
Generation of the /c-trees of a graph 

B y T. P A V O 

Abstract 

We present a new procedure that generates all &-trees of a graph in each compo-
nent of which a vertex is given in advance. Our method makes use of a theorem of 
Ore [7] concerning finite directed graphs, thus providing an application of this theo-
rem that beyond its theoretical interest can be used in practical analysis of electrical 
networks. 

Introduction 

Topological formulas are nowadays playing an ever increasing role in the analysis 
of electrical networks (see [8]). In the applications of such formulas, however simple 
they are, the question immediately arises how to generate all the trees, and also 
the 2-trees satisfying certain requirements, of a given graph. 

To overcome this problem several methods were proposed in the last decade. 
In principle, the most simple way to produce all the trees of a graph G with n vertices 
would be to scan all the sets containing n — 1 edges and dispose of those not eligible. 
Naturally for practical purposes such a procedure would be too lengthy and in-
tricate. A procedure usable also in practice was devised by Hakimi and Green [1] 
and solves the problem by splitting the graph in two parts the trees of which are 
assumed to be known. From the trees of these subgraphs the trees of the starting 
one can be composed and also &-trees satisfying certain requirements can be pin-
pointed. This procedure is, however, also lengthy and cumbersome; indeed, to 
carry out the splitting and composition of trees is in itself a complicated algorithm, 
and it must be repeated also for the. subgraphs obtained. A similar procedure was 
devised by Mayeda [3]. 

Other procedures were designed by Talbot (a new set of topological formulas) 
and by Mayeda and Seshu [4]. A common feature of these methods is that they 
choose an arbitrary tree as a starting one and generate the others from this by edge 
transformations. (After deleting an edge of the starting tree another edge of the 
graph is substituted, and then the same procedure is applied to the obtained tree.) 
These methods seem to have certain advantages but we must note that a recursive 
formula is used that is, from the viewpoint of computational technique, difficult 
to handle. 

The most feasible method for practical use that has been developed up to now 
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is perhaps that due to Maxwell and Cline [5]. This method is of algebraic character 
and, to its advantage, is simple] easy to understand, and adaptable to digital com-
puters relatively easily. A snag is, however, that it can be used only to generate /r-trees 
with k = 1 or 2 and it uses up a relatively large internal storage capacity. 

In the present paper we are going to present a new procedure that generates 
the k-trees, satisfying certain requirements, of a graph; the procedure in the case 
k = 1 generates all the trees. Our method is about as simple as the algebraic method 
mentioned above is, but it can be applied under more general circumstances; namely, 
it can be used to handle the case / r S 2 too. It can also be ascribed to its advantage 
that, fed into computer, it needs considerably less internal storage room than the 
algebraic method mentioned. The procedure, as presented here, concerns only the 
generation of fc-trees of graphs without multiple edges, but there is, in principle, 
no difficulty in extending it so as to apply to graphs with multiple edges. Our considera-
tions are based on a well-known theorem of Ore [7] on finite directed graphs. 

1. Basic concepts and definitions 

Consider a. graph with n vertices P l 5 . . . , P„ and select arbitrarily a number k 
(1 ^A:Sw)from among them, these being denoted by P,^, . . . ,P i l t( l S / j - c — 

Definition. A k-tree _ ifc of the graph G is an arbitrary graph satisfying 
the following stipulations: 

1. it is a subgraph of G, 
2. it contains all the veitices of G, 
3. it consists of exactly k connected components, 
4. each component contains exactly one of the selected vertices P,,, . . . ,P / f c , 
5. each of its components are a tree. 

• In particular, as seen from the definition, F}t denotes a tree of the graph G; 
for the sake of simplicity we may sometimes drop the lower index and write only F1 . 
The purpose of this note is to study the generation of k-trees conforming to the 
above definition. 

Let M be a matrix of size nXn with the following properties: 
(I) Ev.ery element of M equals either 0 or 1, 

(II) each row of M contains at least one element equal to 1. 
Consider also a matrix M ; i ik, where l ^ / j ^ — < i k ^ n , of size nXn with 

the following properties: 
(I') the ij-th row of M ; , ik consists purely of zeros (J= 1, . . . , k), 

(II') in other rows of M f l ¡k there is exactly one element equal to 1 and 
otherwise these rows too consist purely of zeros, and finally 

(III') at every place where M(li_ i(! contains a 1 the matrix M too does so. 
A 

Definition. If M.j ¡k satisfies conditions (I'), (IF) and (III') then we call it an 
(i1,...,ik)-reductionofM. 

Suppose. M,-, ¡k satisfies conditions (I') and (II'), and write M(1 ¡k = («,-;), 
a,j being the element in the intersection of the ith row and y'th column of the matrix 
in question. 
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j if x /1; ..., ik and axj = 1 , 

0 if x coincides with one of 
the numbers ilt ..., ik 

is called the function associated with the matrix M ; i > 

As seen, the domain of <p(x) is the set {I, ..., n} and its range is a subset of 
{0, 1, ..., «}. Shortly, this function makes correspond to each row index an integer 
equalling zero unless the row with the considered index contains an element equal 
to 1, in which latter case this integer coincides with the column index of this unique 
element. It is clear that the correspondence between the matrices M ( j ¡k and the 
functions associated with them is one-to-one. 

This observation is important since it shows that it is possible to characterize 
the matrix in question with the aid of the row vector (cp(1), ..., <p(n)). This cha-
racterization will be called the row vector representation of the matrix M ; i ik. 

In what follows, both directed and undirected graphs may turn up. Unless 
otherwise stated, loops are not, in general, admitted. In addition, undirected graphs 
are assumed to have no multiple edges. Undirected edges will be viewed as pairs of 
edges directed in opposite directions that connect the same pair of vertices. 

To a graph containing the vertices P1 ( ..., P„ make correspond a matrix JU(<J) 
of size nXn that in the intersection of the /th row and the7'th column contains a 1 
if and only if the vertices P, and P j in this order are connected by a directed edge, 
the remaining elements of the matrix being equal to zero. 

Definition. The matrix //(G) is said to be the adjacency matrix of the graph G. 

It is easily checked'that the correspondance G — ¡x(G) between graphs, contain-
ing the vertices P 1 ; ..., P„, that have only single edges (loops being allowed too) 
and matrices of type nXn containing only 0 or 1 as elements is one-to-one. For 
graphs without loops the adjacency matrix contains purely zeros in its diagonal. 
Undirected graphs have symmetrical adjacency matrices. 

By a well-known theorem of Ore ([7], [6]; [2]), a.directed graph, possibly with 
loops, has the property that at each of its' vertices exactly one of the edges is directed 
outwards if and only if it satisfies the following three conditions: 

(a) each component of the graph contains exactly one circuit (this may possibly 
be a loop), 

(b) in this unique circuit the edges are directed cyclically, 
(c) in each component the edges that do not belong to its circuit are directed 

towards this circuit. 

Definition. An undirected graph without loops is called a generalized tree if 
each of its connected components contains at most one circuit. 

In particular a &-tree is a generalized tree. 
To introduce a useful notation, for a directed graph G we shall denote by v(G) 

the undirected graph obtained by retaining undirected edges between those pairs 
of vertices that are connected in G in at least one direction. 

Definition. The function 

<p{x) = 
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2. Some properties of the graphs Fk = v(/< 1(Mil,-t)) 

Consider a simple graph, i.e. an undirected graph without loops and multiple 
edges, that contains the vertices P j , . . . ,P„ ( n £ l ) , none of which is isolated, and 
write M = /i(G). Fix the integers z'1; — a n d let the matrix 
MFL run over all the (i\, ..., 4)-reductions of M. 

Theorem I. For every graph Fk of form v^i'^M,^,...,ifc)) each of the following 
five assertions hold: 

(A) Fk is a subgraph of G, 
(B) Fk is a generalized tree, 

. (C) the vertices Ptj belong to mutually distinct components of Fk (j= 1, ..., k), 
(D) if a component of Fk contains any of the P¡'s then this component is a 

tree (which may possibly degenerate to a single vertex), 
(E) those components of Fk not containing any of the vertices Pfj. contain at » 

most one circuit and at least one edge each. 
Conversely, if a graph Fk satisfies conditions (A), (B), (C), (D), and (E) then 

it can be represented in at least one way in the form /" Í=v(/¿_ 1(M ¡ 1 ¡J). 

Proof. Choose an arbitrary (/1; ..., 4)-reduction M ; I of M. It is obvius 
that FA : = V ( / Í ~ 1 ( M ¡ 1 ¡ J ) is a subgraph of G. 

Construct a matrix M^ ¡k from M,t i t by writing 1 in the intersection of 
the /j-th row and the /y-th column instead of 0 for every j—\,...,k. Then ju — 1(TVI1'1 ffc) 
is a directed graph such that to each of its vertices there is exactly one edge incident 
that is directed outwards. Applying Ore's theorem we obtain that every component 
of / i " 1 ^ , . . . , ^ ) contains exactly one circuit or loop. By transition from jU-1(M/i,. 
to j,...,,„) we must delete exactly k loops; thus the graph ffc) 
turns indeed out to be a generalized tree. Since the loops* were deleted precisely 
at the vertices Pf , we obtain (D) too (7=1, ...,k). 

Furthermore, since to each vertex P¡ in / i _ 1 (M ; i j i t) there is a loop incident, 
Ore's cited theorem also implies that each component of Fk may contain at most 
one of the vertices P,y; therefore (C) is also established. 

Finally, consider those components of Fk containing none of the points P ( j , 
and consider simultaneously also the corresponding componentes in |i-1(M,- ik). 
These latter contain exactly one directed circuit each. Passing back to —1(1VI11 
it is clear that the component in question of / t _ 1 ( M ¡ 1 J contains this circuit; 
moreover, since a directed circuit contains at least two distinct vertices, it is guaranteed 
that this component of Fk contains at least one edge. This completes the proof 
of (E).* 

For the proof of the converse of the theorem assume in what follows that 
Fk satisfies conditions (A), (B), (C), (D), and (E). To accomplish the proof we 

* It may happen that a component of Fk is, despite the fact that it contains none of the 
vertices P. , a tree. This is the situation if the subgraph in /i_ 1(M.' . ) corresponding to this 

lj '1 T » 'k 
component contains a directed circuit consisting only of two vertices; by transition to F , the two 
edges, directed in opposite directions, that are incident to both of these edges reduce to one single 
edge, and the component of Fk in question does not contain any circuit. 
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associate with Fk a directed graph Fk' for which the one hand Fk' = v(Fk') holds, and 
the other hand for which fi(Fk) coincides with one of the graphs M£l ¡k. 

Introduce a directing of the edges in each component of Fk by abiding by the 
following rules: 

1. If the component in question contains a vertex P(j. and this P ; j is not an 
isolated point then direct the edges of this component towards P , r (C) and (D) 
provides for the unique possibility of this. 

2. If the component in question contains a circuit then directed the edges of 
this latter cyclically and the other edges towards the circuit. Such a directing is made 
possible by (B). 

3. In the remaining cases, i.e. when the considered component contains neither 
a vertex P ; j nor a circuit then it contains at least one edge. Let us choose an edge 
and replace it by two edges directed in opposite directions and, if there exist any, 
direct the other edges towards the circuit constructed just now. 

In this way we obtain a directed graph Fk' for which-Fk = v(Fk ) obviously 
holds. • • 

Consider now the directed graph Fk" obtained by .adding loops at each point 
P o f Fk'. To this Fk" we can apply Ore's theorem. We derive that each row of the 
matrix n(Fk ") contains exactly.one 1. By deleting the loops of "Fk" we can pass back 
to Fk: ; in terms of the adjacency matrices this amounts to replacing the ones by 
zeros in each of the rows ij of n(Fk"). The obtained matrix n(Fk ) is then easily seen 
to be an (/1; ..., 4)-reduction of thé matrix M = n(G). The proof is complete. 

From the above proof it becomes clear that to a graph Fk there correspond, 
in general, several (z'1(..., 4)-reductions. The ambiguity of the construction of these 
reductions lies in steps 2 and 3 above, where for the directing of the edges there 
are, in general, several possibilities. 

We mention two more interesting properties of the graphs Fk featuring in 
Theorem I : 

Fk contains at least k components and at most n—k edges. 
The remark on the minimal number of components is an easy consequence 

of (D). That on the maximal number of edges follows from the fact that Fk' contains 
exactly n—k directed edges. Therefore the properties of the correspondance v imply 
that Fk cannot contain more than n — k edges. 

To require that the graph G contains no isolated points is necessary for the 
existence of an (t\, ..., 4)-reduction for any selection of ..., ik. Still, the assump-
tion.on isolated points can be eased if we extend the notion (z'x, ..., 4)-reduction for 
matrices M that possibly contain rows consisting purely of zeros. In any case, the 
maximal number of such rows must be limited to k and all such rows must be covered 
by those of incides z'l5 ...,z' t. 

As we- pointed out above, the generalized tree Fk in Theorem 1 cannot be 
represented unambiguously in form v(/i_1(Mil,...,,•„))• Nevertheless, in case this ge-
neralized tree is a /c-tree of G, this representation is unambiguous. More precisely, 
we have the following. 

Theorem 2. Assume G is a simple graph without isolated points and with ver-
tices P x , ..., P„, and select fixed vertices P ; i , . . . , P i t , where 1 ^ z^c ••• Then 
the k-très Fk

 ik can be represénted unambiguously in form' v(/t -1(M i l> ;.jIt)), 
where M( l is a suitable (z'x, ..., 4)-reduction of n(G). 
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Proof. That there exists at least one representation of the desired kind follows 
from the converse Theorem 1 since F*t ik obviously satisfies conditions (A), (B), 
(C), (D) and (E) of Theorem 1. 

In the proof that there exists no more than one representation we may assume 
k < n. Contrary to what we want to prove, suppose that ¡k — '(MJ, ¡k)) = 
= v(/i -1(M? ,....,•„)), where M j and M? ¡k are two different (/1; . . . , / j -reduc-
tions of n(G). We are going exhibit a contradiction. 

On account of the assumption that the two matrices are distinct, there exists a 
./V/'i, ..., ik (1 ^y'Sw) such that in they'th row of M j , ¡ k the ^th element is one 
whereas in the same row of M? ¡k the /2th element is one, and /2 being 
unequal and both being different from j { l u /2 = 1,... ,ri). This means that P¡, P ( l , and 
P,2 all belong to the same component of Ff1; i(t. Assume.that P,m is the unique 
one of the selected vertices that also belongs this component (m = \, ... ,k). Then in 
/¿"HMJ, ¡k) there exists a directed path leading fromPy to P,m through P ( l , and 
in n ' ^ M ^ ik) there is one leading from P j to P im through P,„. This means that 
there exist two different paths in some component of ¡k that connect Py with 
P im , contradicting the assumption that F£ ifc is a k-tree of G. The proof is complete. 

Similarly to what was said after the proof of Theorem 1 the stipulations im-
posed on G can be eased also here: it is enough to assume that G contains at most 
k isolated points and these are among the selected ones. 

In case k = 1 we obtain interesting particular cases of Theorem 1 and 2: 

Theorem 3. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which 
is isolated. Write M =/i(G). Fix an integer /', l s / s « , and let the matrix M ; run 
over all (Z)-reductions of M. Then for each graph F o f form v(//_1(M,)) the following 
four assertions hold; 

(A) F is a subgraph of G, 
(B) F is a generalized tree, 
(C) the component containing P ; of F is a tree, which may possibly degenerate 

to an isolated point; and finally, 
(D) those components of F not containing P ; contain at least one edge and at 

most one circuit each. 

Theorem 4. Assume P ( is an arbitrary but fixed point of the connected simple 
graph G, where 1 ^ i ^ n , and F1 is a tree in G. Then M = / / ( G ) has precisely one 
(i)-reduction M,- such that F1 = v(n~1(M,)) holds. 

It is necessary to stipulate in this theorem that G is connected since otherwise it 
would not contain any tree at all. 

3. An algorithm to generate the k-trees 

Keeping an eye on Theorem 2, we want to generate all the ¿-trees F-j ¡k of 
G by forming all (i\, ..., 4)-reductions of /<(G). Among these there will turn up 
those representing the /c-trees exactly once. Apart from the A'-trees these reduced 
matrices will represent other generalized trees Fk satisfying conditions (A), (B), 



fc-trecs of a graph 63 

(C), (D), and (E). In the sequel we are going to construct a procedure that selects 
those producing k-trees F£ ¡k from among all.the (i\, . . . , (^-reductions of //(G). 

So our procedure will enable us to sift out from among the mentioned generalized 
trees Fk the £-trees F\j ¡k, i.e. those generalized trees satisfying (A), (B), (C), 
(D), and (E) in Theorem 1 that contain no circuit in any of their components. 

To start with the description of our method, consider the sets {F* and 
(Mj, ¡k}, where the elements of the'second set denote the (/1; ..., 4)-reductions 
of the matrix M = /a(G). AS seen from Theorem 2, all the k-trees Fk

l ik occur 
exactly once among the graphs v ^ f ^ M ^ ik)). Also, we observed earlier in Section I 
that the elements of the second set can be given in row vector representation. So 
in the way described in Theorem 2, the set {F* ¡J can be mapped in a one-to-one 
way into the set {(<p(l), ...,(p(n))} of row vectors, <p running over the functions 
associated with any of the (i\, ..., 4)-reductions M ; i ij(. We shall describe a pro-
cedure that selects those vectors being in the range of the mapping just described. 
The selected row vectors (<p(l), - - -, («)) will be those representing the £-trees 

the graph G. 
Consider a matrix M ( l ik satisfying properties (I'), (II'), and (III') described 

in Section 1 and let (p be the function associated with this matrix. 

Definition. By a cycle check performed on the matrix M f l ¡k starting with 
the integer x we mean the construction of the sequence 

x,<p(x),<p(<p(x)),... (lSxssn). 

We say that the outcome of the cycle check is finite if we can construct only a finite 
sequence, i.e. if somewhere in the sequence a zero turns up, which does not belong 
to the domain of q>; otherwise we say that the outcome of the cycle check is infinite. 

If the outcome cycle check is infinite then, as is easily seen, from a certain point 
the same segment of the above sequence will occur repeatedly. 

Definition. By a complete cycle check performed on the matrix M ( l ) ik we 
mean a bunch of cycle checks starting with the integers 1, . . . , « respectively. The 
outcome of a complete cycle check is said to be finite if all checks constituting it have 
finite outcomes; otherwise, the outcome is said be infinite. 

Now we are going to study the cycle checks from an aspect that will have some 
importance for our later purposes. To this end, consider a matrix Mf • i t 
and a cycle check performed on it that starts with the integer x. The construction 
of the sequence x, <p(x), <p(q>(x)), ... can be regarded as starting at a vertex Px of 
the directed graph /i_ 1(M i l ¡k) and walking through a part of the graph, always 
proceeding in conformity with the direction of the edges passed along. The sequence 
obtained by a cycle check coincides with the sequence of vertices passed through 
during such a walk. In case of a cycle check with finite outcome, after a certain 
time we arrive at a vertex out of which there does not lead any edge. In case of 
infinite outcome we get into a directed circuit, during the walk. 

To be assured that the outcome of a complete cycle check performed on a given 
matrix is finite we must perform all the n cycle checks, constituting this complete 
check; we may, however, stop earlier if we happen to find an infinite check among 
these, because this already implies the infiniteness of the complete check. 
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Theorem 5. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which 
is isolated, and M f l i t is an (ilt . . . , 4)-reduction of n(G). Then the complete 
cycle check performed on the matrix MlVj ¡k is of finite outcome if and only if 
v(n~i{Mh ifc)) is a ¿-tree Fj[ ¡k of the graph G. 

Proof. To verify the "if" part assume that JF,* ...jlk is a ¿-tree of the graph G. 
According to Theorem 2 there exists a reduction M ( l ,k such that Ifc = 
= v(n~1(MiJ ;„)) holds. Furthermore, in each component of the directed graph 
/ i - 1 (M ; i ¡k) all the edges are directed towards the corresponding vertex P 
(j= 1, ..., ¿). These imply that the cycle check performed on the matrix M i l ; Ifc 
that starts with an arbitrary ¡ = 1, . . . , n is of finite outcome. Therefore the complete 
cycle check is also of finite outcome. 

To prove the "only if" part assume, that the complete cycle check performed 
on the matrix M(1 i)c is of finite outcome. Then by an observation made above on 
cycle checks we see that none of the components of the directed graph ,fc) 
contains a directed circuit. 

This entails that the graph v(/i"1(Mj l i . ' i ¡J) does not contain any circuit. Indeed, 
assume the contrary, i.e. that this graph does contain some circuit. Consider the 
directed subgraph of fi~1(M i l ¡k) corresponding to this circuit. This subgraph 
cannot be a directed circuit; thus it contains at least one vertex with two edges 
incident to it that are directed outwards. This contradicts the definition of the 
matrix M,-, 

Moreover, we can derive that the number of edges of v ^ " 1 ^ , ¡J) is n—k. 
In fact, this is obvious for /t_1(M11 ¡k). This latter graph, as was pointed out above, 
does not contain any directed circuit; so, in particular, it does not contain a directed 
circuit with two edges. Therefore, the correspondance v does not reduce the number 
of edges. 

We obtained that v(fi_1(M i l ik)) is a circuit-free graph with n — k edges, 
and this means that it is indeed a ¿-tree. Taking Theorem 2 into account, we see 
that this ¿-tree can be represented in form Fil i i k . The proof is complete. 

From Theorem 2 in Section 1 and Theorem 5 in Section 2 we obtain the follow-
ing algorithm for the generation ¿-trees F^ ik of graph G: 

T. Construct the adjacency matrix M=/i((7) of the graph G. 
II. Form all (i1; . . . ,/^-reduction M f l ¡k of M. 

III. Perform a complete cycle on the matrices M f l ik. Those leading to finite 
outcomes give the desired ¿-trees in form v(/t_1(M ; i • ¡J). 

(If the graph G has no ¿-trees at all this will turn out by performing the algo-
rithm since in this case all the cycles have infinite outcomes.) 

The algorithm described can be extended so as to apply to the search of the 
¿-trees of a graph G with multiple edges by keeping in mind the following: 

Whenever two points of the graph G is connected with more than one edges 
we replace these with one single edge and call the number of edges replaced the 
multiplicity of this single one. By performing the above algorithm on the obtained 
graph G' we get its ¿-trees. Each of the ¿-trees of G' that contains no substituted 
edges is a ¿-tree of G too. 

Now consider the ¿-trees of G' that contain also substituted edges. By taking 
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into consideration the substituted edges with their multiplicities we obtain the 
k-trees of G. From a A>tree in G' we can derive as many k-trees in G as the product 
of the multiplicity of its edges. 

• This method provides a way for generating the k-trees of a graph G with multiple 
edges. , , • 

In case k = 1 our algorithm gives all the trees of a graph G. On account of. 
Theorem 4 we see that the generation of the trees can proceed in n different ways 
depending on which of the n vertices of G we choose as P,. We obviously obtain 
all the trees independently of this choice. This enables us to deliberate as to which 
of the n ways is the simplest from the angle of computational technique. This 
problem will be touched upon in the next section. 

We should like to add some computation-technical observations concerning 
the algorithm outlined in the previous section on the generation of the trees FfL ¡k 
of a graph. • 

To start with, it seems practical to perform the first two steps of the algorithm 
immediately on the row vector representation of the considered reduction M ; iJ i t . 
To make this possible we introduce the notion of generating matrix. 

Let M = /i(G)'=(tf,j) be the adjacency matrix of the graph G. 

Definition. The generating matrix MG = associated with the graph G is 
determined by the formula 

Now the row vector representation of a (z'1; ..., 4)-reduction M ; i j of the 
adjacency matrix M = /z(C) of the graph G can be obtained from M by choosing 
an element from each row of M in the following manner: 

If the index j of the row considered is different from all z, ( / = 1 , .. . , k) then 
let the choosen element be different from zero, and if j=U from some / then 
choose a 0 (e.g. the element in the diagonal). 

Now the cycle check can be performed on the row vector obtained accord-
ingly. 

In several cases computational short-cuts can be made in cycle checking. For 
example, it is easy to see that it is not necessary to start a cycle check at elements 
which were arrived at in earlier cycle checks. Moreover, if the complete cycle check 
has infinite outcome we may stop when we stumble upon the first cycle check with 
infinite outcome. — 

In principle, it is irrelevant which vertex P, we fix when generating the trees 
of a graph' G. In practice, the most clever choice seems to be the one for which 
the z'th row of the generating matrix M c contains the largest number of elements 
different from zero. It can furthermore be observed that the cycle check may have 
a finite outcome only if the number z occurs in the row vector representation 
of the matrix M ;. 

The remarks made here enable us to sift out those matrices M ; that are to be 

4. Remarks on adaptation to computers and model examples 
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0 2 0 0 5 
1 0 3 0 5 
0 2 0 4 0 
0 0 3 0 5 
1 2 0 4 0 

used for cycle checks. Many of the above remarks (e.g. that given in the last sentence 
of the previous paragraph) can be modified in an obvious way so as to apply also to 
the case 

Example. Consider the graph G in Fig. 1. We are going to generate all its trees. 
The generating matrix M c of G takes the form 

M c = 

Looking at this matrix we see that it is perhaps 
the best to choose the vertex P5 as P ; . If we cons-
truct the row vector representations of the M 5 reduc-
tions then, according to the remarks made above, we 
obtain 20 row vectors. Performing cycle checks on 
these we obtain that 9 of these vectors do not rep-

resent any trees. The final result is 11 trees, which are in turn in row vector rep-
resentation : 

(23540), (25230), (25250), (25450), 

(51230), (51250), (51430), (51450), 

(53450), (55230), (55250). 
Observe that from a row vector representation we can easily pass to the actual 

tree. To do this imagine another row, consisting of the elements 1, 2, . . . ,« , placed 
above the row vector representation of M f ; disregarding the one column containing 
zero, the remaining colums indicate the pairs of vertices that are connected in 
the tree in question. For example, the tree represented by the row vector (55230) can 
be seen in Fig. 2. 

Fig. 1. A simple graph 

row vector representation: 

(55230) 

"completed" row vector: 

2 3 4 

5 2 3 2] 

*3 
Fig. 2. A tree of the graph of Fig. 1. 
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As a further example we shall now generate the trees Fj.2,4 of the graph G 
given in Fig. 1. 

Again, we construct the row vector representations of all the eligibe ones of the 
matrices M 1 2 4 : 

(00201), (00202), (00204), (00401), 

(00402), (00404). 

Now performing cycle checks on the matrices corresponding to the rows enumer-
ated we obtain finite outcomes in all six cases. 

This means that in this case the number of the 3-trees is 6. Fig. 3 illustrates the 
3-tree corresponding to the vector (00404). 

row vector representation: "completed" row vector: 
(00404) p 2 3 4 51 

[ 0 0 4 0 4 ] 

Fig. 3. A 3-tree of the graph of Fig. 1. 

The advantages of this method in comparison to others for the generation of 
¿-trees of a graph G seems clear if the method is adapted to computer. Namely, 
the method described in Section 2 is perhaps the most easily fed into computers 
among the known tree-generation methods. It is also clear that the storage capacity 
occupied by a programme based on this method is considerably smaller than that 
needed for the performing of a programme using e.g. the algebraic method [5]. 
The reason for. this is that it is not necessary to store the data representing the tree 
for further operations, the cycle check decides immediately whether the obtained 
data (row vector) in fact represent a tree. This is a considerable advantage if we 
take into account that in pratice the number of the trees can be of magnitude order, 
of several millions [4]. If not programmed clumsily, the complete cycle check does 
not increase the computing time unfavorably in comparison with time used up by 
the algebraic method. 
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R É S U M É 

Dans cette petite .Note nous allons présenter une procedure nouvelle engendrant 
tous les A:-arbres d'une graphe avec un point donné dans chacun de ses composantes 
connexes. Notre méthode exploite un théorème d'Ore [7] concernant les graphes 
finîtes" et directées, ainsi rendant une application de ce théorème qui est, hors de 
son intérêt théorique, aussi utile dans l'analyse des secteurs électriquies pour des 
buts pratiques. 
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