
Generation of the /c-trees of a graph

B y T. P A V O

Abstract

We present a new procedure that generates all &-trees of a graph in each compo-
nent of which a vertex is given in advance. Our method makes use of a theorem of
Ore [7] concerning finite directed graphs, thus providing an application of this theo-
rem that beyond its theoretical interest can be used in practical analysis of electrical
networks.

Introduction

Topological formulas are nowadays playing an ever increasing role in the analysis
of electrical networks (see [8]). In the applications of such formulas, however simple
they are, the question immediately arises how to generate all the trees, and also
the 2-trees satisfying certain requirements, of a given graph.

To overcome this problem several methods were proposed in the last decade.
In principle, the most simple way to produce all the trees of a graph G with n vertices
would be to scan all the sets containing n — 1 edges and dispose of those not eligible.
Naturally for practical purposes such a procedure would be too lengthy and in-
tricate. A procedure usable also in practice was devised by Hakimi and Green [1]
and solves the problem by splitting the graph in two parts the trees of which are
assumed to be known. From the trees of these subgraphs the trees of the starting
one can be composed and also &-trees satisfying certain requirements can be pin-
pointed. This procedure is, however, also lengthy and cumbersome; indeed, to
carry out the splitting and composition of trees is in itself a complicated algorithm,
and it must be repeated also for the. subgraphs obtained. A similar procedure was
devised by Mayeda [3].

Other procedures were designed by Talbot (a new set of topological formulas)
and by Mayeda and Seshu [4]. A common feature of these methods is that they
choose an arbitrary tree as a starting one and generate the others from this by edge
transformations. (After deleting an edge of the starting tree another edge of the
graph is substituted, and then the same procedure is applied to the obtained tree.)
These methods seem to have certain advantages but we must note that a recursive
formula is used that is, from the viewpoint of computational technique, difficult
to handle.

The most feasible method for practical use that has been developed up to now

2 Acta Cybernetica

\

58 I. Pàvô: ¿-trees of a graph

is perhaps that due to Maxwell and Cline [5]. This method is of algebraic character
and, to its advantage, is simple] easy to understand, and adaptable to digital com-
puters relatively easily. A snag is, however, that it can be used only to generate /r-trees
with k = 1 or 2 and it uses up a relatively large internal storage capacity.

In the present paper we are going to present a new procedure that generates
the k-trees, satisfying certain requirements, of a graph; the procedure in the case
k = 1 generates all the trees. Our method is about as simple as the algebraic method
mentioned above is, but it can be applied under more general circumstances; namely,
it can be used to handle the case / r S 2 too. It can also be ascribed to its advantage
that, fed into computer, it needs considerably less internal storage room than the
algebraic method mentioned. The procedure, as presented here, concerns only the
generation of fc-trees of graphs without multiple edges, but there is, in principle,
no difficulty in extending it so as to apply to graphs with multiple edges. Our considera-
tions are based on a well-known theorem of Ore [7] on finite directed graphs.

1. Basic concepts and definitions

Consider a. graph with n vertices P l 5 . . . , P„ and select arbitrarily a number k
(1 ^A:Sw)from among them, these being denoted by P,^, . . . ,P i l t(l S / j - c —

Definition. A k-tree _ ifc of the graph G is an arbitrary graph satisfying
the following stipulations:

1. it is a subgraph of G,
2. it contains all the veitices of G,
3. it consists of exactly k connected components,
4. each component contains exactly one of the selected vertices P,,, . . . ,P / f c ,
5. each of its components are a tree.

• In particular, as seen from the definition, F}t denotes a tree of the graph G;
for the sake of simplicity we may sometimes drop the lower index and write only F1 .
The purpose of this note is to study the generation of k-trees conforming to the
above definition.

Let M be a matrix of size nXn with the following properties:
(I) Ev.ery element of M equals either 0 or 1,

(II) each row of M contains at least one element equal to 1.
Consider also a matrix M ; i ik, where l ^ / j ^ — < i k ^ n , of size nXn with

the following properties:
(I') the ij-th row of M ; , ik consists purely of zeros (J= 1, . . . , k),

(II') in other rows of M f l ¡k there is exactly one element equal to 1 and
otherwise these rows too consist purely of zeros, and finally

(III') at every place where M(li_ i(! contains a 1 the matrix M too does so.
A

Definition. If M.j ¡k satisfies conditions (I'), (IF) and (III') then we call it an
(i1,...,ik)-reductionofM.

Suppose. M,-, ¡k satisfies conditions (I') and (II'), and write M(1 ¡k = («,-;),
a,j being the element in the intersection of the ith row and y'th column of the matrix
in question.

Ar-trees of a graph 59

j if x /1; ..., ik and axj = 1 ,

0 if x coincides with one of
the numbers ilt ..., ik

is called the function associated with the matrix M ; i >

As seen, the domain of <p(x) is the set {I, ..., n} and its range is a subset of
{0, 1, ..., «}. Shortly, this function makes correspond to each row index an integer
equalling zero unless the row with the considered index contains an element equal
to 1, in which latter case this integer coincides with the column index of this unique
element. It is clear that the correspondence between the matrices M (j ¡k and the
functions associated with them is one-to-one.

This observation is important since it shows that it is possible to characterize
the matrix in question with the aid of the row vector (cp(1), ..., <p(n)). This cha-
racterization will be called the row vector representation of the matrix M ; i ik.

In what follows, both directed and undirected graphs may turn up. Unless
otherwise stated, loops are not, in general, admitted. In addition, undirected graphs
are assumed to have no multiple edges. Undirected edges will be viewed as pairs of
edges directed in opposite directions that connect the same pair of vertices.

To a graph containing the vertices P1 (..., P„ make correspond a matrix JU(<J)
of size nXn that in the intersection of the /th row and the7'th column contains a 1
if and only if the vertices P, and P j in this order are connected by a directed edge,
the remaining elements of the matrix being equal to zero.

Definition. The matrix //(G) is said to be the adjacency matrix of the graph G.

It is easily checked'that the correspondance G — ¡x(G) between graphs, contain-
ing the vertices P 1 ; ..., P„, that have only single edges (loops being allowed too)
and matrices of type nXn containing only 0 or 1 as elements is one-to-one. For
graphs without loops the adjacency matrix contains purely zeros in its diagonal.
Undirected graphs have symmetrical adjacency matrices.

By a well-known theorem of Ore ([7], [6]; [2]), a.directed graph, possibly with
loops, has the property that at each of its' vertices exactly one of the edges is directed
outwards if and only if it satisfies the following three conditions:

(a) each component of the graph contains exactly one circuit (this may possibly
be a loop),

(b) in this unique circuit the edges are directed cyclically,
(c) in each component the edges that do not belong to its circuit are directed

towards this circuit.

Definition. An undirected graph without loops is called a generalized tree if
each of its connected components contains at most one circuit.

In particular a &-tree is a generalized tree.
To introduce a useful notation, for a directed graph G we shall denote by v(G)

the undirected graph obtained by retaining undirected edges between those pairs
of vertices that are connected in G in at least one direction.

Definition. The function

<p{x) =

60 I. Pàvô: ¿-trees of a graph

2. Some properties of the graphs Fk = v(/< 1(Mil,-t))

Consider a simple graph, i.e. an undirected graph without loops and multiple
edges, that contains the vertices P j , . . . ,P„ (n £ l) , none of which is isolated, and
write M = /i(G). Fix the integers z'1; — a n d let the matrix
MFL run over all the (i\, ..., 4)-reductions of M.

Theorem I. For every graph Fk of form v^i'^M,^,...,ifc)) each of the following
five assertions hold:

(A) Fk is a subgraph of G,
(B) Fk is a generalized tree,

. (C) the vertices Ptj belong to mutually distinct components of Fk (j= 1, ..., k),
(D) if a component of Fk contains any of the P¡'s then this component is a

tree (which may possibly degenerate to a single vertex),
(E) those components of Fk not containing any of the vertices Pfj. contain at »

most one circuit and at least one edge each.
Conversely, if a graph Fk satisfies conditions (A), (B), (C), (D), and (E) then

it can be represented in at least one way in the form /" Í=v(/¿_ 1(M ¡ 1 ¡J).

Proof. Choose an arbitrary (/1; ..., 4)-reduction M ; I of M. It is obvius
that FA : = V (/ Í ~ 1 (M ¡ 1 ¡ J) is a subgraph of G.

Construct a matrix M^ ¡k from M,t i t by writing 1 in the intersection of
the /j-th row and the /y-th column instead of 0 for every j—\,...,k. Then ju — 1(TVI1'1 ffc)
is a directed graph such that to each of its vertices there is exactly one edge incident
that is directed outwards. Applying Ore's theorem we obtain that every component
of / i " 1 ^ , . . . , ^) contains exactly one circuit or loop. By transition from jU-1(M/i,.
to j,...,,„) we must delete exactly k loops; thus the graph ffc)
turns indeed out to be a generalized tree. Since the loops* were deleted precisely
at the vertices Pf , we obtain (D) too (7=1, ...,k).

Furthermore, since to each vertex P¡ in / i _ 1 (M ; i j i t) there is a loop incident,
Ore's cited theorem also implies that each component of Fk may contain at most
one of the vertices P,y; therefore (C) is also established.

Finally, consider those components of Fk containing none of the points P (j ,
and consider simultaneously also the corresponding componentes in |i-1(M,- ik).
These latter contain exactly one directed circuit each. Passing back to —1(1VI11
it is clear that the component in question of / t _ 1 (M ¡ 1 J contains this circuit;
moreover, since a directed circuit contains at least two distinct vertices, it is guaranteed
that this component of Fk contains at least one edge. This completes the proof
of (E).*

For the proof of the converse of the theorem assume in what follows that
Fk satisfies conditions (A), (B), (C), (D), and (E). To accomplish the proof we

* It may happen that a component of Fk is, despite the fact that it contains none of the
vertices P. , a tree. This is the situation if the subgraph in /i_ 1(M.' .) corresponding to this

lj '1 T » 'k
component contains a directed circuit consisting only of two vertices; by transition to F , the two
edges, directed in opposite directions, that are incident to both of these edges reduce to one single
edge, and the component of Fk in question does not contain any circuit.

Ar-trees of a graph 61

associate with Fk a directed graph Fk' for which the one hand Fk' = v(Fk') holds, and
the other hand for which fi(Fk) coincides with one of the graphs M£l ¡k.

Introduce a directing of the edges in each component of Fk by abiding by the
following rules:

1. If the component in question contains a vertex P(j. and this P ; j is not an
isolated point then direct the edges of this component towards P , r (C) and (D)
provides for the unique possibility of this.

2. If the component in question contains a circuit then directed the edges of
this latter cyclically and the other edges towards the circuit. Such a directing is made
possible by (B).

3. In the remaining cases, i.e. when the considered component contains neither
a vertex P ; j nor a circuit then it contains at least one edge. Let us choose an edge
and replace it by two edges directed in opposite directions and, if there exist any,
direct the other edges towards the circuit constructed just now.

In this way we obtain a directed graph Fk' for which-Fk = v(Fk) obviously
holds. • •

Consider now the directed graph Fk" obtained by .adding loops at each point
P o f Fk'. To this Fk" we can apply Ore's theorem. We derive that each row of the
matrix n(Fk ") contains exactly.one 1. By deleting the loops of "Fk" we can pass back
to Fk: ; in terms of the adjacency matrices this amounts to replacing the ones by
zeros in each of the rows ij of n(Fk"). The obtained matrix n(Fk) is then easily seen
to be an (/1; ..., 4)-reduction of thé matrix M = n(G). The proof is complete.

From the above proof it becomes clear that to a graph Fk there correspond,
in general, several (z'1(..., 4)-reductions. The ambiguity of the construction of these
reductions lies in steps 2 and 3 above, where for the directing of the edges there
are, in general, several possibilities.

We mention two more interesting properties of the graphs Fk featuring in
Theorem I :

Fk contains at least k components and at most n—k edges.
The remark on the minimal number of components is an easy consequence

of (D). That on the maximal number of edges follows from the fact that Fk' contains
exactly n—k directed edges. Therefore the properties of the correspondance v imply
that Fk cannot contain more than n — k edges.

To require that the graph G contains no isolated points is necessary for the
existence of an (t\, ..., 4)-reduction for any selection of ..., ik. Still, the assump-
tion.on isolated points can be eased if we extend the notion (z'x, ..., 4)-reduction for
matrices M that possibly contain rows consisting purely of zeros. In any case, the
maximal number of such rows must be limited to k and all such rows must be covered
by those of incides z'l5 ...,z' t.

As we- pointed out above, the generalized tree Fk in Theorem 1 cannot be
represented unambiguously in form v(/i_1(Mil,...,,•„))• Nevertheless, in case this ge-
neralized tree is a /c-tree of G, this representation is unambiguous. More precisely,
we have the following.

Theorem 2. Assume G is a simple graph without isolated points and with ver-
tices P x , ..., P„, and select fixed vertices P ; i , . . . , P i t , where 1 ^ z^c ••• Then
the k-très Fk

 ik can be represénted unambiguously in form' v(/t -1(M i l> ;.jIt)),
where M(l is a suitable (z'x, ..., 4)-reduction of n(G).

62 I. Pàvô: ¿-trees of a graph

Proof. That there exists at least one representation of the desired kind follows
from the converse Theorem 1 since F*t ik obviously satisfies conditions (A), (B),
(C), (D) and (E) of Theorem 1.

In the proof that there exists no more than one representation we may assume
k < n. Contrary to what we want to prove, suppose that ¡k — '(MJ, ¡k)) =
= v(/i -1(M? ,....,•„)), where M j and M? ¡k are two different (/1; . . . , / j -reduc-
tions of n(G). We are going exhibit a contradiction.

On account of the assumption that the two matrices are distinct, there exists a
./V/'i, ..., ik (1 ^y'Sw) such that in they'th row of M j , ¡ k the ^th element is one
whereas in the same row of M? ¡k the /2th element is one, and /2 being
unequal and both being different from j { l u /2 = 1,... ,ri). This means that P¡, P (l , and
P,2 all belong to the same component of Ff1; i(t. Assume.that P,m is the unique
one of the selected vertices that also belongs this component (m = \, ... ,k). Then in
/¿"HMJ, ¡k) there exists a directed path leading fromPy to P,m through P (l , and
in n ' ^ M ^ ik) there is one leading from P j to P im through P,„. This means that
there exist two different paths in some component of ¡k that connect Py with
P im , contradicting the assumption that F£ ifc is a k-tree of G. The proof is complete.

Similarly to what was said after the proof of Theorem 1 the stipulations im-
posed on G can be eased also here: it is enough to assume that G contains at most
k isolated points and these are among the selected ones.

In case k = 1 we obtain interesting particular cases of Theorem 1 and 2:

Theorem 3. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which
is isolated. Write M =/i(G). Fix an integer /', l s / s « , and let the matrix M ; run
over all (Z)-reductions of M. Then for each graph F o f form v(//_1(M,)) the following
four assertions hold;

(A) F is a subgraph of G,
(B) F is a generalized tree,
(C) the component containing P ; of F is a tree, which may possibly degenerate

to an isolated point; and finally,
(D) those components of F not containing P ; contain at least one edge and at

most one circuit each.

Theorem 4. Assume P (is an arbitrary but fixed point of the connected simple
graph G, where 1 ^ i ^ n , and F1 is a tree in G. Then M = / / (G) has precisely one
(i)-reduction M,- such that F1 = v(n~1(M,)) holds.

It is necessary to stipulate in this theorem that G is connected since otherwise it
would not contain any tree at all.

3. An algorithm to generate the k-trees

Keeping an eye on Theorem 2, we want to generate all the ¿-trees F-j ¡k of
G by forming all (i\, ..., 4)-reductions of /<(G). Among these there will turn up
those representing the /c-trees exactly once. Apart from the A'-trees these reduced
matrices will represent other generalized trees Fk satisfying conditions (A), (B),

fc-trecs of a graph 63

(C), (D), and (E). In the sequel we are going to construct a procedure that selects
those producing k-trees F£ ¡k from among all.the (i\, . . . , (^-reductions of //(G).

So our procedure will enable us to sift out from among the mentioned generalized
trees Fk the £-trees F\j ¡k, i.e. those generalized trees satisfying (A), (B), (C),
(D), and (E) in Theorem 1 that contain no circuit in any of their components.

To start with the description of our method, consider the sets {F* and
(Mj, ¡k}, where the elements of the'second set denote the (/1; ..., 4)-reductions
of the matrix M = /a(G). AS seen from Theorem 2, all the k-trees Fk

l ik occur
exactly once among the graphs v ^ f ^ M ^ ik)). Also, we observed earlier in Section I
that the elements of the second set can be given in row vector representation. So
in the way described in Theorem 2, the set {F* ¡J can be mapped in a one-to-one
way into the set {(<p(l), ...,(p(n))} of row vectors, <p running over the functions
associated with any of the (i\, ..., 4)-reductions M ; i ij(. We shall describe a pro-
cedure that selects those vectors being in the range of the mapping just described.
The selected row vectors (<p(l), - - -, («)) will be those representing the £-trees

the graph G.
Consider a matrix M (l ik satisfying properties (I'), (II'), and (III') described

in Section 1 and let (p be the function associated with this matrix.

Definition. By a cycle check performed on the matrix M f l ¡k starting with
the integer x we mean the construction of the sequence

x,<p(x),<p(<p(x)),... (lSxssn).

We say that the outcome of the cycle check is finite if we can construct only a finite
sequence, i.e. if somewhere in the sequence a zero turns up, which does not belong
to the domain of q>; otherwise we say that the outcome of the cycle check is infinite.

If the outcome cycle check is infinite then, as is easily seen, from a certain point
the same segment of the above sequence will occur repeatedly.

Definition. By a complete cycle check performed on the matrix M (l) ik we
mean a bunch of cycle checks starting with the integers 1, . . . , « respectively. The
outcome of a complete cycle check is said to be finite if all checks constituting it have
finite outcomes; otherwise, the outcome is said be infinite.

Now we are going to study the cycle checks from an aspect that will have some
importance for our later purposes. To this end, consider a matrix Mf • i t
and a cycle check performed on it that starts with the integer x. The construction
of the sequence x, <p(x), <p(q>(x)), ... can be regarded as starting at a vertex Px of
the directed graph /i_ 1(M i l ¡k) and walking through a part of the graph, always
proceeding in conformity with the direction of the edges passed along. The sequence
obtained by a cycle check coincides with the sequence of vertices passed through
during such a walk. In case of a cycle check with finite outcome, after a certain
time we arrive at a vertex out of which there does not lead any edge. In case of
infinite outcome we get into a directed circuit, during the walk.

To be assured that the outcome of a complete cycle check performed on a given
matrix is finite we must perform all the n cycle checks, constituting this complete
check; we may, however, stop earlier if we happen to find an infinite check among
these, because this already implies the infiniteness of the complete check.

64 I. Pàvô: ¿-trees of a graph

Theorem 5. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which
is isolated, and M f l i t is an (ilt . . . , 4)-reduction of n(G). Then the complete
cycle check performed on the matrix MlVj ¡k is of finite outcome if and only if
v(n~i{Mh ifc)) is a ¿-tree Fj[¡k of the graph G.

Proof. To verify the "if" part assume that JF,* ...jlk is a ¿-tree of the graph G.
According to Theorem 2 there exists a reduction M (l ,k such that Ifc =
= v(n~1(MiJ ;„)) holds. Furthermore, in each component of the directed graph
/ i - 1 (M ; i ¡k) all the edges are directed towards the corresponding vertex P
(j= 1, ..., ¿). These imply that the cycle check performed on the matrix M i l ; Ifc
that starts with an arbitrary ¡ = 1, . . . , n is of finite outcome. Therefore the complete
cycle check is also of finite outcome.

To prove the "only if" part assume, that the complete cycle check performed
on the matrix M(1 i)c is of finite outcome. Then by an observation made above on
cycle checks we see that none of the components of the directed graph ,fc)
contains a directed circuit.

This entails that the graph v(/i"1(Mj l i . ' i ¡J) does not contain any circuit. Indeed,
assume the contrary, i.e. that this graph does contain some circuit. Consider the
directed subgraph of fi~1(M i l ¡k) corresponding to this circuit. This subgraph
cannot be a directed circuit; thus it contains at least one vertex with two edges
incident to it that are directed outwards. This contradicts the definition of the
matrix M,-,

Moreover, we can derive that the number of edges of v ^ " 1 ^ , ¡J) is n—k.
In fact, this is obvious for /t_1(M11 ¡k). This latter graph, as was pointed out above,
does not contain any directed circuit; so, in particular, it does not contain a directed
circuit with two edges. Therefore, the correspondance v does not reduce the number
of edges.

We obtained that v(fi_1(M i l ik)) is a circuit-free graph with n — k edges,
and this means that it is indeed a ¿-tree. Taking Theorem 2 into account, we see
that this ¿-tree can be represented in form Fil i i k . The proof is complete.

From Theorem 2 in Section 1 and Theorem 5 in Section 2 we obtain the follow-
ing algorithm for the generation ¿-trees F^ ik of graph G:

T. Construct the adjacency matrix M=/i((7) of the graph G.
II. Form all (i1; . . . ,/^-reduction M f l ¡k of M.

III. Perform a complete cycle on the matrices M f l ik. Those leading to finite
outcomes give the desired ¿-trees in form v(/t_1(M ; i • ¡J).

(If the graph G has no ¿-trees at all this will turn out by performing the algo-
rithm since in this case all the cycles have infinite outcomes.)

The algorithm described can be extended so as to apply to the search of the
¿-trees of a graph G with multiple edges by keeping in mind the following:

Whenever two points of the graph G is connected with more than one edges
we replace these with one single edge and call the number of edges replaced the
multiplicity of this single one. By performing the above algorithm on the obtained
graph G' we get its ¿-trees. Each of the ¿-trees of G' that contains no substituted
edges is a ¿-tree of G too.

Now consider the ¿-trees of G' that contain also substituted edges. By taking

Ar-trees of a graph 65

into consideration the substituted edges with their multiplicities we obtain the
k-trees of G. From a A>tree in G' we can derive as many k-trees in G as the product
of the multiplicity of its edges.

• This method provides a way for generating the k-trees of a graph G with multiple
edges. , , •

In case k = 1 our algorithm gives all the trees of a graph G. On account of.
Theorem 4 we see that the generation of the trees can proceed in n different ways
depending on which of the n vertices of G we choose as P,. We obviously obtain
all the trees independently of this choice. This enables us to deliberate as to which
of the n ways is the simplest from the angle of computational technique. This
problem will be touched upon in the next section.

We should like to add some computation-technical observations concerning
the algorithm outlined in the previous section on the generation of the trees FfL ¡k
of a graph. •

To start with, it seems practical to perform the first two steps of the algorithm
immediately on the row vector representation of the considered reduction M ; iJ i t .
To make this possible we introduce the notion of generating matrix.

Let M = /i(G)'=(tf,j) be the adjacency matrix of the graph G.

Definition. The generating matrix MG = associated with the graph G is
determined by the formula

Now the row vector representation of a (z'1; ..., 4)-reduction M ; i j of the
adjacency matrix M = /z(C) of the graph G can be obtained from M by choosing
an element from each row of M in the following manner:

If the index j of the row considered is different from all z, (/ = 1 , .. . , k) then
let the choosen element be different from zero, and if j=U from some / then
choose a 0 (e.g. the element in the diagonal).

Now the cycle check can be performed on the row vector obtained accord-
ingly.

In several cases computational short-cuts can be made in cycle checking. For
example, it is easy to see that it is not necessary to start a cycle check at elements
which were arrived at in earlier cycle checks. Moreover, if the complete cycle check
has infinite outcome we may stop when we stumble upon the first cycle check with
infinite outcome. —

In principle, it is irrelevant which vertex P, we fix when generating the trees
of a graph' G. In practice, the most clever choice seems to be the one for which
the z'th row of the generating matrix M c contains the largest number of elements
different from zero. It can furthermore be observed that the cycle check may have
a finite outcome only if the number z occurs in the row vector representation
of the matrix M ;.

The remarks made here enable us to sift out those matrices M ; that are to be

4. Remarks on adaptation to computers and model examples

66 I. Pàvô: ¿-trees of a graph

0 2 0 0 5
1 0 3 0 5
0 2 0 4 0
0 0 3 0 5
1 2 0 4 0

used for cycle checks. Many of the above remarks (e.g. that given in the last sentence
of the previous paragraph) can be modified in an obvious way so as to apply also to
the case

Example. Consider the graph G in Fig. 1. We are going to generate all its trees.
The generating matrix M c of G takes the form

M c =

Looking at this matrix we see that it is perhaps
the best to choose the vertex P5 as P ; . If we cons-
truct the row vector representations of the M 5 reduc-
tions then, according to the remarks made above, we
obtain 20 row vectors. Performing cycle checks on
these we obtain that 9 of these vectors do not rep-

resent any trees. The final result is 11 trees, which are in turn in row vector rep-
resentation :

(23540), (25230), (25250), (25450),

(51230), (51250), (51430), (51450),

(53450), (55230), (55250).
Observe that from a row vector representation we can easily pass to the actual

tree. To do this imagine another row, consisting of the elements 1, 2, . . . ,« , placed
above the row vector representation of M f ; disregarding the one column containing
zero, the remaining colums indicate the pairs of vertices that are connected in
the tree in question. For example, the tree represented by the row vector (55230) can
be seen in Fig. 2.

Fig. 1. A simple graph

row vector representation:

(55230)

"completed" row vector:

2 3 4

5 2 3 2]

*3
Fig. 2. A tree of the graph of Fig. 1.

Ar-trees of a graph 67

As a further example we shall now generate the trees Fj.2,4 of the graph G
given in Fig. 1.

Again, we construct the row vector representations of all the eligibe ones of the
matrices M 1 2 4 :

(00201), (00202), (00204), (00401),

(00402), (00404).

Now performing cycle checks on the matrices corresponding to the rows enumer-
ated we obtain finite outcomes in all six cases.

This means that in this case the number of the 3-trees is 6. Fig. 3 illustrates the
3-tree corresponding to the vector (00404).

row vector representation: "completed" row vector:
(00404) p 2 3 4 51

[0 0 4 0 4]

Fig. 3. A 3-tree of the graph of Fig. 1.

The advantages of this method in comparison to others for the generation of
¿-trees of a graph G seems clear if the method is adapted to computer. Namely,
the method described in Section 2 is perhaps the most easily fed into computers
among the known tree-generation methods. It is also clear that the storage capacity
occupied by a programme based on this method is considerably smaller than that
needed for the performing of a programme using e.g. the algebraic method [5].
The reason for. this is that it is not necessary to store the data representing the tree
for further operations, the cycle check decides immediately whether the obtained
data (row vector) in fact represent a tree. This is a considerable advantage if we
take into account that in pratice the number of the trees can be of magnitude order,
of several millions [4]. If not programmed clumsily, the complete cycle check does
not increase the computing time unfavorably in comparison with time used up by
the algebraic method.

RESEARCH GROUP ON MATHEMATICAL LOGIC
A N D THEORY OF AUTOMATA OF THE
H U N G A R I A N ACADEMY OF SCIENCES,
SOMOGYI BELA U . 7 , SZEGED, H U N G A R Y '

68 I. Pàvô: ¿-trees of a graph

References

[1] HAKIMI, S. L. & D. G. GREEN, Generation and realization of trees and fc-trees, IEEE. Trans.,
v. CT—11, 1964, pp. 247—255.

[2] HARARY, F., The number of functional digraphs, Math. Annales, v. 138, 1959, pp. 203—210.
[3] MAYEDA, W., Reducing computation time in the analysis of networks by digital computer,

IRE Trans., v . C T — 6 , 1 9 5 9 , p p . 1 3 6 — 1 3 7 .
[4] MAYEDA, W. & S. SESHU, Generation of trees without duplications, IEEE Trans., v. CT—12,

1 9 6 5 , p p . 1 8 1 — 1 8 5 .
[5] MAXWELL, L. M. & JR. J. M. CLINE, Topological network analysis by algebraic methods,

Proc. IEEE, v. 113, 1966, pp. 1344—1347.
[6] ORE, O., Graphs and Correspondences, Festschrift f. d. 60. Geburtstag von A. Speiser, 1945, pp.

184—191.
[7] ORE, O., Theory of Graphs, Am. Math. Soc., Providence, 1962. pp. 68—74.
[8] SESHU, S. & M. B. REED, Linear graphs and electrical networks, Addison-Wesley Publ. Co.,

Massachusette, 1961.

R É S U M É

Dans cette petite .Note nous allons présenter une procedure nouvelle engendrant
tous les A:-arbres d'une graphe avec un point donné dans chacun de ses composantes
connexes. Notre méthode exploite un théorème d'Ore [7] concernant les graphes
finîtes" et directées, ainsi rendant une application de ce théorème qui est, hors de
son intérêt théorique, aussi utile dans l'analyse des secteurs électriquies pour des
buts pratiques.

(Received March 9, 1970)

