
Linear regular languages. Part II 
The problem of synthesis 

B y G . T . H E R M A N 

1. Introduction 

In Part I of this paper [3] we discussed the problem of analysis for linear sequen-
tial circuits, i.e. we gave an algorithm which for every language accepted by a linear 
sequential circuit (described by the circuit and the function mapping the symbols 
of the language into inputs to the circuit) produced a regular expression which 
described that language. We have also shown that the converse cannot be done, 
there is a regular expression such that the language described by it is not linear 
regular, i.e. its symbols cannot be mapped into inputs of a linear sequential circuit 
in such a way that the circuit will accept exactly those words which belong to the 
language. We shall assume that the reader is familiar with the terminology of [3]. 

The algorithm of [3] for the analysis of linear sequential circuits had the advant-
age over similar algorithms by its being a practical algorithm which can be imple-
mented on a digital computer. Such implementation has been reported on in [4]. 

The problem of synthesis, for linear sequential circuits is to give an algorithm 
which for any given regular expression decides whether or not it describes a linear 
regular language and, if that is indeed the case, the algorithm must provide us with 
a linear sequential circuit and a mapping of the symbols of the language into inputs 
of the circuit, such that the circuit will accept exactly those words which belong to 
the language. In this paper we shall describe an algorithm which will do this job. 
Unfortunately, from the practical point of view the algorithm will do little more 
than show that such algorithm exists, if implemented on a digital computer its 
operation would be so inefficient that it could not be applied even to very sim-
ple cases. This is a usual state of affairs with algorithms in automata theory, but 
it is our contention that this particular problem should have an implementable 
solution, similar in simplicity to the one for . the problem of analysis. The reader 
should compare comments in § 5 of [3]. 

Similarly to [3], this paper will be introductory in the sense that it will make 
no assumption of knowledge on the part of the reader. Hence, some known defini-
tions and results will be given and proved without reference to' original sources. 

1 Acta Cybernetics 
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2.. .Definitions 

All definitions in [3] will be assumed to be known to the reader. 

Definition 1. A. finite automaton is a 5-tuple M = (Q, I , q, b, F), where 
(i) Q is a finite non-empty set of states, 

(ii) I is a finite non-empty set of input symbols, 
(iii) q 6 Q, the initial state, 
(iv) 5: Qxl Q, the direct transition function, 
(v) Fez Q, the set of accepting states. 

We extend the transition function to a mapping 5 from QXlz into Q as fol-
lows: 

S(q,e) = q, 

S(q, xa) ~d(S(q, x), a) 
for all q £ Q, a £ I and x t IE. 

Since, for all q€Q and a£l, 5(q, a) = 5(q, a), we denote S by <5 as well. 

Example 1. 

where {{q0, q l t q 3 ) , {a, b), q0, 5, {<72}> 
<5(<7;, «) = <?;, for O S / ^ 3 , 

^ ( l i , b ) = qi + l , for 0 ; s / S 2 , 
8(qs,b) = q3, 

is a finite automaton. , 

Example 2. 

<{<7o,9i}, {«. b), q0, 5, {q0}) 

where S(qi,a) = qi, for O s / ^ l , 

<K<7;, b) = ql-i, for O S / S i , 
is a finite automaton. 

Definition 2. Let M = (Q, I , q, <5, F) be a finite automaton and x£lz. We say 
that M accepts x i f and only if d(q, x)£F. Let W€.Lr. We say that M accepts W 
if and only if the set of those x in / , which are accepted by M is exactly W. 

Example 3. The finite automaton given in Example 1 accepts the language 
described by 

(((a*b)(a*b))a*). 

Example 4. The finite automaton given in Example 2 accepts the language 
described by 

(a%ba*)(ba*)y). 

Definition 3. A finite automaton M = (Q, I , q, 5, F) is said to be linearly realiz-
able if and only if there exists a linear sequential circuit C and functions a and <p 
with the following properties. (We assume that the circuit C has A; external input 
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wires and n delays and can be described by matrices A, B and C as in Theorem 1 
of[3].) 

(i) a maps I into ^-tuples of O's and l 's. ' 
(ii) <p maps Q into «-tuples of O's and l's. 

(iii) For each p £ Q and a £ X, ' . 

(p{8(p,aj) = <p(p)A©a(fl)B. . 
(iv) For e a c h p £ Q , 

p£F if and only if q>(p)C=l. 

In such a case C is said to be a linear realization of M. 
Example 5. The finite automaton of Example 2 is linearly realizable. Its linear 

realization is given in Figure 3 of [3]. a is defined by 

•a («) = 0, < a (A)-"- 1. 
(p is defined by 

<M<7o) = [ l , 0 ] , p f o J H l , 1J-

We shall see later on that the finite automaton of Example 1 is not linearly 
realizable. We note in passing that the definition of realization that is given here is 
somewhat restricted, but for the purpose of checking the linearity of regular languages 
it is as general as needed. For a discussion of various definitions of realization, see 
for instance [5]. 

Definition 4. An initial subautomaton of a finite automaton M = {Q, I , q, <5, F ) 
is the finite automaton (£>', I , q, 6', F'), where . 

Q' = {p\p£Q and p = 5(q,x) for some x£lr], 

S'(p, a) = 5(p, a) for all p£Q' and a^I, 

/• ' = ¡:T\ Q'. 

Intuitively, the initial subautomaton is that part of the automaton which con-
sists of all the states which are accessible from the initial state. 

Example 6. For the automata of Examples 1 and 2, the initial subautomaton 
is the automaton itself, since all states are accessible from the initial state. 

The following basic result is easy to prove and we shall assume it in the rest of 
the paper without further reference to it. 

Proposition. The language which is accepted by a finite automaton is the same 
as the language accepted by its initial subautomaton. 

Definition 5. Let C be a linear sequential circuit with n delays. With each state 
J> = [.J>I, ...,>„] of C we associate a mapping f R O R N strings of inputs ^... .T , into . 
{0, 1} defined as follows: 

xt) = yA'C ® 2 XiBA-'C. 
¡=i 

I.e. the value of ^(xx-.-x,) is the same as the output would be at time t + 1 if the 
machine was started in state y and received the external input at time i. 
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Example 7. For the linear sequential machine C of Figure 3 in [3] we have the 
following. 

if an even number of x, is 1, 
otherwise, 

if an even number of x t is 1, 
otherwise, 

, 0] (-̂ -1 • • • X,) — j Q 

-•• xl) — 1 1 c 

••• •*() — [̂"1,0] 0*1 ••• xt)> 

'-ib,O](-vL ••• xi) = j-fi,i](xi ••• xt)-

Definition 6. A linear sequential circuit C is said to be minimal if and only if 
it does not have two different states ^ and y2 such that ^ = 

Example 8. The linear sequential circuit of Figure 3 in [3] is not minimal. 

Fig. I 

Example 9. Let C be the linear sequential circuit of Figure 1. 

;.0
c(.v1....r,) = { J 

if an even number of x ; is 1, 
otherwise, 

0 if an even number of is 1, 
otherwise. 

Hence C is minimal. 

Definition 7. Let C and C' be two linear sequential circuits. C and C' are said 
to be equivalent if and only if 

{lf\y is a state of C} = {A£' | / is a state of C'}. 

Intuitively speaking two linear sequential circuits are equivalent if and only if 
for every state y of C there is a state y' of C' such that C started in state y behaves 
the same way as C' started in y', and vice versa. 

Example 10. The circuits in. Examples 8 and 9 are equivalent. 
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3. Outline of the argument 

Our aim is to provide an algorithm for the synthesis of linear sequential circuits. 
We are going to do this, in the following way. 

(a) We give an algorithm which for every regular expression produces a finite 
automaton such that the language described by the regular expression is the language 
accepted by the finite automaton. 

(b) We prove that a language described by a regular expression is a linear 
regular language if and only if the initial subautomaton of the automaton produ-
ced by the algorithm in (a) is linearly realizable. In particular, we show that from 
the linear circuit which is the linear realization (if there is one) of the initial subauto-
maton, we can effectively produce a linear sequential circuit which accepts the 
language described by the regular expression. 

(c) We give an algorithm which for any finite automaton decides whether or 
not its initial subautomaton is linearly realizable, and if it is, then the algorithm 
gives a linear sequential circuit which is a linear realization of it. 

It is clear that in view of (b), the algorithms in (a) and (c) combine to give the 
algorithm required for the problem of synthesis for linear sequential circuits. 

4. Synthesis for finite automata 

Theorem 1. Let I be any fixed finite, non-empty set. There is an algorithm 
which for any given regular expression R over the alphabet Z will produce, a finite 
automaton M = (Q, Z, q, <5, F) such that M accepts the language |/?|. 

Proof. The algorithm builds up the finite automaton M from finite automata 
which it has already produced for parts of R. We shall describe what it does for 
regular expressions of length 1, and then show how it produces the finite automaton 
for a regular expression of length greater than 1 from finite automata for regular 
expressions of shorter length. 

If R = o, then M = ({q},Z,q,5, 0>, 

where 5(q,a) = q for all a£Z. 

If R = e, then M = {{qx, q2}, Z, qt, d, {<7i}), 

where 5(q,a) = qt for #£ {<7i, <?2} a n d a£Z. 

If R = a where a£Z, then M = ({q0, qu q2}, Z, q0, <5, {^j}), where d(q0,a) = q1 
and S(q,b) = q2 otherwise. _ ._ 

We now show how to produce from a finite automaton D = (Q, Z, q, S, F) 
whic'i accepts a regular language |P | and a finite automaton E=(Q,Z,q,5,F) 
which accepts a regular language | 5 | (P and S are regular expressions), the finite 
automata which accept the regular languages KP+S) ! and |(PS)|, respectively. 

Suppose R is of the form (P + S) and D and E are finite automata as defined 
.above. The finite automaton M = (Q, Z, q, 5, F) which accepts |/J| is_ constructed 
as follows. Q= QXQ, i.e. ordered pairs of elements from Q and Q. q=(q,q). 
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For any a£Z, pdQ and r£Q, 

K<J>, r), a) =(S(p, a),d(r, a)), 

f = { { p , r ) \ p £ F or r<EF}. 

We leave it to the reader to show that M accepts [(-P+S)!-
Suppose R is of the form (PS) and D = (Q, I , q, 5, F> and £ = (Q, I , q,l,F) 

are finite automata which accept and |S | , respectively. The finite automaton 
M = (Q, X, q, 5, F) which accepts is constructed as follows. 

Let Q' denote the set of all subsets of Q. Q = QXQ', i.e. a set of ordered pairs, 
where the first element js a state of D and the second element is a subset of the states 
of E. q = {q, 0 ) if F and q = (q, {5}) if q^F. <5 is defined as follows. For any 
P£Q, Qi^Q and a£X, 

H(p,Q1),a)=(S(p,a),Q2), 
where 

q2 = { r | r = 5(s, a) for some Qi} U Q3, 
where _ 

0 3 = 0 . if S(p,a)£F and Q3 = {q} if S(p,A)TF. 
Finally, _ _ _ 

F= {</». Gi>l/»e5, Qi^Q and Qir\F^0}. 

We now have to show that the finite automaton F=(Q, X, q, 8, F) does indeed 
accept |(PS)| . The essence of the proof is the following. Given a word w of IE, 
there may be many ways of breaking up w into two subwords. vv£ |(i>S)| if and only 
if one of these ways is such that w = w1w2 and w^g |/»| and w2£ |S|. M keeps track 
simultaneously of all the possible states which E might be in depending on the way 
w has been broken up. 

In order to complete this part of the proof, it is sufficient to prove the follow-
ing claim. :' 

For any word 
d(q,w)=(S(q,w),Q1), 

where r £ Q x if and only if there exist wx and w2 in I t such that w = w t w z , w ^ | P | 
and 5(q, w.2) = r. 

We leave the proof, which can best be done by induction on the length of w, 
to the reader. _ 

If R is of the form P* and E = (Q, X, q, 5, F) is a finite automaton which accepts 
|P| , M = (Q, X, q, 5, F) is constructed as follows. 

Let q be such that q$ Q. Let Q = g U {q}. Define S:QXX - Q by 

N _ { % > « ) i f and a£X, 
\H<i,a) if q=q and a£X. 

O is the set of all subsets of Q. q= {¡7}. For any 2 a n d a£X, 

8(Qi,a) = {r\r = 5(s,a) for some J € 2 i } U g 2 
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where Q2={q) if d(s,a)£F for some s£Qx and £>2=0 otherwise. Finally, 

F={Q1\Q1<zQ and qeQj. 

The proof that M accepts |P*| is very similar to the proof outlined above and 
we leave it to the reader. 

Even though this theorem proves that the problem of synthesis is solved for 
finite automata, the algorithm described in it is such that the finite automata pro-
duced will in general be far from the simplest of the ones which do the job required. 
In fact, it will generally be so large that the implementation of the algorithm on an 
actual computing device is beyond the realm of practical possibility in all but the 
simplest cases. For instance, for the regular expression in Example 3 the finite auto-' 
maton produced by the algorithm will have more than 4 X1012 states, and the finite 
automaton for the regular expression in Example 4 will have over 10lolol° states. 
At the same time, both of the expressions denote languages that can be accepted by 
fairly simple machines (see Examples 1 and 2). 

Although one could give algorithms which work faster than the one described 
above, there is no existing algorithm which works so fast as to be implementable 
for non-trivial regular expressions. 

5. Some facts about linear sequential circuits 
and linear realizations 

Theorem 2. Let M = (Q, I , q, <5, F) be a finite automaton and C be a linear 
sequential circuit which is a linear realization of M with functions a and (p (see 
Definition 3). Let C be described by the matrices A, B and C. Then, for all p£Q 
and x ^ . . . * , in / j , 

<p(8(p, x,x2... x,)) = (P(P)A' © ¿«(*i)BA'-'. 
\ ¡=i 
Furthermore, 

a ( * r ) ) = 1 if and only if <5(/>, xxx2 . . . x() £ F. 

Proof by induction on t. 
I f / = 0, 

(p(8(p,e))=q>(p) = (p(p) A0. 

Assume that the theorem is true for all words of length t. Then 

<p(S(p, xtx2... x,x t + 1) = <p(S(d(p, x x x 2 . . . xt), x (+1)) = 
i 
y i=1 = cp(5(p, XiXo... x,))A © a(x ( + 1)B = <p(p)A< © 2 a(^ i)BA'" i A © a(x1 + 1)B = 

i + . i 
= q>(p)A' + 1 © 2 a(xi)BA'.+ 1 " i . 

i = i 

The second part of the theorem follows directly from Definitions 3 and 5. 
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Theorem 3. Let C be a linear sequential circuit with n delays. Let y\ and y2 
be any two states of C. If there exists a sequence .Y!, x2, . . . , of external input 
conditions such that 

1*2 ••• = ••• 

for all t, 0 ^ / ^ n - l , then 
; c = ; c 

>1 >'2' 
(This is sometimes expressed by saying that C satisfies the /j-diagnosability condition.) 

Proof. Assume that C can be described by matrices A, B and C. IF (*iX> ... X,) = 
= / £ , ( . Y 1 X 2 . . . . Y , ) , then 

)'i A ' C © 2 * I B A ' - ' C = y2A C © ¿ X I B A ' - ' C 
i=1 1=1 -

and so 

(1) . yiA'C = y2 A'C. 

Since this is true for O S / ^ H — 1 , it is also true for / T h i s follows from 
the fact (Cayley—Hamilton theorem) that any power of A can be expressed as a 
linear combination of powers of A less than n. Thus we have that (1) holds for every 
t. But then for any sequence x ^ . - . x , , 

¿ N ( * 1 X2... X,)= / .£, ( * ! -Y2 . . . X,) 
and so = /£,. 

Theorem 4. For every linear sequential circuit C there exists a minimal linear 
sequential circuit C' which is equivalent to C¡ 

Proof Assume that C is described by the matrices A, B and C. (A is nXn, 
B is kXn and C is « X I . ) Let K be the nXn matrix 

[ C , A C , . . . , A " - 1 C ] . 

First we prove that C is minimal if and only if K is a non-singular matrix. 

C is not minimal 
if and only if 

there exist yx and y2 such that = /£, and yl¿éy2, 
if and only if 

there exist yx and y2 such that ¿¿y2 and 

j ^ A ' C = J ; 2 A ' C for O s f g f l - 1 , 
if and only if 

there exist and y2 such that y1 ?±y2 and 

JiK - y2K 
if and only if 

K is singular. 
So if K is non-singular, then C is already, minimal and there is nothing to prove. 

Let us therefore assume that K is singular. 



Linear regular languages 49-

Now we pick a row of K which is the linear combination of previous rows. 
Since the underlying field is the field of two elements this means that the particular 
row of K, say t h e / t h , is the modulo 2 sum of some of the earlier rows. What is the 
physical significance of the y'th row of K being the sum of previous rows? it is that 
the7'th delay in the circuit is superfluous, since its behaviour can be obtained from 
the output of the other delays. 

Fig- 2. 

To see this consider the following argument. We separate the delays of a linear 
sequential circuit C by considering them to,form a separate circuit D with n external 
input wires and n external output wires. For instance for the circuit of Figure 3 
in [3], this would give us Figure 2. Fo r c l ^y ' ^w , the y'th external output of D at 
time t + 1 is the same as the j'th external input of D at time t. Another way of look-
ing at this, is that D takes a state of C as an input and returns the same state of C 
as an output one unit of time later. 

Now suppose that we have a linear sequential circuit C' which is the same as 
C, except that D is replaced by a circuit D' with n external inputs and n external 
outputs, such that if D' is given a state of C as an input, then it returns one unit 
of time later state y2 of C such that 

Clearly, such a C' is equivalent to C. ' 
We are now going to show that if K is singular, we can always find such a D' 

with only n — 1 delays. One of the many possible ways of constructing such a £>".is 
the following. 

Suppose the j 'th row is the first row of K which is the sum of some of the pre-
vious rows. Let us denote the rows of K by K1; K2, . . . , K„ and let S be that subset 
of {1, —1} such that 
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If 7 S / S / 1 —1, the input wire of the / ' thdelay of D' is connected to the ( / + l)'st 
external input wire to D', and the output wire of the / ' th delay of D' is connected 
to the ( / + l ) ' s t external output wire of D'. If l ^ i s j — 1 the output wire of the 
/'th delay of D' is connected to the / 'th external output wire of D'. If /$ S, the input 
wire of the / 'th delay of D' is connected to the / ' th external input wire of D'. If 
i£S, the input wire of the / 'th delay of D' is connected to the output wire of an 
exclusive or gate whose input wires are the / 'th and y'th external input wires to D'. 
Note that the y"th external output wire of D' is not connected to anything and so 
it never carries a pulse (it is earthed). 

If the input to D' is the state y1 = [a1,a2, ...,an], then the output to D' one 
unit of time later will be 

where 

b, = 
_ J 0 if i$S, 

la,- if i£S. 

In order to show that = , it is sufficient to prove tha t j^K =j'-2K (see beginn-
ing of this proof). 

.y2K = [al + bl,a2 + b2, aJ_1 + bJ_1, 0, aJ+1, . . . ,an] 

= J2aiKl+Jz\K;+ 2 a,Kf = 

i=I >=i <=;+I 

= J2ai*i+ 2ajKi+ 2 fliK; = i = 1 ¡es ¡=> + 1 
•='Zat + 2 = 

¡ = 1 f=y + l 

Kx 
K, 

K„ 

= 2 « ^ = i=i 

- yi K. 
We have now obtained a circuit C' which is equivalent to C and has fewer 

delays than C. If this circuit is not minimal, then we can repeat this process. Since 
C has only a finite number of delays, sooner or later we must find a minimal C 
which is equivalent to C. 

• Example 11. Consider the circuit C of Figure 2. For this circuit (see Example 5 
in [3]). 

A = [ i ? l , C = ( 1 1 

- G i l -
K = [ ! J ] , •K1-=K2 = [1,1]. 
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So in the method described above j = 2 and S= {1}. This gives us the D' and C' 
shown in Figure 3. 

It is easy to see that this circuit is equivalent to the one in Figure 1 (y2(t) never 
carries a pulse). 

We point out by the way, that the proof of Theorem 4 is constructive. Given 
a linear sequential circuit, we can actually construct a minimal linear sequential 
circuit equivalent to it using the proof of Theorem 4. 

6. The equivalence of linear realizability of finite automata 
and linearity of regular expressions 

Theorem 5. Let R be a regular expression and M be a finite automaton which 
accepts Then |i?| is a linear regular language if and only if the initial subauto-
maton of M is linearly realizable. Furthermore, if the initial subautomaton of M 
is linearly realizable by a linear sequential circuit C, then from C and the mappings 
(p and a we can effectively produce a linear sequential circuit C' and a function / 
such that C' accepts the language \R\ using / . 

Proof. First suppose that the initial subautomaton of M = (Q, S, q, 5, F) is 
linearly realizable by a linear sequential circuit C. Let a and q> denote the mappings 
described in Definition 3. ' 

We now construct a circuit C' which accepts the language \R\ using a as the / 
of Definition 9 in [3]. . 

Consider (p{q) = [yi, ...,y„]- We consider each delay of C in turn. If yt= 0, 
we make no alteration to the / ' th delay of C. If = 1, then we connect the output 
wire of the / 'th delay of C to one of the input wires of an exclusive or gate (newly 
introduced for this purpose) and we connect the output wire of the exclusive or 
gate to all the wires to which the output wire of the delay used to be connected (all 
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the old connections being removed). The other input wire of the exclusive or gate 
is not yet connected up. When we changed all delays in this way, we introduce one 
more delay (to be considered the first delay of C') whose input wire is not connected 
to anything (i.e., it is earthed) and whose output wire is connected to the so far 
free input wires of the newly introduced exclusive or gates. No other alteration is 
done to C to obtain C'. 

For example if C is as in Figure 3 of [3], then C is given in Figure 4. 

After time t= 1, the first delay of C" makes no contribution to the behaviour 
of C', hence we have that 

'"[1.0 0] — Atp(q)-

This together with Theorem 2 shows that if we let the function / of Definition 9 
in [3] to be a, then a word w in is accepted by M if and only if it is accepted by 
C". In particular, we have shown that is a linear regular language. 

Conversely, let us assume that |/?| is a linear regular language and let C be a 
linear sequential circuit which accepts Let C be a minimal linear sequential 
circuit which is equivalent to C. We shall prove that C' is a linear realization of the 
initial subautomaton of M. 

Since the number of external input wires for C and C' are the same, we can 
take a of Definition 3 to be t h e / o f Definition 9 in [3]. cp is defined as follows. 

For every state y of C there is one state y' of C' such that 

Ay ~ V 
(otherwise C and C' would not be equivalent). Furthermore, there is only one such 
y', for otherwise C' would not be minimal. Let ^i(^) denote this unique y'.~ 

Given a state p of the initial subautomaton of M, there exists an x = x1.v2;...v, 
in h such that 

p = d(q,x1x2...xt). 
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We define (using the matrices A', B' and C' which describe C') 

(pip) = ./i[l,0, . . . ,0]A" © 2 « ( * / ) B ' A " - ' . 
i=i 

The difficulty with this definition is that it is not necessarily unique. It is possible 
that for some x = xix«...x1 in I s , x^x and yet d(q, x) = 5(q, x). We.must show 
that in such cases 

(2) //[1,0, -...,.0]A" © 2 a C * l ) B ' A " - ' = p t l , 0 , : . . , Q ] A ' ' © ¿ « O Q B ' A ' ' " ' . 
. ;=i ¡=1 

Let us denote the left hand side of (2), which is a state of C', by yx and the right 
hand side of (2) by y2. Since C" is a minimal linear sequential circuit, to show the 
equality, it is sufficient to prove that 

)C' = )F. yi >'2 • 

We are now going to show- that for any sequence s1s2...sj£lz 

%(<*(<h)a(¿¡>) • • • «(¿j)) = (a(-ft)«(•%) ••• «(Sj)). 

Tn view of Theorem 3, this is sufficient. 

• ; £ ( a ( s i ) . . . a ( s , ) ) = • 

= ytA'JC ® 2'a(s,)B'A'''-'C'-= • ' 
i = 1 

= Ai[1, 0, ...', 0]A' '+ jC' © ¿ '«( .Y.JB'A'^- 'C ' © 2a(Si)R'A'^lC = 
i=i i=i 

= o](«fe) - i W a ( i i ) . - «(J;)) = •. 

. = i 1 if X! ... x,sx ... Sj£\R\, 
[ 0 otherwise 

_ | 1 if d(q, Xi ... x . i j ... Sj)£F, 
[ 0 otherwise . 

_ i 1 if ¿(<507, x t ... x,), Si ••• Sj)£F, -
[ 0 otherwise 

= | 1 if . 
} 0 otherwise 

= j ' l if d(5(q, Xi ... xj), Ji ... Sj)£F, 
[ 0 otherwise 
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All that is left to show is that conditions (iii) and (iv) in Definition 3 are satisfied. 
For any p in the initial subautomaton of M and for any a in I , p = 8(q, x) for 

some .v = x1....v, in l z and 

. <p(8(p,a)) = <p(8(.8(q,x),a)) = 

= (p(8(q, xa)) = 

= /«[1,0, ..., 0 ]A" + 1 © ¿ a ( . v i ) B ' A " + 1 - i f f ia(a)B' = 
¡=i 

= ( / ¿ [ 1 , 0 , . . . , 0 ] A " © ¿ A ( . Y , . ) B ' A " - i ) A ' © « ( A ) B ' = 

¡=1 

= ^ ( ¿ ( ^ . Y ^ A ' © « ^ ' = 
= <p(p)A'@a(a)B'. 

<p(p) C'=l 

if and only if 
( / ¿ [ 1 , 0 , . . . , 0 ] A ' ' f f i 2 a ( x ; ) B ' A " _ 1 ) C / = 1 

¡=1 
if and only if 

C accepts JC 

if and only if 

if and only if 
' M accepts .Y 

if and only if 
Hl,x)€F if and only if 

pdF. 

Corollary. There are finite automata which are not linearly realizable. 

Proof. The automaton of Example 1 is such. This is because this automaton 
accepts the language described in Example 3, and this language is not a linear regular 
language. (See Theorem 3 of [3].) . 

7. The linear readability of finite automata 

Theorem 6. If a linearly realizable finite automaton M = (Q, I , q, 8, F) has n 
states and k' symbols in X, then it is linearly realizable by a linear sequential circuit 
with at most k' external input wires and at most ri delays. 

Proof. Suppose M has a linear realization C with k external input wires, and n 
delays, where k>k' or n>n' or both. Suppose a- and q> are the mappings as in 
Definition 3. 

First we deal with the case when «>/7'. 
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Let qlt ...,q„' be the ri states of M. Consider the n'Xn matrix F whose /'th 
row is (p(qi). At least « — ri columns of this matrix F will be linearly dependent on 
the other ri columns, and by relabeling the delays we may assume that it is the last 
n — ri columns. * 

Now we proceed as in the proof of Theorem 4. We consider the subcircuit D 
with n external inputs and n external outputs which contains all the delays and 
nothing else. We replace this by a circuit D' with «'.delays. For 1 Si = ri, the input 
wire to the / 'th delay is connected to the /'th external input wire to D', and the 
output wire of the / ' th delay is connected to the f t h external output wire of D'. 

The other external input wires are not connected to anything. For «' < / s ri, 
the / 'th external output wire of the D' is connected to the delays through exclusive 
or gates in such a way that its output is. the modulo 2 sum of the outputs of those 
delays which correspond to those of the first ri columns of F which added together 
give the / ' th column. 

The circuit C' which we get by replacing D in C by D' is clearly equivalent to 
C and is also a linear.realization of M with functions a' = a and cp' such that q>'(p) 
is the vector consisting of the first ri elements of q>{p) (after relabeling of the delays 
of C). 

The case when k>k' can be similarly taken care of. C is altered by attaching 
in front of it a circuit consisting of exclusive or gates only (no delays) which has 
k' external input wires and k external output wires, the latter being attached to 
the external input wires of C. The exact nature of this additional circuit is determined 
by the linear dependencies between the columns of the matrix whose / 'th row is 
a(sj), where ŝ  is the / 'th element of I . . 

Theorem 7. There is an algorithm which for any finite automaton decides whether 
or not its initial subautomaton is linearly realizable, and, in case it is, the algorithm 
gives a linear sequential circuit which is a linear realization of it. 

Proof. First of all, it should be obvious that there is an algorithm which from a 
given automaton produces its initial subautomaton. Let us assume that this initial 
subautomaton has .« states and k symbols in its alphabet. If it is linearly realizable, 
then it has a linear realization with « delays and A: external input wires. (At most « 
or k, by Theorem 6, if less, then additional delays and external input wires can be 
introduced and earthed.) This linear realization can be described by an « X « matrix 
A, a kXn matrix B and a « X l matrix C of O's'and l's. Furthermore given three 
such matrices we can easily produce a linear sequential circuit which is described 
by them, and any two circuits described by them will be equivalent and be linear 
realizations of the same finite automata. (Only the matrices enter the definition of 
equivalence and linear realization.) Also, given matrices A, B and C it is easy to 
check (using Definition 3) whether or not the circuit described by them is a linear 
realization of a given automaton. 

So our algorithm will look like this. Try all possible nXn matrices A, kXk 
matrices B and « X l matrices C (there will be 2n(n+k + 1) possibilities). Check one 
by one whether the circuits described by them are linear realizations of the initial 
subautomaton of the given automaton. If we find such A, B and C, then our work 
is. done, if we exhaust all possibilities without finding them, then the initial subauto-
maton is not linearly realizable. 
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There are more efficient algorithms than the one described above to do what 
is required in Theorem 7. (One such could be based on the method of Cohn & Even 
[1].) However, in view of the comments after Theorem 1, it is clear that our total 
algorithm for the synthesis of linear sequential circuits cannot be made practicable 
and so we sacrificed efficiency for ease of proof in Theorem 7. 

8. Conclusions 

The algorithms described in Theorems 1, 5 and 7 together provide us with an 
algorithm for the synthesis of linear sequential circuits. However, this is a very 
roundabout as well as inefficient way of doing things, and the possibility of a direct 
synthesis from regular expressions to circuits remains an intriguing open problem. 

In this direction, the reader may find useful two books related to linear sequ-
ential circuits which appeared since the writing of Part I. These are [2] and [6]. 
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