Some measure problems concerning the retrospectlve
sequentlal functions :

" ByL. KvrukoviTs

In this paper we shall study the mappings of the set of all infinite sequences
the terms of which are from a given set X, so-called retrospective sequential functions.
These are some mappings of X into itself. We shall define a measure on the set XV
in natural way so that the measure of the range of a retrospective sequential function

.may be considered as the measure of the maintenance of information by the auto-
maton which realises it. -

We shall prove, that a retrospective sequential funtion is measure-preserving
if and only if it is an onto mapping (Theorem 2). After this we shall show that,
although XV has non-measurable subsets (Theorem 3), the ranges of finite state

" retrospective sequential functions (namely which can be realised by a finite automa-
ton) are all measurable (Theorem 4), and the corresponding measures can equal
any rational numbers between zero and one (Theorem 5).

Finally, besides some remarks we shall illustrate by giving examples that among

the algebraic and metric as well as measure-theoretic properties of the retrospective
. sequential functions we cannot expect close connection.

§ 1. Some fundamental concepts and notations

Let X be.a non-empty finite set. We shall denote by {X} the set of all finite -
‘sequences (shortly: words), whose terms are from X. The elements of {X} will be
denoted by P> g, --. and the elements of X by x, y, .... We remark that the empty
sequence is an element of {¥}. The length of the word P =X1Xs... X, is the natural
number n (I(p) =n), the length of the empty sequence is zero. '

{X}u and {X}, will denote the set of all words composed by elements of {X},
the length of which is at most k& and exactly k, respectlvelv

If M, NS {X}, then .

MR = (pg|pe MAgE N).

The set of all w-type sequences (shortly: sequences), whose terms are from X, will be
- denoted by X¥, and the elements of XV will be denoted by Greek letters. £ =¢&(1) -
£(2)..., where &(i) (é(z)CX) is the i-th element of £ will be used for the detalled
description of the sequences. We shall use the same description also for the words

-



28 L. Klukovits

If p € {X}, a € X¥ then pa will denote that sequence ¢ which satisfies the following
conditions: _ .
EH=p@® if i=l(p)

EG) = a(j—Ip)) if j=1(p).
If ME (X}, REXY then

-and

MN = (pa| pEMAoeN);

if M =(p) then we shall write instead of MN the symbol pN. ({...) denotes set.)
A mapping of XV into itself will be called a sequential function (shortly: sf).
In this paper we shall denote the sequential functions by Latin capitals.
- If RS XN, then FR denotes the set of all sequences, which may be written in
the form Fa (o€ ).
For any natural number n let us define the sf D, in the following way

(D) (i) =a(i+n)

for all «¢X" and any natural number i.
A sf F will be called retrospective (short]y rsf) (see [3]), if for any p€ {X} there
is a g€ {X} such that I(p)=1I(g) and F(pX")SqX" hold. It is easy to see that g
is uniquely defined by p. :
For all rsf F there exists a mapping F of {X} into itself. F is defined in the fol-
lowing way: for any p€ {X} let Fp=gq if F(pX")S ¢X". This mapping F is called
an automaton mapping (see [4]). It is easy to verify that for any p, r, s€ {X}, r=s,
(F(pr)()=(F(ps))(i) if i=I(p) holds.
Let F be any rsf. For an arbitrary word p(E {’c}) we shall define the sf F, in
the following way: ,
) Fyo = Dy, F(po)
for any a€ XV, ) :
"We know that for any p€ {¥X}, F, is a rsf (see (3D. A rsf which can be written -
in the form F,, is called a state of F Of course it is possible that F,= F, in spite
of g#p. If all the different states of an rsf constitute a finite set, then 1t will be called
a finite state rerrospectwe sequential function (shortly: fsrsf). We shall call the the

family
ZF,k = <Fp|l(p) = k>

of the states of F the k-th level of F. It is easy to see that the set of all states of F
coincides with the set of all rsf-s G, for which G € X ; holds for some i (i=0, 1, 2,...).
This set is denoted by Xp.

We know that (F,),= F,, holds for any words p, q (see [3]D). It follows that
Zp, & 2 is true for all pe {X}.

The reader can prove easily that any state of any rsf is also retrospectxve It is
also easy to verify that the following assertions are equivalent

Q) F s one-to-one

(i F s onto, _
Furthermore if F is onto, then F 'is one-to-one. A simple counter-example.
(F:a—xa; x € X) shows that the converse of this proposition if false. In the sequel

if it does not make any misunderstanding, we shall write F instead of F.
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If the rsf F is not one-to-one, then there exists a word p € {X} such that pé& F{X}.
The length of the shortest word p which satisfies the preceding condition is denoted
by-d(F).

The cardinal number of the set 2 is denoted in this paper by |QI| We shall call
the word p an initial segment of the sequence «, if

pO)=a()
for all i=I(p).

* § 2. Definition of a meastre on the set XV

* Consider those subsets of XV, which may be written in the form
., _ .

4 px
where p is arbitrary word. Enlarging the set of these subsets with the empty set,'
we get a semiring of sets, which we shall denote by S(X). The unit element of
S(¥) is XN, Let us define a set function u on the elements of S(%) in the followmg
‘way: .

. y :
2.1 : #(PxN) =

where n=|X|. It is easy to see that thls function is a measure (see [1]). We assert
that this measure is o-additive.

It is known that we can continue this measure so that its domain will be the
minimal ring over the semiring S(X) (this ring will be denoted by R(S(¥))), and
the continuation of u will be also ¢-additive (see [1]).

In the next section we shall often refer to the definition of the Lebesgue measure,
and a proposition on measurability. They. are the following. Let a g-additive measure
m be given on some semiring of sets S,, with unit E.' We shall define on the system
€ of all subsets of the set E two functlons w(4) and y*(A) in the following way -

Deﬁmtzon 1. The number.
‘ W (4) = inf S m(B)
where the greatest lower bound is taken over all coverings of the set 4 by finite
- or countable systems of sets B, €S, is called the outer measure of the set ACE.
Definition 2. The number
) = m(E)— i(ENA)

is called the inner measure of the set ASF.
It is easy to see that p,(A4)=p*(4) holds for every ACE

Deﬁnmon 3. The set ASE i is measurable (Lebesgue), if
Hy(A) = p*(4).
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If A is measurable, then we shall denote the common value u,(4)=u*(4) by u(4)
and call it the (Lebesgue) measure of the set 4. The next definition is equivalent
to definition 3.

Definition 3’. The set ASE is called measurable, if
WA + 1 (ENA) = m(E).

Proposition 1. For the measurability of the set A(S E) the folloWing condition
is necessary and sufficient: for any e> 0 there exists a B€ R(S(¥)) such that

W (AaB)<e.

A The proof of this theorem can be found for example in [1].

§ 3. The main results

First we prove a theorem which presents an analogy w1th some problems of
the. theory of real functions.

Theorem 1. If two retrospective sequential functions differ only on a set of
measure zero then these functions are equal.

Probf. We shall prove the following assertion, equivalent to Theorem 1: if the
rsf-s F and G are not equal, then there exists a set 2, such that u()=>0 and

FUANGA ==

Let a=a(1)a(2)... be any sequence from X", for which there is a natural number i
.such that 7 :
(Fo) (i) # (Ge) (3).

After this consider the set pX", where p=a(l)...a(i). According to the deﬁnmon
of measure '

p(pE) = 7217>0
(n=|X]) and it is clear that
F(pX")nG(pxM) = 0. ,
' Q.E. D.
Lemma 1. If the range of a rsf Fis measurable then the image of any measu-
rable set under F is also measurable.

Proof. The reader can verify that, if the range of F is measurable, then FE
— where €€ R(S(X)) — is also measurable. Let now (S X¥¥) be any measurable
set. According to the proposxtlon 1, for any £=0 there exists a set B €R(S(X))
such that

3.1 P (UAAB) <e.
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Let £¢>0 be an arbitrary number and B €R(S(X)) a set satisfying (3.1). 1t is simple
to verify that - _ '
FUAFBCS FRAAB) -

is valid. Take the outer measure of both sides: -
) P (FULFB)=p* (FUAB)) = p* UrB)<s.

The reader can easily verify that

3.2) R (FA) — X (FB) | = y*.(F‘JIA FB)<eg,
andsince . S

(%N\FQI)A(.%N\FSB) = FUAAFSB,
we obtain , : :
(.3) I (RYNF) HENFD) <
From 3.2) and (3.3) we get

3.9 I (FOD)+ WG NF) — (4 (FB) + " (BV\FB)| <2e.

Slnce FB is measurable, '
B (FB) + p* (XNNFB) = p(XY).

Since & was arbitrary, it follows fromv(3. 4) that '
WHF) + i (EVNFU) = ()

and this'means that the image of the set 9 under F is measurable.

In the following theorem we give a necessary and sufficient condition in order
that a retrospective sequential function be measure- preserving.

Theorem 2. A rsf is measure-preserving 1f and only if it is an onto mapping.

. Proof. ,
Suﬂicwncy First let i’IE S(X), i.e.

A= p%”
where p¢ {¥}. In this case

(3.5) . FUA=gB

where g = Fp and B XV, Since F is onto (and a fortiori one-to-one), its ‘inverse
F~1 exists, which is a rsf (see [3]) and

F~1(gX")SpXM.
By (3. 5), it follows from this relation that
' 9%" S ¢,
i.e.
TS,
- We have obtained, that B ¥ and XY B, from which
B=xN
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follows and so for any ¢ S(X) the sufficiency of the condition is proved. Now let
" U be an arbitrary measurable set. According to the precedings we obtain

HEFW = p* (W) = p(W.
"The set FU is measurable by the lemma 1, and so

pH(F) —u(F90

The sufficiency of the condition is proved.

Necessity: First we suppose that F is not one-to-one. In this case there are
such sequences a, /)’E%" (x# p) for which

o= FB.
Let

o=pi=px¢,
B=pB=pyl

where p¢ {¥X} (1t is possible that I(p)= O) x,y€X but x;ﬁy and .&, B, &, L€ XN,
According to the assumption we obtain

(3.6) : - F(px)=qzm
and . . : :
3.7 o F(pyl)=qzn

where g€ {X} (I(9) =1(p)), z€ X and n € X". Consider the sets
pxX¥  and  pyx¥
which are disjoint elements of S(¥). According to (3. 6) and (3. 7) we obtain

F(px¥M)=¢qzU
and ' : ,
: . F(pyx¥)=qzB
where 2, B € XV and

u(gzA) = u(gzB) = ./z(pxx"’) = p— @ +D)

(n=|X|). We remark that n(@)= y(ﬂi)—l and so u(AAB)=0. In this case we can
suppose by the Theorem 1 that
A=121.

After these we consider the- set. F(pxX¥UpyX™), which is equal to qzA. We have
a contradiction, since

”(pxxlv Upny) — 2n—(l(p)+1)
‘and .
. u(ng[) = p-WP+1),

This makes the first part of the proof complete because .pxX"U pyXYN is measurable.
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Now let the rsf F be one-to-one but not onto, and a € X\ FX". We assert that
there exists a natural number k such that

X1Xg e xk!;{N ¢ F.{N

where x;=a(i) (i=1,2,...,k). In the contrary case there exists a sequence of
elements G €FXY (j=1, 2 ..) such that a;(i)=0a(i) whenever 1=i=j. Consider
the sequence B,E%” (j=1,2,...) defined by ‘the equations

‘ FBi=ua;.
Form the initial-segments of length j for every B From these segments we can

construct a sequence B, for which
Ff=a

- holds. This is a contradlctlon If the natural number k above exists, then we have

relation :

Xy Xy .. X XN S %N\F.%N.

‘We know 'that :
| HENFE) =0

because the rsf F is measure preservmg We see that our precedmg relation cont- .
radicts to the measure preserving of the rsf F. The proof is complete. .

We may ask the following question: Are all the subsets of X¥ measurable? _
The answer is negative. The construction which leads to a non-measurable subset
of XV is analogous to that of Zermelo concerning the interval [0, 1] (see [2])

Theorem 3. The set XN has non-measurable subsets.

Proof: Let us define a relation on XV: a~ g (, EXN) if and only if there exists
an onto fsrsf F, for which ,
Fa=4.

This relation is an equivalence relation, and let the equivalence classes be U, (1€1).
We choose one and only one element from every set A, and we denote the set of
these elements by B. We shall show that B is not measurable :

o Con51der the sequence of all onto fsrsf-s

, Fi, Fy,...
and let
B;=FB j=12, ..
The sets B; (j=1,2,.. ) satisfy the condmon
B; ﬂ%k—ﬂ j#k.
Namely, if aeﬂi ﬂi}k, then F; 1cx F3'ae®B and
F] leFk o = GFk 10( = Fj_la‘

'so Fjla~ F7'a. This is a contradiction.
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If the set B is measurable, then the sets B; (j=1, 2,...) are measurable and
#(B)=u(B;) by Theorem 2. Furthermore,

In fact, for any a€ XV one and only one index 1 (€]) exists such that a €. Let
B=ANDB. On the basis of the definition of the equivalence classes 2, there
is an onto fsrsf H, such that

a=Hp.

Since H is among F,, F,,..., there exists a natural number m, such that « € B, holds.
The series 2 pu(3B;) is convergent. Furthermore, u(B,)=p(B,)=... whence
it follows that y(SB ;=0 for j=1,2,.... Because

j.;: 1(B) = p(EY) =1,

we have a contradiction, thus the proof is complete.

In the following we look for an answer to the question: for which classes of
rsf will be the range measurable. We shall obtain that the range of any fsrsf is measur-
able.

Lemma 2. The range of any fsrsf without one-to-one state is measurable.

_ Proof. For any non-negative integer ¢ let us define the subsets 4, ,, A,, of Zg,
in the following way: let F, € A,, (/(p) =t) if and only if there exist words
Da2s---s Pi€ {%}, such that
py=Fp,=...=Fp,
and -

. .
U F, X" = xV
i=1
and let A, =Xp \4,,. We see, if F, €4,, and I(g)=u, then mEAl (tu
In fact, in this case
UF XV =XV (F, 9",

. therefore,- for all r¢ {X}, for which

F,r="F,q (i=1,2, ..., k),
we obtain
U FI,,,.{N XV,
and for any such word '

F(pir)=(Fp)(For)=(Fp) (Fyr) = F(psa).

Let us denote by B, the set of all sequences x € FX¥, for which there exists a word
p€{X}), such that F,€A4,, and Fp=a(l)...a(t). We shall show that if z<wv, then
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B,E8,.In fact, let «€B,. Now there is a g€ {X},, such that F,€ 4, , and Fg=
=w(1)...a(r). In this case for the word r=¢(1)...q(t) we obtain F € A2 . (otherwise
it follows, that F, €A1 ,,), and, owing to the retrospectivity of F

Fr—a(l) all),
and so o B, holds.

Let I' ={Gy,..., G,y be any set of states of F.If L"J'G,-EEN C XM, then there exists
. i=1
a natural number f=f(I') such that

3. 8) | o EL:JI'G,.{x},c{x},;

In fact, if for all natural numbers j
U Gifx) =),

then for any x€ XV there is a G such that the sets G; {%}J (=1, 2 D) contam an
infinite number of initial segments of a, and — since G; is retrospective — these
sets qontam all initial segments of «, because I’ is a finite set Let now

G.9 DisPas iees Pjreee .

be words such that
' Gip;=o(l)...a(j).

Since X is a finite set, (3. 9) has a sub-sequence

(3 10) . . Dus Pizs - 5p1;a

such that all words in (3. 10) begm with the same letter x,. An easy induction shows
that, for any natural number k, (3. 9) has a sub-sequence

Dras Pres -5 Prjs ---

such that all words in this sequence begin with the same word x;...x; € {X},. In this
way we define a sequence '
. E=x1...%;... €‘£N

which for any k satisfies the condition

Gi(xy...x))=a(l)...a(k).

So we have G, =a, namely-aeGiiN and o= OG;{”. We obtain

i=1
] xNg L"J GixN'

namely U G, X¥=2%" and thus, we have a contradlctlon
i=1
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If there exists a natural number f=f(I'), for which (3. 8) holds, thenthere exists
at least such a number and let us denote- this number by f. If U G%N xN holds

then let f(I)=0.
Let now .
: k = max f(I).
IrEsr
af 1" has only one element, I' =(G), then accordmg to the deﬁmtlon f(F) =-d(G).
So for any state G of F, k=d(G) holds.)
We shall denote by B, the set of all initial segments of the sequences from %B,,
whose lengths are equal to ¢. Furthermore B, contains all the words g (l(q)—t) for
which there is a word p (l(p)—t) such that

Fe4,, and Ep=g.
We shall show that, for any natural number i, -
|Bul = (n*—1)’

holds, where n= [X]. It is also true, that B,S F{X}, and d(F )<k hold, and because_
of the retrospectivity of F, we have

IF{x}ki §.nk._l,
consequently
IB]‘I - nk —1.

Let IB&‘ o= —1)"%, and let p€B;_qy. It suffices to show that there are at
least n*—1 words g€ {X}, such that pg€ B;. The following more strong assertion
is also true: the number of those words g€ {X}, which satisfy this condition
pg€ F{X},, is at least n*—1. In fact, consider all the words ry,..., 7, € {X};_ 1y
for which Fr,=...= Fr,,=p. In this case _

F'rla L] F‘rmEA2,(i-1)ka
therefore

)Ejl F(ri{X})= J_Ql pE,,; {¥}k - p ,Q1 F, {%}, cp {x}«

according to the definition of k. On the basis of the preceding we obtain for any
natural number ¢

k t
BB = pt ( U q%”] Py (435") =2 u(q%”)S[ 1].

QEsz q€ Bexe € Bex

We have seen that if <, then B,S B, has been satisfied. Thus for any &=0 there
exists a £, such that for any ¢>1, the relatlon

w(®)<e
is satisfied.
We observe that for any natural number ¢
FxV = [ U (Fp)i”)U%; = A USB,

FPGAIJ

and ,NB,=9.
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Since FX"AU,=%B, and U, € R(S(X)) hold (for U, is a finite union of elements
from S(X) and see [1]),
prFELU) = p*(B)<e.

By the proposition 1 from this relation the measurability of the range of F follows.

. Q. E. D,
Theorem 4. The range of any fsrsf is measurable.

Proof Letbe F an arbltrary fsrsf. We define fo rany natural number ¢ three sets:

'Al, is ‘the set of all fsrsf “F,(p€ {X},) which are onto_mappings; A, is the- .

set of all fsrsf F, (g€ {%}) Wthh are not onto mappings, but there exists
a word rE {x} (l(r)>0) such that F, is onto and finally A;,=2p,\
N4, U4

It is easy to see: if F, EAI, and r€ {¥X} is any word, then F, ,,,E Ay i1y Let
k(H) (HeZXy) the smallest natural number for which '

. k(H) -8

= U U4,

Jj=1 i=1

holds, and let k max k(H) For the sake of s1mphclty,oput

1 BG

U G¥¥ =2, ~
GeAy,

U HXY =89,
HeAdg,

U JxN =g,
Jedg, °

for- any natural number ¢, and denote by B, the set of all initial segments of the
- sequences from B, whose length is exactly .
The followmg inequality is valid:

|Bul = Byl (" —1).

In fact, for any GEA“ there exists a word r¢ {X}u, such that 1(r)>0 and
G,€Ay,44 .y hold.
A simple 1nduct10n shows, that for any natural number t

lBtk]§lBkl(n -1yt
is valid. Thus _

u*(By) = u*( U q%”) Z n(g¥") = lB”'[ - ]_

9€ By

is true. _
Now let &, &, &,>0 arbitrary numbers and ¢, 4+ ¢, <s.-
It is obvious that there exists such a natural number ¢,, for which

@B = (U g8 = @ <

q€ Bex

holds if ¢>1, (in the following we assume it). 3
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- Since €, is measurable by Lemma 2, there is a set € ¢ R(S(X)) such that

N H(Cpr€)<e, -
is valid (see proposition 1).
Now we obtain that
' wr(FXV AU UBUEG) = 1 (B)+ 1t €as€) <oy +ep<s

holds. Since ¢ was arbitrary, in virtue of Proposition ] this relation gives the measu-
rability of the range of F.
Q.E.D.

The following theorems give answer to what the set of the values of the function
4 can be like. ‘

Theorem 5. For any rational number r, 0=r=1, there exists such a fsrsf F

for which we have
R(FEN)=r.

Proof. If r=0 or r=1, then the statement is trivial, thus we can suppose that
0 <r<1. The proof will be constructive and we make the construction in the special
case X=(0, 1). The reader can show that this condition does not restrict the gene-
rality. :
Let 11...1=1% (;=0, 1,...) and define two sequential functions
B i times
(3.11) o G =00...

Got=o

for any sequence « € XV,

Let

0,a,a,...a, by b,...

be the dyadic form of the rational number r, where there is a natural number m for
which

(3.12) by = by_[2]m

for any natural number j [[ﬁ] denotes here the integer paft of ﬁ]
After that, let A :

: G,,, 1If0=i<k,
(3.13) Fyy =

Gyy_\vy if k=i,

Owing to the condition (3. 12)'we have only finitely many different states and these
are .
Fyo, Fiu,..., Fiesnm,

A simple calculation shows that for the fsrsf F for which

Zp=(Gy, Gy, Fyo,..., Frcsm)
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is valid, where G, G; and Fll are defined by (3. 11) and (3. 13), we have
k

ﬂ(FxN)—sz‘*‘Z 2k+; =r.
Theorem 6. For any number p, 0<p <1 there exists a rsf F for which
‘ u(FXN)=p.

Proof. We may suppose that p is an irrational number, and let its dyadic form be

0, a a,... _
Let G, and G, be defined, as in Theorem 5, by (3. 11). Instead of (3. 13) we consider
F;,=G,,, for all i=0,1,... '

1io aj+1
We obtain by a simple calculation that if

2[,* = <G0, Gl’ FIO, .-.>
then . _
N > 4
pEX) = 2 5 =p
. i=1.
Q.E.D

§ 4. Two negative results

We can ask the following question. If F and H are two rsf-s, then what is the
correspondence between p(FXM)pu(HXM) and p(FHXM)? (We suppose that these
measures exist).

The next example shows that in the general case we can assert nothing. Let
X ={x,, x,), and the rsf Gy, G, be defined by (3. 11). The functions F and H will
be defined by the formulas

EF —< x1° x2>

where F, =G, and F,, =G, furthermore

. . ZH - < X190 Hx2>,
where H,, =G, and H, =G,.
It is easv to show that on the one hand

u(F%”) = u(HX") = —,

on the other hand if for any xe X -
: { x, if x=x ’
Fx = .
Xy if x=2x,
and
x, if x=ux

Hx = .
x {xl if x=ux,

hold, then )
H(FHEY) = p(xxyxy...) + p(x ) = 2
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and . |
U(HFXY) = p(xpxx;..) + p(x1x,...) = 0.

Before the description of the second result it is necessary to give two definitions.
Definition 4 (see [5]). The distance of two rsf-s F and G is defined by

o(F,G) = —

where m is the smallest natural number for which there exists a sequence o€ XV
such that
(Fa)()=(Gx)(@) for i<m - -
and
: (F)(m) # (Ger) (m)
hold.
Definition 5. We say, that a sequence of rsf-s F®) tends to an rsf F(F® - F), if

limg (F®,F) =0 -
koo

holds.
Now the second problem is the following. If F® -~ F then does

lim u(FOXN) = u(FXY)
k-+co
hold?
 The answer is negatlve Let x be a fixed element of the set X, and for any
natural number k let us define the rsf F® in the following way:

F®q =o(1)... a(k) xx...

for any oze%" It is easy to see that this sequence tends to the identity of 3-2" thus
p(FX¥) =1 but for any natural number & .

,u(F(k)%N) — 0
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