4 offers a comprehensive list of challenges that
developers may encounter. Section 5 introduces our SDK as an all-in-one solution
to these challenges. The measurement results that demonstrate the effectiveness
of our SDK in aiding telemedicine system development are discussed in Section
6. Finally, in Sections 7 and 8, we summarize the key aspects of this paper and
highlight potential opportunities for further development.



504 Zoltán Richárd Jánki and Vilmos Bilicki

2 State of the art

In this section, we present the current status of telemedicine platforms and their
applied solutions focusing on the main issues that we may face.

2.1 Telemedicine platforms

• Intelehealth is an open-source telemedicine platform6 that consists of 4 main
components: a web application, an Android mobile application, a middle-
ware layer and a medical record server. The mobile app uses complex data-
gathering flowcharts and combines them to form an assisted history-taking
system, called Ayu, and the web app allows remote doctors to review up-
loaded data and make referrals, offer advice or prescribe. OpenMRS7 is the
EHR server in this architecture that stores patient data, but it has not gained
popularity in Europe and does not offer as many options as FHIR. OpenMRS
can receive and convert data from FHIR-compatible systems, but it is not
the main domain.

• AdvancedMD8 is a more than 20 years old telemedicine platform. Unfortu-
nately, it is not free and open-source but it is known that they store their
data in Amazon Web Services (AWS). Due to storing data in a public cloud,
this platform does not meet European regulations.

• OpenEMR9 is a lightweight project that presents a video conferencing and
chat platform for consultation purposes. Technologically its basics belong
to Danphe Health that provides telemedicine softwares embedded in cloud
services.

• The telemedicine network called Unimed Floripa was established in Brazil
that was first introduced by R. S. Maia, et. al. [15]. Their platform serves
radiological demands by maintaining a Web portal, a medical imaging toolset,
teleconference tools and multiple Digital Imaging and COmmunications in
Medicine (DICOM) and non-DICOM servers. It is obvious that they use
standardized solutions for storing and managing data. Health Level Seven
(HL7) and its standards (e.g. FHIR) play important roles in their telemedi-
cine network. However, the capabilities of the platform are limited and too
use-case specific.

• Inclouded10 is an open-source telemedicine and smart-city platform that con-
forms to a number of standards. Development is based on ISO 13485, domain
models follow HL7’s FHIR and TMForum standards. It provides both pub-
lic and private cloud solutions that are using our SDKs as connectors and

6Intelehealth — Confluence. URL: https://intelehealthwiki.atlassian.net/wiki/spaces/
INTELEHEAL/overview

7URL: https://openmrs.org/
8Cloud-based patient relationship management software –— AdvancedMD. URL: https://

www.advancedmd.com/medical-office-software/cloud/
9URL: https://www.open-emr.org/

10URL: http://inclouded.hu/

https://intelehealthwiki.atlassian.net/wiki/spaces/INTELEHEAL/overview
https://intelehealthwiki.atlassian.net/wiki/spaces/INTELEHEAL/overview
https://openmrs.org/
https://www.advancedmd.com/medical-office-software/cloud/
https://www.advancedmd.com/medical-office-software/cloud/
https://www.open-emr.org/
http://inclouded.hu/


Standardized Telemedicine Software Development Kit 505

helping functions with high-level FHIR support. Inclouded SDK has already
performed well in many currently active telemedicine projects over the years.
It is also proved that the SDK is not only a convenient tool for designing and
managing telemedicine systems that can be easily integrated, but also signif-
icantly speeds up the development processes. This article provides a detailed
introduction to the key components of Inclouded SDK.

Table 1 presents a comparative analysis of the five platforms that have been
introduced. It is seen that none of the platforms are GDPR-compliant except for
Inclouded. Private and public cloud supports vary based on their focus, but hybrid
cloud support is not common. Notably, a majority of the platforms provide support
for FHIR.

Table 1: Comparison of telemedicine platforms

Platform Open-source
Private
cloud

support

Public
cloud

support

FHIR
support

GDPR
compliance

Intelehealth X X
AdvancedMD X

OpenEMR X X
Unimed Floripa X X

Inclouded X X X X X

2.2 FHIR

Before diving deep into the details of the SDK, it is important to see how popular
the standard used is.

Firstly, we have analyzed the available open-source telemedicine projects. We
used GitHub as a datasource because it has the biggest public repository store on
the Web. It consists of millions of public projects and provides an API for filtering
and gathering information regarding repositories. We wrote a GitHub Crawler
for filtering metadata of the repositories and finding specific repositories based on
their content. We were focusing on telemedicine projects and we were searching
for projects with various keywords. By using the term ”health”, we found more
than 100,000 repositories, but unfortunately many of them were useless due to
lack of commits or completely different interests. However, we still found quite
a good number of projects that really deal with telemedicine. After analyzing
these repositories, we can assume that FHIR is the most popular standard used in
telemedicine projects.

FHIR was first released in 2013, but its first presentation was held in 2012
[5]. First three releases were just called Draft Standard for Trial Use (DSTU),
but after DSTU3, it reached a maturity level that could have been considered as



506 Zoltán Richárd Jánki and Vilmos Bilicki

a final version. Since it is an open standard, open-source projects can describe
its popularity well. For our statistics, we used GitHub as the source. Figure
1 presents that from 2014 the number of projects using FHIR started to grow
exponentially and this growth is still continuing. Unfortunately, there are hundreds
of repositories that contain a single readme file or just text files referring to the
standard. Based on this experience, we have filtered out the GitHub repositories
that contain evaluable projects using FHIR. In Figure 2, it is shown that currently
R4 is the most supported version, but the number of new projects are increasing
as the maturity of the standard levels up.

Today, FHIR is the most popular healthcare standard but except for some
interface libraries there is no available toolkit that implements a Representational
State Transfer (REST) endpoint in a typed form with FHIR support.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Years

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f p
ro

je
ct

s u
sin

g 
FH

IR

Number of projects using FHIR

Figure 1: Popularity of FHIR in GitHub

2.3 Public and private clouds

Centering on accessing the information anytime and anywhere, encourages moving
the healthcare information towards the cloud. Although the cloud offers several
benefits, it also poses threats to health data in terms of privacy and security [1].
Here, we go through the pros and cons that cloud solutions provide taking into
account the telemedicine use-cases.

Paper [20] presents a detailed comparison of public and private cloud solutions,
highlighting the benefits of the former such as accessibility, scalability, availability,
and reliability. Public cloud typically delivers the so-called pay-as-you-go model in



Standardized Telemedicine Software Development Kit 507

Dstu 1 Dstu 2 Stu 3 R4 R4B R5
FHIR releases

0

300

600

900

1200

1500

1800

2100

2400

Nu
m

be
r o

f p
ro

je
ct

s

251

667

1028

2455

38 95
251

603

864

2197

30 38

Number of projects by FHIR release
Supported
CreatedAt

Figure 2: Popularity of FHIR in GitHub considering the version

which you pay after using the resources. Since public cloud services are ready-to-
use, developers do not have to take care about the time consuming configurations
and the infrastructure below the services. Public cloud services are ready-to-use,
which means that developers do not need to worry about configurations and infras-
tructure. However, public cloud providers such as Amazon, Google, and Microsoft
offer a lower level of security, so it is not recommended to store sensitive data in
them.

Private cloud is usually dedicated to a single organization and it operates within
the network of the organization or company. Thus it is required to buy, build and
manage the cloud infrastructure that needs experts and comes with a higher cost.
In terms of productivity, the development processes are longer in case of private
clouds, but designed services are more use-case specific and they can operate more
efficiently in given circumstances. Moreover, the level of security is higher in private
clouds.

Chen et al. [12] introduced a solution that uses a hybrid cloud approach. Health-
care records stored in public clouds are encrypted with Symmetric Key Algorithm
(SKE) and can be decrypted only through the private content key. Their solution
is a redundant hybrid cloud service that is offered at the cost and scale benefits of
public clouds, while also offering the security and control of private clouds. Nowa-
days, this approach is more and more common in telemedicine projects but there
is no available library that supports hybrid cloud approach with interchangeable
cloud background.



508 Zoltán Richárd Jánki and Vilmos Bilicki

2.4 Serverless development

Startups and smart tech companies have begun to take advantage of serverless
scalability, reliability, and performance for rapid growth - and now serverless de-
velopment is more popular than ever. Moreover, it is also found that the developer
productivity can be increased as well. Here, we consider the word ”serverless” as
a service in which the infrastructure is maintained by the service provider. There
are various serverless services, such as databases, storages, runtime environments
that can be used to run computational tasks and host Web applications. Vadym
Kazulkin [11] collected the main effects that serverless development can have on
productivity. The main advantages are the followings:

• no infrastructure maintenance

• auto-scaling and built-in fault tolerance

• less engineers required

• less code written

• bigger focus on business value and innovation

• shorter time-to-market procedures

ip.labs has been following the concepts of serverless development for years but
in a hybrid form. They still have monolithic Java applications, but two teams are
developing completely serverless. Before they went serverless, they had a central
administration team and prioritized the tasks that lead to increased waiting time.
Serverless development needs no low level administration at networking level, there
are no servers and no operating systems (OS) that developers have to take care
about and there is less interaction between developer and administration teams.
Thus, the development processes become faster, developers write less code and use
managed services.

2.5 Productivity

In Information Communication Technology (ICT) productivity is measured in dif-
ferent fields. Here, we focus on developers’ productivity, show which metrics are
used to measure it and how new techniques and technologies affect productivity in
software development.

Shake [19] collected the most important metrics that can describe the workflows
and measure the productivity of development. Firstly, the code quality is a big hit
to productivity. There are several metrics to measure code quality and reduce
quality defects. Shake is a good tool to create automatic reports that help deal
with bugs efficiently.

Code coverage is a valuable metric for monitoring the development team’s test-
ing activities. It is easy to measure since it has a concrete formula and it gives
feedback about how much of the source code is not covered by test cases. These
metrics do not measure productivity explicitly, they have only effects on it.



Standardized Telemedicine Software Development Kit 509

Cycle time can tell a team a lot about the productivity of developers. It mea-
sures the time taken for a task to move from one phase to another. Cycle time is
broken down into more stages and it gives information about which stage is prob-
lematic and where bottlenecks are. Most of the issue and project tracking softwares
provide data about cycle time, so it is a more and more common metric used to
measure productivity.

Lead time is very similar to cycle time, but it is a more comprehensive metric
that measures productivity from task creation until delivery. So it is a metric for
not individuals but for the development team.

Deployment frequency is measured within a specific period of time and it is
one of the most valuable metrics in terms of productivity. There are 4 software
delivery performance levels: low, medium, high and elite. This level is specified
by the deployment frequency. Software delivery performance is low if deployment
frequency is fewer than once per six months and it is elite if there are multiple
deploys per day. Flickr reported an average of 10 deployments a day in 2009, while
Etsy had 11,000 deployments in 2011 [18]. At Facebook each developer released an
average of 3.5 software updates into production per week. These numbers prove
that Continuous Integration (CI) and Continuous Delivery (CD) can significantly
improve productivity.

The DevOps Research and Assessment (DORA) group published their platform
and introduced 4 key metrics for measuring DevOps performance. These metrics
are deployment frequency, lead time for changes, change failure rate and mean time
to recover. Using this platform, Fin500 was able to increase the number of releases
to production from 40 to over 800 [6].

The above mentioned tools can show only an approximation for the productivity,
based on the committed source codes and the logged work hours, so they do not
perform in a way that produces exact results. We found that using our SDK can
significantly improve developers’ productivity in telemedicine applications and it is
confirmed with metrics too that are measured based on the developers’ activity in
the preferred integrated development environment (IDE).

3 Actuality of using FHIR

To prove that using FHIR is a trend, we analyzed the publicly available teleme-
dicine projects in the world and measured the presence of the standard. We used
GitHub as the main source of our research and using its API, we have collected the
repositories having telemedicine purposes and repositories using FHIR.

We started using general expressions (e.g. health) to find the most repositories
of our interest, but we realized that only a very small part of the results would be
useful for us. Due to the limitations of GitHub API, we had to choose the terms
carefully and analyze the repositories focused on the results.

On GitHub, there are thousands of empty or almost empty repositories that
can be easily found using an expression that is present in its name or description
or in a readme file. The valuable repositories may contain source codes too that



510 Zoltán Richárd Jánki and Vilmos Bilicki

can be analyzed and later compared to each other by using code metrics. GitHub
has several categorizations for the repositories, and most of them are supported by
the API, too.

Based on our experiences, we searched for FHIR-related repositories on GitHub
using search terms listed in Table 2 and filtered by 5 main programming languages:
Java, C#, Python, JavaScript, and TypeScript. Table 3 shows the most popular
packages for these languages that have references to FHIR. HAPI11 is an open-
source FHIR server written in Java, Firely SDK12 is the official .NET SDK written
in C#, FHIR Resources13 is a Python package for creating and validating FHIR
objects, and ts-fhir-types [2] is a TypeScript package for FHIR resources.

Table 2: GitHub crawling terms and the number of found repositories

Term Number of repositories
telemedicine 780

e-health 167
ehealth 703

telehealth 350
teledermatology 5

teleradiology 20
teleeducation 2

healthcare 1795

Table 3: Number of repositories retrieved from a product-based GitHub crawling

Programming
language

Product
Number of
repositories

Java HAPI server 780
C# Firely .NET SDK 167

Python fhir.resources 703
JavaScript/TypeScript @ahryman40k/ts-fhir-types 62

Further analysis was made by filtering the results using the selected 5 program-
ming languages. Firstly, we have inspected how popular FHIR is on GitHub. If we
check the repository names, descriptions and readme files, we can find 5,931 repos-
itories. Comparing this number to the number of retrieved results if we make a
code-based search, it is very few. The number of GitHub code-based search results

11Hapi FHIR — The Open Source FHIR API for Java. URL: https://hapifhir.io/hapi-fhir/
12Firely .NET SDK –— The Official .NET SDK for Hl7 FHIR. URL: https://fire.ly/

products/firely-net-sdk/
13URL: https://pypi.org/project/fhir.resources/

https://hapifhir.io/hapi-fhir/
https://fire.ly/products/firely-net-sdk/
https://fire.ly/products/firely-net-sdk/
https://pypi.org/project/fhir.resources/


Standardized Telemedicine Software Development Kit 511

shows how many files were found on GitHub containing the term. Usually, it is
much more than the number of repositories, so these results need further analysis.
We made a code search for the FHIR term, but due to the high number of results
(2,011,239 occurrences found), we limited them using the 5 language filters. When
TypeScript is selected as the main language, GitHub returns thousands of files that
contain FHIR, but after forming a set from the repositories, only 277 repositories
were left in the end. C# shows similar behavior because code search found about
50,000 files on GitHub but there are only 257 repositories. Python and JavaScript
seem to be more popular in project development using FHIR. There are more than
500 public repositories that have Python and JavaScript as the main languages.
Java is the most popular with 1,679 different repositories. Figure 3 shows the ra-
tio of used main programming languages in FHIR repositories. There were 3,392
repositories found using FHIR and the 5 selected languages. It is also found that
using techniques, frameworks and components like search terms can produce more
focused and more valuable results in such data mining.

TypeScript
8.17%

JavaScript

19.58%

Python

15.18%

Java

49.50%

C#
7.58%

Figure 3: Presence of FHIR on GitHub by programming language categories

It is observed that FHIR is popular in application development but it is not clear
how many telemedicine projects use FHIR. Telemedicine repositories were selected
by using code search with the 8 search terms listed in Table 2 and filtered by the
5 chosen languages. Figure 4 depicts that the expression ”healthcare” is present in
most of the repositories. We found projects from specific areas of telemedicine too
but they do not exceed 1% of the total together.

We have also collected the repositories that use the most common products listed
in Table 3. After seeing that most of the telemedicine-related projects use Java, it



512 Zoltán Richárd Jánki and Vilmos Bilicki

e-health4.37%

ehealth

18.39%

teledermatology

telemedicine

20.41%

telehealth 9.16%

teleeducation

healthcare

46.96%

teleradiology

Figure 4: Presence of telemedicine on GitHub based on search terms

seemed to be obvious that the search term ”HAPI” will return the most records.
After HAPI, the official Python package is the most commonly used resource. Firely
SDK showed a surprisingly significant popularity with 19.46%. Compared to the
number of available public repositories, only 62 (4.68% of) repositories use the ts-
fhir-types package written in TypeScript. The total number of repositories using
the 4 packages was 1,326. Figure 5 shows the ratios.

To see how many telemedicine-related projects use helper packages, libraries and
official solutions, we have inspected the intersections of these sets. We found that
35% of TypeScript projects using FHIR rely on the ts-fhir-types package. However,
this typed version is not so popular in JavaScript-based projects. Unsurprisingly,
HAPI and fhir.resources are used in more than 50% of projects in which Java or
Python are the main programming languages and FHIR is present, too. The results
are presented in Figure 6.

Finally, we found it is important to see how FHIR affects the lifetime of projects.
We measured the freshness of the projects by applying a threshold for the last
commit date. We filtered out repositories with a last commit date older than 3
months and an average size below 68,852 KB. This approach helped us identify
repositories with a high maturity level. Naturally, in order not to distort the
statistics, we applied the language filters, too. It came out that in mature projects
FHIR is really popular, almost 50% of the projects use it as a standard (Figure
7). Here, we found only 326 repositories. Based on this experience, we evaluated
the intersection of the FHIR set and all other telemedicine sets. It is seen that in
the retrieved telemedicine projects with high levels of maturity, FHIR is commonly



Standardized Telemedicine Software Development Kit 513

ts-fhir-types4.68%

Firely SDK

19.46%

fhir.resources

26.09%

HAPI

49.77%

Figure 5: Presence of most common FHIR products on GitHub

ts-
fhi

r-ty
pe

s 
 FH

IR_Ty
pe

Scr
ipt

ts-
fhi

r-ty
pe

s 
 FH

IR_Ja
va

Scr
ipt

HAPI 
 FH

IR_Ja
va

Fir
ely

 SD
K 

 FH
IR_C#

fhi
r.re

sou
rce

s 
 FH

IR_Py
tho

n
0

20

40

60

80

100

35.48%

1.61%

52.58%

7.36%

53.76%

Figure 6: Intersection of most common products and projects using FHIR with
main programming languages

applied (Figure 8), but some projects have unique data models while others show
similarities to the FHIR model.



514 Zoltán Richárd Jánki and Vilmos Bilicki

e-health1.84%

ehealth
6.13%

telemedicine

7.67%

telehealth

4.91%

healthcare

32.82%

teleradiology

fhir

46.01%

Figure 7: Presence of telemedicine repositories filtered by threshold values

e-h
ea

lth
 

 FH
IR

eh
ea

lth
 

 FH
IR

tel
em

ed
icin

e 
 FH

IR

tel
eh

ea
lth

 
 FH

IR

he
alt

hca
re 

 FH
IR

tel
era

dio
log

y 
 FH

IR
0

20

40

60

80

100

33.33%

15% 20%
12.5%

19.63%

50%

Figure 8: Ratio of telemedicine projects using FHIR filtered by threshold values



Standardized Telemedicine Software Development Kit 515

4 Challenges in telemedicine application develop-
ment

Here, we collected the challenges that we were facing during the development of
telemedicine applications and the Inclouded platform. To ease the development
processes, we have elaborated and implemented an SDK that supports new tech-
nologies, provides extra features that help developers and solves complex problems
as well. In this section, we list the challenges that our SDK provides solutions for.
We will present our solutions in detail later.

• Inclouded supported FHIR since the foundation of the platform but only
relational database systems were used prior. As public cloud solutions became
more and more popular, we found that Not-only Structured Query Language
(NoSQL) databases can perform better in many situations. FHIR offers a
relational data model for handling healthcare resources, so it is a challenge
to have a compatible NoSQL solution, too.

• Using a pre-created domain model, it is not trivial to find the proper entities
and fields to store all necessary data. Standards are sometimes too generic
even if they are practical. FHIR provides a lot of healthcare resources with
a well-defined data model, but in many real telemedicine cases, it is hard
to find the place to store the data. FHIR offers an extension mechanism
for such cases but the extensions must contain a precise description of what
they contain. Our SDK was extended with a Natural Language Toolkit-
based (NLTK) recommendation system that helps to find the best matching
extension for the data to be stored.

• FHIR provides a well-defined domain model but there is no recommendation
on what technologies to use. Since a telemedicine application can contain
not only metadata about healthcare records but binary files too, we decided
to pursue the idea of polyglot persistence where we use different database
systems, but each of them is used for what they are best at.

• In 2016, Google introduced Angular 2 framework that brought a big change
after AngularJS [22]. As they recommended using TypeScript programming
language, everyone felt the lack of a typed version of FHIR client library.
fhir.js14 offers an official solution for using FHIR in JavaScript but it was
not extended to handle interfaces and classes.

• In many telemedicine projects it is limited where data can be stored and
what path data can be transferred through. These limitations can be stated
by owners, organizations or a project. To meet these requirements and run
into less legal issues, a private cloud is recommended to establish. Inclouded
SDK supports hybrid cloud solutions, so developer can choose to use public
or private cloud to store the data.

14URL: https://github.com/FHIR/fhir.js/

https://github.com/FHIR/fhir.js/


516 Zoltán Richárd Jánki and Vilmos Bilicki

5 Our solution

This paper introduces our telemedicine SDK called Inclouded SDK, its importance
in telemedicine application development and all of its features. The basic concept
of our SDK is to provide the capabilities of WebDAO for telemedicine application
developments. Using WebDAO analogy, SDK offers Data Transfer Objects (DTOs)
in form of classes to apply the entire DAO design pattern. Since it is shown that
serverless development increases productivity, we decided to start telemedicine de-
velopments in a public cloud. Google Cloud Firebase platform and its services were
used as a basis, so we built an SDK that can handle FHIR and can conform to the
solutions of Firebase. Here, we used Google Cloud Firestore for storing metadata,
Google Cloud Storage for storing binary files and the Google Authentication ser-
vice for managing users. The SDK is publicly available and installable via Node
Package Manager (NPM).

5.1 SDK structure

As it is shown in Figure 9, Inclouded SDK consists of resource-based application
programming interfaces (APIs) that provide fully FHIR-compatible typed docu-
ment classes, so-called DTOs and a list of queries that implements the necessary
FHIR search parameters in form of independent functions. The basic Create, Read,
Update, Delete (CRUD) operations are implemented in the FhirApi class and all
the FHIR resources are inherited from this class. Besides the CRUD operations
there is an additional id-based query function that is suitable for all resources.
Hence, Inclouded SDK fully implements the DAO design pattern for FHIR and can
be used as a part of the data layer of Clean Architecture [16]. To make Figure 9
more clear, we have only drawn a part of the whole library but the rest of it uses
the same idea.

During the design of SDK, we took into account that FHIR has never had
NoSQL support, however, Firebase provides only NoSQL database systems. FHIR
was designed for RDBMS, but today NoSQL is gaining more and more space.
FHIR defines search parameters that describe the necessary filters if one uses the
standard. Using Google Cloud Firestore we were facing issues that made it hard
to filter data that FHIR supports. Four main problems were:

1. finding a value of a field if it is in an object inside an array,

2. filtering by substrings of a field,

3. extending queries based on access-control rules,

4. and obtaining results that are gathered from multiple collections.

In Section 6, we show our algorithms for these problems and present a logical
model for their specifications and verifications.



Standardized Telemedicine Software Development Kit 517

FhirApi
db
collectionName
documentClass

getAll()
getById(id)
add(data)
update(data)
delete(id)

FhirDocument
id
data

splitNameByVariations(name)

FhirRules
references

processRules(rules, operation,
id, role, resource, referenceType,
query, whereFields?)

PatientApi
db
collectionName
documentClass

getActivePatients(group?)
getInactivePatients(group?)
getPatientsByGender(gender)
getPatientsByTelecom(telecom)
getPatientsByBirthDate(birthDate)
...

FhirPatientDocument
id
data
identifier
generalPractitioner
nameText
nameFamily
nameFamilyGivenText
nameSearchField
...

PractitionerApi
db
collectionName
documentClass

getPractitionersByName(namePrefix?,
nameFamily?, nameGiven?, nameSuffix?,
nameText?)
getPractitionersByAddress(postalCode?,
country?, city?, line?)
getPractitionersByGender(gender)
...

FhirPractitionerDocument
id
data
identifier
nameText
nameFamily
nameFamilyGivenText
nameSearchField
organization
...

OrganizationApi
db
collectionName
documentClass

getOrganizationsByIdentifier(id)
getOrganizationsByName(name)
getOrganizationsByStatus(status)
...

FhirOrganizationDocument
id
data
identifier
addressPostalCode
addressCountry
addressCity
addressLine
nameSearchField
...

Figure 9: SDK structure

5.2 SDK architecture

Since FHIR requires endpoints that return back standard data, there is no restric-
tion on the format in which the data is stored. So, the data is stored in a format
compatible with NoSQL and Firestore concepts, but the data that is retrieved by
the client is fully FHIR compliant. The above mentioned intelligent capabilities
are implemented in the document classes. FhirDocument is the base class of all
resource entities. Here, we have two attributes, one is id, the other is data. To solve
the 4 main challenges, document classes use helper functions that convert data to
a format that makes it searchable in any database system.

Figure 10 shows an architectural map about how SDK takes place in the data
path. It is installed on the client side and processes the data sent by the client and
forwards it to the cloud. If the client operation is an insertion, SDK waits for an
FHIR-compatible object and creates an extended object that makes the original
data NoSQL compatible. If the request is a query, then SDK waits for search
parameters and adds the necessary filters to the query object. Since access control
techniques are different in different database systems, SDK also has an optional rule



518 Zoltán Richárd Jánki and Vilmos Bilicki

processing function that checks the grants based on the database settings. Since
the rule system of Firestore does not work as a filter, it is required to add extra
filters to the query to retrieve the needed objects.

Inclouded SDKClient application

Public cloud

Private cloud

Internet

Sending
FHIR object

Extended
FHIR object

extend

insertionquery

parameters

Retrieving
FHIR object

Stored
FHIR object

map

return

rule
processing

Figure 10: SDK architecture

6 Results

In this section, we will present the main components of our SDK, the formal de-
scriptions of the algorithmic solutions, and the productivity results achieved.

6.1 Main components

Inclouded SDK consists of six core components that support developers in tele-
medicine application development. Here, we provide a detailed description about
these solutions.

6.1.1 Outsourcing non-searchable fields

It is shown that in Google Cloud Firestore, if a field can be found in an object inside
an array, it cannot be filtered. It is also problematic in other NoSQL systems if
only a field value is known, not the whole object. SDK manages such cases by
outsourcing these values into new so-called search-fields created at the top level.
The standard form of the data is also kept, so REST endpoints conform to the
FHIR standard.



Standardized Telemedicine Software Development Kit 519

6.1.2 Rule processor

Access control mechanism of Google Cloud Firestore is so simple that only requested
collections or one document of a collection can be controlled by them. Rules can use
the requester’s sent data, requested data or a preset date to check if the resource
can be given to the client. Since a rule controls the whole request, it is not an option
to retrieve only those documents for which we have permission. To do so, requests
must contain additional filters to start requests only for those documents that we
have permission. If we construct our queries using this structure, we can execute
queries in any NoSQL system. Thus, we elaborated a rule processor algorithm.
Since it is known which FHIR resources can contain data referring to users, groups
or permissions, we made a built-in resource descriptor object that contains the
resources and their fields that may contain references to such entities. The rule
processor waits for a query object, the currently active rule set and the logged in
user’s id, roles and groups. Optionally, the FHIR resource fields that may refer
to permissions can be explicitly set up. By default, SDK uses the basic FHIR
knowledge. After starting a request, – calling an SDK function, – SDK will extend
the query based on the active rules, the user data, the requested resource and the
FHIR resource references. So, developers do not have to take care about how data
can be retrieved under given access control settings because SDK will resolve this
issue and build up a perfect query. Naturally, the rule processor functionality can
be turned off if there are no rules set up in the project. This solution can be applied
in private cloud solutions, too, e.g. in RESTHeart15 with MongoDB.

6.1.3 Collected system codes

FHIR stores quantitative values and values from enumerations in coding systems.
SDK collects the most important and most common codes from the LOINC database
that helps to describe stored data. This component not only provides the codes
and their descriptions, but also creates the necessary FHIR format of the object
that will contain the value. Developers can waste a lot of time by searching for
these codes and finding the best description.

6.1.4 Extension finder

FHIR has an extension mechanism to give the opportunity to place data at a
resource if there is no given field for the data. However, it is not easy to use because
extensions must be well-defined using a FHIR profile that describes the stored
data. We have extended our SDK with a public REST endpoint that can return
a suggestion for data that developers could not find a field in the standard. The
idea came after analyzing open-source projects using FHIR and applying extensions
in the wrong way. Our approach uses NLTK to find the best matching extension
that can define the data. In [10], we have shown our component in detail and
demonstrated that our solution can achieve an 89% success rate.

15SoftInstigate. Restheart - ready to use backend for web and mobile apps. https://restheart.
org/

https://restheart.org/
https://restheart.org/


520 Zoltán Richárd Jánki and Vilmos Bilicki

6.1.5 Support for offline capability

In [8] and [9], we have presented a taxonomy to help design distributed telemedicine
systems. Based on our elaborated taxonomy, we showed how consistency and data
quality changes if the data path is complex and how systems can be configured to
maintain consistency, availability and partition-tolerance at a high level. Inclouded
SDK took a part in that model, and it has the option to easily tune a telemedicine
system so that it remains offline capable without significant data staleness. It was
measured that by allowing data up to 1 version older to be used in the cache, the
system can still provide 83% consistency.

6.1.6 Hybrid cloud support

One of the biggest advantages of using Inclouded SDK is the hybrid cloud capability.
It is a requirement in many projects to store data in a private cloud. However,
public clouds can perform better. The development of Inclouded SDK started
in 2016 and was introduced first in our former paper [7]. That study examined
the concept of WebDAO and highlighted the importance of DAO in telemedicine
application development. Based on our experiences in using Google Cloud, we have
implemented a DAO layer that can substitute Google’s document classes. It is a
modern implementation of the classic DAO layer. Since Google Cloud Firestore is
a document-oriented NoSQL database system, we found MongoDB as the closest
open-source alternative to build a private cloud. Comparing their features, they
operate very similarly, only technical differences can be found. Google is a bit more
limited in filtering and setting up rules to access resources.

RESTHeart is an open-source cloud platform that provides REST API for Mon-
goDB but cannot notify clients about data changes in real time via REST API.
Since RESTHeart HyperText Transfer Protocol (HTTP) endpoints close the con-
nection between the client and the server after responding, a WebSocket connection
is needed to keep the connection alive. We have integrated a WebSocket module
into Inclouded SDK that can establish WebSocket connection to a server. To follow
up real time changes of a MongoDB collection, a Change Stream must be opened
but Change Stream requires a MongoDB Replica Set that is not part of the basic
RESTHeart platform. Hence, we have extended the original RESTHeart project
with a MongoDB Replica Set and added a WebSocket server that can open Change
Streams to collections. The WebSocket connection initiated by the SDK is used
only for notifying the subscribed clients about changes. Every request goes through
the original RESTHeart API.

Inclouded SDK can transform all type of queries that Google Cloud Firestore
can handle including CRUD operations, filterings, ordering and paging. To have an
interchangeable solution, we have created a MongoDBCollection, a MongoDBDoc-
ument and a MongoDBQuery classes that have the same functions as Firestore’s
TypeScript classes have, with the same input arguments and return values. Thus,
a configured Firestore database object and a configured MongoDB DAO object can
be interchangeably used. The database object is an input of FHIR API classes, so



Standardized Telemedicine Software Development Kit 521

developers can decide if a resource should be stored in a private cloud or in a public
cloud.

6.2 Formal definitions of algorithms

In this section, we present our algorithmic solutions for the four main issues that we
were facing by using NoSQL database systems. For three of them, we provided an
algorithmic solution. In the fourth case, if data can be queried only from multiple
collections, developers can start multiple queries to get the needed data but it can
produce a huge load on the client side. A better approach is to collect the data
based on use-cases in result tables. SDK supports two types, these are used for
creating result tables and charts. These are implemented in independent functions,
so here we do not provide an algorithmic solution.

Since FHIR was designed for relational database systems, its applicability in
public cloud databases is limited due to their predominant use of NoSQL database
systems. Glenn Pepito collected the challenges and strategies of RDBMS to NoSQL
migration in [17]. In a recent ScyllaDB guide [21], it is detailed what trade-
offs must be taken when changing from relational to non-relational database sys-
tem. Alachisoft16 collected the key steps for adapting an existing schema to non-
relational databases. All in all, it is commonly recommended that during the data
model transformation process, denormalization and embedding of referenced ob-
jects into the reference location should be employed in most cases. However, in
some instances, a hybrid model may be more effective. Similarly, our algorith-
mic approach also follows a hybrid principle in structuring data by preserving the
standard part intact but outsourcing specific fields due to limitations in filtering
capabilities.

Three algorithmic solutions were modeled in Temporary Logic of Actions (TLA)
using its TLA+ language [14] to provide formal definitions as well. We have also
verified the correctness of algorithms with Temporary Logic of Components (TLC)
model checker. The algorithms and their formal definitions for the mentioned issues
are as follows:

• If a field that must be searchable by the standard is hidden in an object that
is in an array, the field is outsourced to an independent field at the top level
(Algorithm 1).

• If a field containing a string must be filtered by substrings, SDK generates
all the possible variations of the string that may occur and place them in an
independent array field at the top level (Algorithm 2).

• If a rule exists for a given resource, it must be extended in the query to return
back data (Algorithm 3).

16Alachisoft. Migration from sql to nosql databases. https://www.alachisoft.com/resources/

whitepapers/sql-to-nosql-migration.html#json-collections

https://www.alachisoft.com/resources/whitepapers/sql-to-nosql-migration.html#json-collections
https://www.alachisoft.com/resources/whitepapers/sql-to-nosql-migration.html#json-collections


522 Zoltán Richárd Jánki and Vilmos Bilicki

Algorithm 1 Formal definition of ”checking if object is in an array” algorithm

CheckObjInArray(x)

1: if num op[x] < Len(INPUT OBJECT FOR OBJ IN ARRAY) then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: head′ = Head(check arr)
4: if head′! = ”elementary” and Head(head′)! =”object” then
5:

6: if Len(head′) > 0 and Head(Head(head′)) =”object” then
7: found arrays′ = TRUE
8: array counter′ = array counter + 1
9: UNCHANGED substr filter vars

10: else
11: UNCHANGED << array counter, substr filter counter,

found arrays, substr filter needed, check substr >>
12: end if
13: else
14: UNCHANGED << array counter, substr filter counter, found arrays,

substr filter needed, check substr >>
15: end if
16: check arr′ = Tail(check arr)
17: else
18: UNCHANGED vars
19: end if

Algorithm models were verified if they work properly. We have developed a
Generator API to all the FHIR Resource APIs and these generators produced
inputs that were passed to TLC Model Checker. We have evaluated the state graph
of the algorithms but none of them produced error or deadlock, and returned the
expected values, so we can conclude that algorithms are working as expected.

6.3 Productivity

In addition to many features that Inclouded SDK carries, we have also taken
measurements on how it influences the development productivity. We have seen
that there are code and project metrics that can be used to measure productivity.
Here, we introduce another technique that measures specifically the coding and
its progress. After testing various tools, we found an open-source, cross-platform
time tracker for operating systems that can profile to output only the time used
for development. Automatic, rule-based time tracker (ARBTT17) is a completely
automatic time tracker that can collect statistics about how users spend their time.
It runs in the background and monitors the computer and saves statistics about

17Breitner, Joachim and et al. arbtt: the automatic, rule-based time tracker. https://arbtt.

nomeata.de/#what

https://arbtt.nomeata.de/#what
https://arbtt.nomeata.de/#what


Standardized Telemedicine Software Development Kit 523

Algorithm 2 Formal definition of ”substring filtering needed” algorithm

CheckIfSubStrF ilterNeeded(x)

1: if num op[x] < Len(INPUT OBJECT FOR SUBSTR FILTER) then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: head′ = Head(check substr)
4: if head′! = NEEDED and Head(head′) > 0 then
5:

6: if Head(head′) =NEEDED then
7: substr filter needed′ = TRUE
8: substr filter counter′ = substr filter counter + 1
9: UNCHANGED obj in array vars

10: else
11: UNCHANGED << array counter, substr filter counter,

found arrays, substr filter needed, check arr >>
12: end if
13: else
14: UNCHANGED obj in array vars
15: end if
16: check substr′ = Tail(check substr)
17: else
18: UNCHANGED vars
19: end if

Algorithm 3 Formal definition of ”rule processor needed” algorithm

CheckRules(x)

1: if num op[x] < rules length then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: check rules′ =RULES[RESOURCE]
4: head′ = Head(check rules’)
5: if Len(head′) > 0 then
6: query′ = query o << head′ >>
7: else
8: FALSE
9: end if

10: UNCHANGED obj in array vars
11: UNCHANGED substr filter vars
12: UNCHANGED rules length
13: else
14: UNCHANGED vars
15: end if

what windows were open, which one was the most active one in a given interval.
The interval can be configured before starting the tracker.



524 Zoltán Richárd Jánki and Vilmos Bilicki

In our study, we involved 10 university students who have not met FHIR yet, but
completed a Web-development frameworks course where they learnt about Angular
2+ framework and Google Cloud Firebase platform and its services. With this
study, our goal was to measure how productivity can be increased if developers use
Inclouded SDK instead of start using the documentation of FHIR and the original
Firestore SDK. The development phases were the followings:

1. Create an example TypeScript object for the selected FHIR resource.

2. Implement a list of Firestore queries without using Inclouded SDK (CRUD
operations and other queries taking into account the FHIR search parame-
ters).

3. Implement a list of Firestore queries using Inclouded SDK (same list of func-
tions).

ARBTT was started with -r 10 argument, so after every 10 seconds a log was
created in the log file containing the opened windows and puts a flag to the most
active one. Every developer used Visual Studio Code as IDE and installed the
Angular 13 Snippets extension in advance. In the developer’s ticket, it was specified
what name they have to use by creating the file for the functions, so after analyzing
the logs it was easy to determine how much time they spent editing a given file in the
project. Everyone started to work on the same Angular 13 project that contained
the necessary packages with fixed version numbers. The task list and the order of
the tasks were identical, only the operating system was permitted to choose after
the preferences. To verify the accuracy of the ARBTT capture logs, we analyzed
the work logs added to the tickets as part of our quality control measurements.

In Figure 11, it can be seen that in all 4 scenarios the development time is
reduced if developers used SDK. The development time in hours is presented as
an average for each FHIR resource. The time tracker puts a flag to the window
with the highest activity within the last 10 seconds, so it is not obvious how long
the development time really took. We have also validated the time tracker results
with logged work hours, and we found similar ratios between the two types of
development form. After the final analysis of ARBTT logs, we found that the
average activity time of a window in a 10 seconds long interval is 3.51 seconds.
Since Patient was the first resource that developers had to work with, it needed
the most time. Moreover, Patient has the most search parameters as well, so it
needs the longest development time period. Comparing the development times, we
can say that the development with SDK can be at least 2 times better than using
only official documentation with no helper functions. Thus, we found that the
Inclouded SDK can be an important key element not only in ours, but also in other
telemedicine architectures. Moreover, these measurements validate the importance
of DAO pattern from the point of view of productivity as well.



Standardized Telemedicine Software Development Kit 525

Patient Practitioner Device Observation
0

20

40

60

80

100

120

140

160
De

ve
lo

pm
en

t t
im

e 
in

 h
ou

rs

127.75h

32.00h 24.92h
36.08h

40.83h

20.58h

10.00h

12.25h

Without SDK
With SDK

Figure 11: Average development time measured using SDK and without SDK

7 Future plans

Inclouded SDK is constantly updated and it is following the innovations of the de-
pendencies. It is planned to integrate more public cloud solutions to support various
systems. With these integrations, more novelties can be added to the package. Af-
ter comparing our Google-based solution to Amazon Web Services and Azure, we
found that all three platforms have common key points that make it possible for
our SDK to be compatible with all public cloud platforms. Naturally, we would
like to provide further support for private clouds as well. Regarding private cloud
solutions, our solution primarily supports NoSQL databases. Since the filtering ca-
pabilities are more limited compared to a relational database, our solution can be
clearly adapted to support relational databases as well. Nevertheless, FHIR defines
a relational domain model, so such a solution can be implemented without the algo-
rithmic solutions we proposed. Our solution and its significance came up with the
idea to support other standards and may focus on other areas as well, not only on
telemedicine. We have already started to develop a SDK with similar capabilities
supporting telecommunication projects and using an acknowledged standard called
TM Forum. In summary, there is a planned effort to assess the productivity of
GitHub projects, supporting the importance of the WebDAO pattern as presented
in [3].



526 Zoltán Richárd Jánki and Vilmos Bilicki

8 Conclusions

This paper presented Inclouded SDK that can be a key component of any teleme-
dicine system. It acts as a link between client-side and server-side in a way that
the backend system can be easily changed. Both private and public clouds are sup-
ported, furthermore it contains several functionalities that help developers to work
efficiently. Here, we support the most popular telemedicine standard, and we made
various statistics to show its actuality. We presented the five main components of
the SDK, in which the algorithmic solutions were formally defined and verified as
well. The significance of Inclouded SDK in telemedicine application development
is proved with different measurements. In terms of productivity, we have shown
that the required development time can be at least two times less with SDK than
without using SDK. Our results based on GitHub analysis and productivity showed
that it is a promising solution. It is open-source and publicly available in NPM,
and the increasing number of downloads denotes that there is a growing demand
on packages and libraries like this.

References

[1] Abbas, A. and Khan, S. A review on the state-of-the-art privacy preserv-
ing approaches in e-health clouds. IEEE Journal of Biomedical and Health
Informatics, 18(4):1431–1441, 2014. DOI: 10.1109/JBHI.2014.2300846.

[2] Baudin, G. Handle FHIR objects with TypeScript (and JavaScript).
URL: https://medium.com/@ahryman40k/handle-fhir-objects-in-

typescript-and-javascript-7110f5a0686f. [Accessed: 2022-09-29].

[3] Choudhary, S., Bogart, C., Rosé, C. P., and Herbsleb, J. D. Modeling coordi-
nation and productivity in open-source GitHub projects, 2018. URL: http://
reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf.

[4] Ferrer-Roca, O. Standards in Telemedicine. In E-Health Systems Quality and
Reliability: Models and Standards, pages 220–243. Medical Information Science
Reference, 2011. DOI: 10.4018/978-1-61692-843-8.ch017.

[5] FHIR version history and maturity. Technical report, The Of-
fice of the National Coordinator for Health Information Technol-
ogy. URL: https://www.healthit.gov/sites/default/files/page/2021-
04/FHIR%20Version%20History%20Fact%20Sheet.pdf.

[6] Forsgren, N., Tremblay, M., Vander Meer, D., and Humble, J. DORA plat-
form: DevOps assessment and benchmarking. In Proceedings of the Inter-
national Conference on Design Science Research in Information System and
Technology, pages 436–440, 2017. DOI: 10.1007/978-3-319-59144-5_27.

[7] Jánki, Z. R. and Bilicki, V. Full-stack FHIR-based MBaaS with server- and
client-side caching capable WebDAO. In Proceedings of the 11th Conference

https://doi.org/10.1109/JBHI.2014.2300846
https://medium.com/@ahryman40k/handle-fhir-objects-in-typescript-and-javascript-7110f5a0686f
https://medium.com/@ahryman40k/handle-fhir-objects-in-typescript-and-javascript-7110f5a0686f
http://reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf
https://doi.org/10.4018/978-1-61692-843-8.ch017
https://www.healthit.gov/sites/default/files/page/2021-04/FHIR%20Version%20History%20Fact%20Sheet.pdf
https://www.healthit.gov/sites/default/files/page/2021-04/FHIR%20Version%20History%20Fact%20Sheet.pdf
https://doi.org/10.1007/978-3-319-59144-5_27


Standardized Telemedicine Software Development Kit 527

of PhD Students in Computer Science, pages 179–183, 2018. URL: https:
//www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf.

[8] Jánki, Z. R. and Bilicki, V. Crosslayer cache for Telemedicine. In Proceed-
ings of the 12th Conference of PhD Students in Computer Science, pages
159–163, 2020. URL: https://www.inf.u-szeged.hu/~cscs/cscs2020/

proceedings.php.

[9] Jánki, Z. R. and Bilicki, V. Taxonomy for trade-off problem in distributed Te-
lemedicine systems. Acta Cybernetica, 25(2):285–306, 2021. DOI: 10.14232/

actacyb.290352.

[10] Jánki, Z. R. and Bilicki, V. Domain specific semantic data model integra-
tion. In Proceedings of the 13th Conference of PhD Students in Computer
Science, pages 197–201, 2022. URL: https://www.inf.u-szeged.hu/~cscs/
cscs2022/pdf/cscs2022.pdf.

[11] Kazulkin, V. Measure and increase developer productivity with help of
Severless. URL: https://www.slideshare.net/VadymKazulkin/measure-

and-increase-developer-productivity-with-help-of-severless-

by-kazulkin-and-bannes-sla-the-hague-2020-238115659. [Accessed:
2022-09-29].

[12] Kruse, C. S., Smith, B., Vanderlinden, H., and Nealand, A. Security techniques
for the electronic health records. Journal of Medical Systems, 41(8):127–136,
2017. DOI: 10.1007/s10916-017-0778-4.

[13] Kulakiewicz, A., Parkin, E., and Powell, T. Patient health records: Access,
sharing and confidentiality. Technical report, House of Commons Library, UK
Parliament, 2022. URL: https://researchbriefings.files.parliament.
uk/documents/SN07103/SN07103.pdf.

[14] Lamport, L., Matthews, J., Tuttle, M., and Yu, Y. Specifying and verifying
systems with TLA+. In Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, pages 45–48, 2002. DOI: 10.1145/1133373.1133382.

[15] Maia, R., Von Wangenheim, A., and Nobre, L. A statewide telemedicine
network for public health in Brazil. In Proceedings of the IEEE Symposium on
Computer-Based Medical Systems, Volume 2006, pages 495–500, 2006. DOI:
10.1109/CBMS.2006.29.

[16] Martin, R. C. Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Prentice Hall Press, USA, 1st edition, 2017. ISBN: 0134494164.

[17] Pepito, G. RDBMS to NoSQL migration: Challenges and strategies,
2018. URL: https://www.researchgate.net/publication/341294540_

RDBMS_to_NoSQL_Migration_Challenges_and_Strategies.

https://www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2020/proceedings.php
https://www.inf.u-szeged.hu/~cscs/cscs2020/proceedings.php
https://doi.org/10.14232/actacyb.290352
https://doi.org/10.14232/actacyb.290352
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://doi.org/10.1007/s10916-017-0778-4
https://researchbriefings.files.parliament.uk/documents/SN07103/SN07103.pdf
https://researchbriefings.files.parliament.uk/documents/SN07103/SN07103.pdf
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1109/CBMS.2006.29
https://www.researchgate.net/publication/341294540_RDBMS_to_NoSQL_Migration_Challenges_and_Strategies
https://www.researchgate.net/publication/341294540_RDBMS_to_NoSQL_Migration_Challenges_and_Strategies


528 Zoltán Richárd Jánki and Vilmos Bilicki

[18] Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., and Stumm, M.
Continuous deployment at Facebook and OANDA. In Proceedings of the 38th
International Conference on Software Engineering Companion, pages 21–30.
ACM, 2016. DOI: 10.1145/2889160.2889223.

[19] Shake Technologies, I. Metrics for measuring the productivity of your
development team. URL: https://www.shakebugs.com/blog/measuring-

developer-productivity/. [Accessed: 2022-09-29].

[20] Solanke, V., Kulkarni, G., Vishnu, M., and Kumbharkar, P. Private vs
public cloud, 2013. URL: https://www.researchgate.net/publication/

258253155_Private_Vs_Public_Cloud.

[21] SQL to NoSQL: Architecture differences and considerations for migration.
Technical report, ScyllaDB, 2020. URL: https://www.scylladb.com/wp-

content/uploads/wp-sql-to-nosql-architectur-differences-

considerations-migration-1.pdf.

[22] Sultan, M. Angular and the trending frameworks of mobile and web-
based platform technologies: A comparative analysis. In Proceedings
of the Future Technologies Conference, pages 928–936, 2018. https:

//saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-

Angular_and_the_Trending_Frameworks_of_Mobile.pdf.

https://doi.org/10.1145/2889160.2889223
https://www.shakebugs.com/blog/measuring-developer-productivity/
https://www.shakebugs.com/blog/measuring-developer-productivity/
https://www.researchgate.net/publication/258253155_Private_Vs_Public_Cloud
https://www.researchgate.net/publication/258253155_Private_Vs_Public_Cloud
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf

	Introduction
	State of the art
	Telemedicine platforms
	FHIR
	Public and private clouds
	Serverless development
	Productivity

	Actuality of using FHIR
	Challenges in telemedicine application development
	Our solution
	SDK structure
	SDK architecture

	Results
	Main components
	Outsourcing non-searchable fields
	Rule processor
	Collected system codes
	Extension finder
	Support for offline capability
	Hybrid cloud support

	Formal definitions of algorithms
	Productivity

	Future plans
	Conclusions

