# On the behaviour of some cyclically symmetric networks. 

By A. ÁdÁm and U. Kling

Zusammenfassung. In diesem Artikel beschäftigen wir uns mit dem folgenden speziellen Typ von Netzwerken: die Punkte des Graphen werden durch $P_{1}, P_{2}, \ldots, P_{n}$ bezeichnet; es existiert ein Zahl $k(1 \leqq k<n)$ so daß von jedem Punkt $P_{i}$ die Kanten zu den Punkten

$$
P_{i-1}, P_{i-2}, \ldots, P_{i-k}
$$

und nur zu diesen führen (wobei die Subtraktion modulo $n$ gemeint wird). Wir setzen dasjenige kontinuierliche Modell fort, das im Abschnitt 3 der Arbeit [2] eingeführt wurde. Der Zustand $\mathfrak{Q}$ eines derartigen Graphen heißt zyklisch, wenn es eine positive Zahl $p$ gibt, so da $\beta$ nach einem Zeit-Intervall der Länge $p$ der aus $\mathfrak{Y}$ entstehende Zustand mit $\mathfrak{V}$ übereinstimmt. Wir unterscheiden im $\S 1$ reguläre und nicht-reguläre Zustände. In den $\S \S 2-3$ wird das Funktionieren eines Graphen mit einem regulären Anfangszustand diskutiert; wir stellen fest, daß jeder reguläre Zustand zyklisch ist. Im $\S 4$ beschäftigen wir uns mit dem Funktionieren eines Netzwerkes mit einem nicht-regulären Anfangszustand; unser Hauptergebnis besagt; daß kein nicht-regulärer Zustand zyklisch sein kann..

## § 1. Introduction

In this paper we deal with the function of a special graph-theoretical class of networks. (We speak of a network if numerical values or numerical functions are assigned to the vertices of a graph.) We shall point out that the behaviour of networks in question can be described more explicitly in comparation to the general model elaborated in Sect. 3 of [2]. It is throughout supposed that the reader is familiar with Sections $1-3$ of the former article [2].

Now we delimit the graph-theoretical structure of the networks to be investigated. Let $G\left(n ; m_{1}, m_{2}, \ldots, m_{k}\right.$ ) (where $1 \leqq m_{1}<m_{2}<\cdots<m_{k}<n$ ) denote the graph consisting of $n$ vertices labelled as $P_{1}, P_{2}, \ldots, P_{n}$, so that the directed edge $\overrightarrow{P_{i} P_{j}}$ exists if and only if there is an integer $h(1 \leqq h \leqq k)$ for which the congruence

$$
i-j \equiv m_{h} \quad(\bmod n)
$$

holds. ${ }^{1}$ We shall regard the graphs $G(n ; 1,2, \ldots, k)$ (where $1 \leqq k<n$ ) in the whole

[^0]paper. We note that the subscripts of the vertices of such a graph (and consequently, also the subscripts of the functions $x_{i}$ assigned to them) are mostly understood modulo $n .{ }^{2}$

Let a state

$$
\mathfrak{M}=\left\langle\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{n}(t)\right\rangle
$$

(at the instant ${ }^{3} t$ ) of a graph $G$ (containing $n$ vertices) be considered. Let us denote by $\mathfrak{M l}[+p]$ the state of $G$ at the instant $t+p$ where $p$ is an arbitrary non-negative real number. (More precisely: let us apply the continuous model defined in Sect. 3 of [2] for $G$, starting with $\mathfrak{V}$ at $t$; let $\mathfrak{V}[+p$ ] be the vector

$$
\left.\left\langle\alpha_{1}(t+p), \alpha_{2}(t+p), \ldots, \alpha_{n}(t+p)\right\rangle .\right)
$$

We say that $\mathfrak{G}$ is a cyclic state (and $p$ is its period) if there exists a positive $p$ such that $\mathfrak{N}=\mathfrak{N}[+p]$. In the contrary case, $\mathfrak{N}$ is an acyclic state.

We use for $\alpha_{i}(0)$ the shorter notation $\beta_{i}$, too.
Let us consider a network $G(n ; 1,2, \ldots, k)$. Assume that there exists at least one vertex $P_{j}$ with $\alpha_{j}(t)=1$. (If this holds for $P_{j}$, then each of $\alpha_{j-1}(t), \alpha_{j-2}(t), \alpha_{j-3}(t), \ldots$ $\ldots, \alpha_{j-k}(t)$ is 0 .) We say that the vertices

$$
\begin{equation*}
P_{i+1}, P_{i+2}, \ldots, P_{j-2}, P_{j-1}, P_{j} \tag{1}
\end{equation*}
$$

form an arc (at the instant $t$ ) if

$$
\begin{gathered}
1=\alpha_{i}(t)>\alpha_{i+1}(t)>\alpha_{i+2}(t)>\cdots>\alpha_{j-k-1}(t) \geqq \\
\geqq \alpha_{j-k}(t)=\alpha_{j-k+1}(t)=\alpha_{j-k+2}(t)=\cdots=\alpha_{j-1}(t)=0
\end{gathered}
$$

(and, of course, $\alpha_{j}(t)=1$ ) hold. Evidently, the number of vertices of an arc is necessarily at least $k+1$. (We emphasize that $P_{i}$-does not belong to the arc (1).) A state of a graph $G(n ; 1,2, \ldots, k)$ is called regular (at $t$ ) if each vertex is contained in an arc (obviously, it may be contained in only one). In a regular state, we denote by $\varphi\left(P_{i}, t\right)$ the first vertex $P_{j}$ in the sequence

$$
P_{i+1}, P_{i+2}, P_{i+3}, \ldots
$$

which satisfies $\alpha_{j}(t)=1$; in other words, $\varphi\left(P_{i}, t\right)$ is that vertex $P_{j}$ in the arc containing $P_{i+1}$ which fulfils $\alpha_{j}(t)=1 .\left(P_{i}\right.$ and $P_{i+1}$ are in the same arc unless $\alpha_{i}(t)=1$.)

In what follows, we shall obtain that a state of a network $G(n ; 1,2, \ldots, k)$ is cyclic if and only if it is regular (Propositions 2, 8).

## § 2. Discussion of the behaviour of a network starting with a regular state

Let us consider a regular state of a network $G(n ; 1,2, \ldots, k)$ at the instant 0 . Our next aim is to give a detailed discussion of the function $\alpha_{i}$ associated to a vertex $P_{i}$ (chosen arbitrarily) of $G$ during the time interval $[0, \tau]$. Our treatment is based

[^1]upon Sect. 3 of [2]. We shall formulate several consequences of the present discussion in $\S 3$; one of these consequences is anticipated just now:

Proposition 1. If

$$
\mathfrak{H}=\left\langle\alpha_{1}(0), \alpha_{2}(0), \ldots, \alpha_{n}(0)\right\rangle
$$

is a regular state, then we have

$$
\alpha_{i}(\tau)=\alpha_{i+k+1}(0)
$$

for each $i$ ( $i$ can be $1,2, \ldots, n$ ).
We are going to perform the discussion. We distinguish three cases according to the possibilities $0<\beta_{i}<1, \beta_{i}=0, \beta_{i}=1$ : Any case is subdivided to some subcases with respect to the smallest integer $h$ satisfying $P_{i+h}=\varphi\left(P_{i}, 0\right)$. In every discussed case, the following statement will be always true: whenever $\alpha_{j}(t)=0$ and there exists a positive number $\varepsilon$ such that $\alpha_{j}\left(t^{\prime}\right)>0$ holds for every $t^{\prime}$ fulfilling $t-\dot{\varepsilon}<$ $<t^{\prime}<t$, then $\alpha_{j+1}(t)=1$. We shall apply this method of inference (in a number of steps) without being mentioned explicitly.

Case 1: $0<\beta_{i}<1$. We distinguish three subcases.
Case $1 / \mathrm{a}: h>2 k+1$, in other words, each of $P_{i+1}, P_{i+2}, \ldots, P_{i+2 k+1}$ differs from $\varphi\left(P_{i}, 0\right)$. This assumption implies (by the definition of the regular state)

$$
\beta_{i}>\beta_{i+1}>\cdots>\beta_{i+k}>\beta_{i+k+1} \geqq \beta_{i+k+2} \geqq \cdots \geqq \dot{\beta}_{i+2 k+1} .
$$

The behaviour of $\alpha_{i}$ in [ $0, \tau$ ] can be described as follows:
(i) in the interval $\left[0, \tau\left(1-\beta_{i}\right)\right]$ the value of $\alpha_{i}$ grows linearly from ${ }^{\prime} \beta_{i}$ to 1 ,
(ii) in the interval $\left[\tau\left(1-\beta_{i}\right), \tau\left(1-\beta_{i+1}\right)\right) \alpha_{i}$ is constantly 1 ,
(iii) in the interval $\left[\tau\left(1-\beta_{i+1}\right), \tau\left(1-\beta_{i+k+1}\right)\right] \alpha_{i}$ is constantly 0 ,
(iv) in the interval [ $\tau\left(1-\beta_{i+k+1}\right)$, $\left.\tau\right]$ (of length $\tau \beta_{i+k+1}$ ) the value of $\alpha_{i}$ grows linearly from 0 to $\tau \cdot \beta_{i+k+1} / \tau=\beta_{i+k+1}$.

Indeed, $P_{i}$ gets edges exactly from the vertices $P_{i+1}, P_{i+2}, \ldots, P_{i+k}$. None of $\alpha_{i+1}, \ldots, \alpha_{i+k}$ can be 1 in the interval $\left[0, \tau\left(1-\beta_{i+1}\right)\right)$. However, at every instant $t$ of the interval [ $\tau\left(1-\beta_{i+1}\right), \tau\left(1-\beta_{i+k+1}\right)$ ), (exactly) one of $\alpha_{i+1}(t), \ldots, \alpha_{i+k}(t)$ is 1 . In the interval $\left[\tau\left(1-\beta_{i+k+1}\right), \tau\right) \alpha_{i+k+1}$ is constantly 1 , thus each of $\alpha_{i+1}, \ldots, \alpha_{i+k}$ is constantly 0 . We have also $\alpha_{i+1}(\tau)=\cdots=\alpha_{i+k}(\tau)=0$, hence $\alpha_{i}$ may grow in $\left[\tau .\left(1-\beta_{i+k+1}\right), \tau\right]$.

Case $1 / \mathrm{b}: . k+2 \leqq h \leqq 2 k+1$. Then

$$
\begin{gathered}
\beta_{i}>\beta_{i+1}>\cdots>\beta_{i+h-k-1} \geqq \beta_{i+h-k}=\beta_{i+h-k+1}=\cdots=\beta_{i+h-1}=0, \\
1=\beta_{i+h}>\beta_{i+h+1} \geqq \beta_{i+h+2} \geqq \cdots \geqq \beta_{i+h+k} .
\end{gathered}
$$

The condition of the case implies the inequalities

$$
i+2 \leqq i+h-k \leqq i+k+1 \leqq i+h-1 \leqq i+2 k
$$

thus $\beta_{i+k+1}=0$. The behaviour of $\alpha_{i}$ satisfies the assertions (i), (ii) of Case $1 / a$, moreover,
(iii) in the interval [ $\left.\tau\left(1-\beta_{i+1}\right), \tau\right] \alpha_{i}$ is constantly 0 . Indeed, since $\alpha_{i+k+1}\left(t^{\prime}\right)<1$ at each instant $t^{\prime}$ of the interval $[0, \tau)$, the behaviour of $\alpha_{i+1}, \ldots, \alpha_{i+k}$ is similar to Case $1 / \mathrm{a}$ (with $\tau$ instead of $\tau\left(1-\beta_{i+k+1}\right)$ ).

Case $1 / \mathrm{c}: h=k+1$. Then

$$
\begin{gathered}
\beta_{i}>\beta_{i+1}=\beta_{i+2}=\ldots=\beta_{i+k}=0, \\
1=\beta_{i+k+1}>\beta_{i+k+2} \geqq \beta_{i+k+3} \geqq \ldots \geqq \beta_{i+2 k+2} .
\end{gathered}
$$

The behaviour of $\alpha_{i}$ can be described as follows:
(i) in the interval $\left[0, \tau\left(1-\beta_{i}\right)\right]$ the value of $\alpha_{i}$ grows linearly from $\beta_{i}$ to 1 ,
(ii) in the interval $\left[\tau\left(1-\beta_{i}\right), \tau\right] \alpha_{i}$ is constantly 1 .

Indeed, none of $\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_{i+k}$ can reach 1 in the interval $\left[0, \tau\left(2-\beta_{i+k+2}\right)\right)$, furthermore $\tau<\tau\left(2-\beta_{i+k+2}\right)$.

Case 2: $\beta_{i}=0$. We distinguish four subcases:
Case $2 / \mathrm{a}: h=k+1$. We can prove by ideas similar to Case $1 / \mathrm{c}$ that $\alpha_{i}$ grows linearly from 0 to 1 in the whole interval $[0, \tau]$.

Case $2 / \mathrm{b}: h=k$. Then

$$
\begin{gathered}
\beta_{i}=\beta_{i+1}=\ldots=\beta_{i+k-1}=0 \\
1=\beta_{i+k}>\beta_{i+k+1} \geqq \beta_{i+k+2} \geqq \ldots \geqq \beta_{i+2 k+1}
\end{gathered}
$$

The behaviour of $\alpha_{i}$ is as follows:
(i) in the interval $\left[0, \tau\left(1-\beta_{i+k+1}\right)\right] \alpha_{i}$ is constantly 0 ,
(ii) in the interval $\left[\tau\left(1-\beta_{i+k+1}\right), \tau\right] \alpha_{i}$ grows linearly from 0 to

$$
\left(\tau-\tau\left(1-\beta_{i+k+1}\right)\right) / \tau=\beta_{i+k+1} .
$$

Case $2 / \mathrm{c}: 1 \leqq h \leqq k-1$ and $\beta_{i+k+1}=0$. Then

$$
\begin{gathered}
\beta_{i}=\beta_{i+1}=\ldots=\beta_{i+h-1}=0,1=\beta_{i+h}>\beta_{i+h+1}>\ldots \\
\ldots>\beta_{i+k+1}>\beta_{i+k+2} \geqq \beta_{i+k+3} \geqq \ldots \geqq \beta_{i+2 k+2} .
\end{gathered}
$$

The same conclusions (i), (ii) are true as in Case $2 / \mathrm{b}$.
Case $2 / \mathrm{d}: 1 \leqq h \leqq k-1$ and $\beta_{i+k+1}=0$. Then

$$
\begin{gathered}
\beta_{i} \doteq \beta_{i+1}=\cdots=\beta_{i+h-1}=0 \\
1=\beta_{i+h}>\beta_{i+h+1} \geqq \beta_{i+h+2} \geqq \cdots \geqq \beta_{i+k+1}=0 .
\end{gathered}
$$

In this case $\alpha_{i}$ is constantly 0 in the whole interval $[0, \tau]$.
Case 3: $\beta_{i}=1$. This case can be discussed similarly to Case 1. The single modification is that $\tau\left(1-\beta_{i}\right)=0$, thus the conclusions (i) do not occur in the subcases.

## § 3. Propositions on the behaviour of a network starting with a regular state

We are going to expose some statements which summarize the discussion performed in the preceding paragraph. Let $g$ be the least common multiple of $k+1$ and $n$.

Proposition 2. Any regular state is cyclic; $g \tau /(k+1)$ is a suitable period.

Proof. If we apply Proposition $1 g /(k+1)$ times, then we get

$$
\alpha_{i}(0)=\alpha_{i+(k+1)}(\tau)=\alpha_{i+2(k+1)}(2 \tau)=\cdots=\alpha_{i+g}(g \tau /(k+1))=\alpha_{i}(g \tau /(k+1))
$$

for every $i$.
Proposition 3. If $\mathfrak{A}$ is a regular state, then the state $\mathfrak{Y}[+t]$ is regular for each non-negative $t$.

Proof. Assume that the instant of $\mathfrak{A}$ is denoted by 0 . Let $d$ be the greatest integer so that $d \tau \leqq t$. We get by successive application of Proposition 1 that the conclusion of the present proposition is true for $d \tau$. By analyzing § 2, we obtain that it holds for $t$ too (because $t-d \tau<\tau$ ). The proof is completed.

An easy consequence of our former investigations is
Proposition 4. If $\mathfrak{A}$ is a regular state and $t$ is a non-negative number, then the number of arcs of $\mathfrak{\vartheta l}$ equals to the number of arcs of $\mathfrak{H}[+t]$.

Let us fix a vertex $P_{i}$, let us consider the sequence

$$
\begin{equation*}
P_{i}, P_{i+(k+1)}, P_{i+2(k+1)}, P_{i+3(k+1)}, \ldots, P_{i-(k+1)} \tag{2}
\end{equation*}
$$

consisting of $g /(k+1)$ (distinct) vertices and the sequence

$$
\begin{equation*}
P_{i+1}, P_{i+(k+1)+1}, P_{i+2(k+1)+1}, P_{i+3(k+1)+1}, \ldots, P_{i-(k+1)+1} \tag{3}
\end{equation*}
$$

which consists likewise of $g /(k+1)$ vertices. Either $n, k+1$ are relatively prime to each other (thus $g=n(k+1)$ and both of (2), (3) contain all the vertices) or (2), (3) are disjoint. ${ }^{4}$ Let us define the instants $v_{h}$ and $w_{h}$ by

$$
v_{h}=\tau\left(h-\beta_{i+(h-1)(k+1)}\right) \quad \text { and } \quad w_{h}=\tau\left(h-\beta_{i+(h-1)(k+1)+1}\right)
$$

(where $h$ can be $1,2, \ldots, g /(k+1)$ ). This definition implies immediately
Lemma 1. For any h,

$$
\tau(h-1) \leqq v_{h} \leqq \tau h \quad \text { and } \quad \tau(h-1) \leqq w_{h} \leqq \tau h .
$$

Lemma 2. For any $h$ we have one of the three possibilities
( $\left.\mathrm{a}_{1}\right) v_{h}<w_{h}$
( $\mathrm{a}_{2}$ ) $v_{h}=w_{h}=\tau h$
( $\left.\mathrm{a}_{3}\right) w_{h}=\tau(h-1)$ and $v_{h}=\tau h$
(according as
( $\mathrm{b}_{1}$ ) $\beta_{i+(h-1)(k+1)}>\beta_{i+(h-1)(k+1)+1}$
(b) $\beta_{i+(h-1)(k+1)}=\beta_{i+(h-1)(k+1)+1}=0$
$\left.\left(b_{3}\right) \beta_{i+(h-1)(k+1)}=0, \beta_{i+(h-1)(k+1)+1}=1\right)$.
${ }^{4}$ For, if (2), (3) contain a vertex in common, then some multiple of $k+1$ is congruent to 1 modulo $n$, hence $n$ and $k+1$ are relatively primes.

Proof. The equivalence of $\left(a_{i}\right)$ and ( $b_{i}$ ) can be shown easily (for all the three values of $i$ ), the proof is completed by the remark either $\left(b_{1}\right)$ or $\left(b_{2}\right)$ or $\left(b_{3}\right)$ is true since the state is regular.

Lemma 3. If $v_{h-1}<w_{h-1}$ and $v_{h}<w_{h}$ for some $h(\geqq 2)$, then either $w_{h-1}=v_{h}=$ $=\tau(h-1)$ or $w_{h-1}<v_{h}-\tau$.

Proof. The supposition implies

$$
\begin{aligned}
& \beta_{i+(h-2)(k+1)}>\beta_{i+(h-2)(k+1)+1}, \\
& \beta_{i+(h-1)(k+1)}>\beta_{i+(h-1)(k+1)+1} .
\end{aligned}
$$

The sequence (consisting of $k+1$ numbers)

$$
\begin{equation*}
\beta_{i+(h-2)(k+1)+1}, \beta_{i+(h-2)(k+1)+2}, \beta_{i+(h-2)(k+1)+3}, \ldots, \beta_{i+(h-1)(k+1)} . \tag{4}
\end{equation*}
$$

is monotonically decreasing unless $\beta_{i+(k-1)(k+1)}=1$ (by the regularity of the state), thus we can distinguish two cases.

Case 1: (4) is monotonically decreasing. Then the number

$$
\beta_{i+(h-2)(k+1)+1}-\beta_{i+(h-1)(k+1)}\left(=\left(v_{h}-\tau-w_{h-1}\right) / \tau\right)
$$

is positive, hence $w_{h-1}<v_{h}-\tau$.
Case 2: $\beta_{i+(h-1)(k+1)}=1$. Then, on the one hand, $v_{h}=\tau(h-1)$; on the other hand, $\beta_{i+(h-2)(k+1)+1}=0$, this implies $w_{h-1}=\tau(h-1)$.

By use of the numbers $v_{h}, w_{h}$ we can explicitly characterize the behaviour of $\alpha_{i}$ in the interval $[0, g \tau /(k+1))$ :

Proposition 5. Let us consider a regular state at the instant 0 . The function $\alpha_{i}$, assigned to a vertex $P_{i}$, satisfies the following four assertions:
(A) If $(1 \leqq h \leqq g /(k+1)$ and $) v_{h}<w_{h}$, then $\alpha_{i}$ is constantly 1 in the interval $\left.\left[v_{h}, w_{h}\right)\right)^{5}$
(B) If $(2 \leqq h \leqq g /(k+1)$ and $) w_{h-1}<v_{h}<w_{h}$, then $\alpha_{i}$ grows linearly in the interval $\left[v_{h}-\tau, v_{h}\right]$ from 0 to 1 .
(C) If $v_{1}<w_{1}$, then $\alpha_{i}$ grows linearly in the interval $\left[0, v_{1}\right]$ from $1-v_{h} / \tau$ to 1 .
(D) The value of $\alpha_{i}$ is 0 at all the instants of the interval $[0, g \tau /(k+1))$ which are not referred to in $(\mathrm{A}),(\mathrm{B})$ and $(\mathrm{C})$.

Proof. Let an instant $t$ lying in $[0, g \tau /(k+1))$ be considered. There exists a number $h$ such that $\tau(h-1) \leqq t<\tau h$ (where $1 \leqq h \leqq g /(k+1)$ ). By using Proposition 1 successively. $h-1$ times (with $t-\tau, t-2 \tau, t-3 \tau, \ldots, t-\tau(h-1)$ instead of 0 ), we get

$$
\begin{gathered}
\alpha_{i}(t)=\alpha_{i+(k+1)}(t-\tau)=\alpha_{i+2(k+1)}(t-2 \tau)=\cdots \\
\ldots=\alpha_{i+(h-2)(k+1)}(t-\tau(h-2))=\alpha_{i+(h-1)(k+1)}(t-\tau(h-1)),
\end{gathered}
$$

i.e. the behaviour of $\alpha_{i}$ in the interval $[\tau(h-1), \tau h)$ is the same as the behaviour of $\alpha_{i+(h-1)(k+1)}$ in $[0, \tau)$ (with the appropriate translation).

[^2]First we show (A). The function $\alpha_{i+(h-1)(k+1)}$ takes the value 1 exactly in the sub-interval

$$
\left[\tau\left(1-\beta_{i+(h-1)(k+1)}\right), \tau\left(1-\beta_{i+(h-1)(k+1)+1}\right)\right)
$$

of $[0, \tau$ ) by Cases $1 / \mathrm{a}, 1 / \mathrm{b}, 1 / \mathrm{c}, 3 / \mathrm{a}, 3 / \mathrm{b}, 3 / \mathrm{c}$ of the discussion in $\S 2$ (even if at least one of

$$
\beta_{1+(h-1)(k+1)}=1, \quad \beta_{i+(h-1)(k+1)+1}=0
$$

is true).
In order to verify (B), let $t(\geqq \tau)$ be such an instant that $\alpha_{i}(t)=1$ but, for every positive $\varepsilon$, there exists a $t^{*}$ fulfilling $\alpha_{i}\left(t^{*}\right)<1$ and $t-\varepsilon<t^{*}<t$. Then $\alpha_{i+(h-2)(k+1)}$ has the analogous property at the instant $t-(h-2)$, and $\tau \leqq t-\tau(h-2)<2 \tau$. By analyzing the discussion and by Proposition 1, we get that $\alpha_{i+(h-2)(k+1)}$ grows linearly in $[t-\tau(h-1), t-\tau(h-2)]$ from 0 to 1 , consequently $\alpha_{i}$ behaves in $[t-\tau, t$ ] analogously.
(C) follows from the discussion immediately.
(D) is equivalent to the subsequent statement: any function $\alpha_{i}$ is 0 at $t$ unless $t$ is contained in an interval $\left(t^{\prime}, t^{\prime}+\tau\right]$ such that $\alpha_{i}\left(t^{\prime}+\tau\right)=1$. This statement follows easily from the discussion and Proposition 1 in the interval $[0,2 \tau]$, it can be extended for any non-negative $t$ by Proposition 1.

The last assertion we state relying upon $\S 2$ is the evident
Proposition 6. The following three statements are equivalent for a regular state:
(A) The state is steady.
(B) Every arc of the state consists of exactly $k+1$ vertices.
(C) $k+1$ is a divisor of $n$ and the number of arcs in the state is $n /(k+1)$.

## § 4. Study of non-regular states

The purpose of this paragraph is to show that only the regular states are cyclic. First we define the irregularity indices of an arbitrary permitted state ${ }^{6} \mathfrak{P}$ by the following three rules:
(i) if $\beta_{i-1}<\beta_{i}<1$, then $i$ is an irregularity index,
(ii) if $\beta_{i-1}=\beta_{i}>0$, then $i$ is an irregularity index,
(iii) if $\beta_{i-1}=\beta_{i}=0$ and each of $\beta_{i+1}, \beta_{i+2}, \ldots, \beta_{i+k}$ is $<1$, then $i$ is an irregularity index.
(The conditions in (i), (ii), (iii) exclude each other.) We agree that no remaining number (out of the set $\{1,2, \ldots, n\}$ ) is an irregularity index. The irregularity number of the state $\mathfrak{2 l}$ is the number of its irregularity indices.

If (i) or (iii) holds for $i$, then $i$ is called a strong irregularity index, the number of strong irregularity indices is the strong irregularity number of $\mathfrak{Y}$. If (ii) holds for $i$ then we call $i$ a weak irregularity index.

Lemma 4. The irregularity number of $\mathfrak{M}$ is 0 if and only if $\mathfrak{Q}$ is a regular state.
Proof. It is obvious that the definition of the regular state does not admit any of the possibilities (i), (ii), (iii). - Conversely, assume that no vertex fulfilling

[^3]the condition of either (i) or (ii) or (iii) occurs in $\mathfrak{Y}$; let $P_{i}$ be an arbitrary vertex. If $\beta_{i}=1$, then
$$
\beta_{i-k}=\beta_{i-k+1}=\beta_{i-k+2}=\cdots=\beta_{i-1}=0
$$
(since the state is permitted). If $0<\beta_{i}<1$, then $\beta_{i-1}>\beta_{i}$ (since otherwise (i) or (ii) would be violated). If $\beta_{i}=0$, then either one of $\beta_{i+1}, \beta_{i+2}, \ldots, \beta_{i+k}$ is 1 or $\beta_{i-1}>\beta_{i}$ (in consequence of (iii)). Thus $\mathfrak{Y}$ is a regular state.

Lemma 5. Let $\mathfrak{M}$ be a state at the instant 0 and $t$ be a positive instant such that the functioning of the network is defined (at least) in the interval $[0, t]$. If $i$ is not a strong irregularity index at 0 , then $i$ is a strong irregularity index nor at $t$.

Proof. Let $t^{*}$ be the (possibly non-existing) least real number such that $0 \leqq t^{*} \leqq t$ and none of $\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_{i+k}$ takes the value 1 in the interval $\left[t^{*}, t\right]$. Either $t^{*}=0$ or there exists a number $q$ such that $1 \leqq q \leqq k$ and to every positive $\varepsilon$ there exists a $t^{\prime}$ satisfying both $t^{*}-\varepsilon<t^{\prime}<t^{*}$ and $\alpha_{i+q}\left(t^{\prime}\right)=1$.

Case 1: $t^{*}>0$ and $q<k$. We have

$$
\alpha_{i-1}\left(t^{*}\right)=\alpha_{i}\left(t^{*}\right)=0,
$$

the functions $\alpha_{i-1}, \alpha_{i}$ are equal and increase linearly in the whole interval $\left[t^{*}, t\right]$ from 0 to $\left(t-t^{*}\right) / \tau$. (Necessarily $t-t^{*}<\tau$; if the contrary were true, we should get a contradiction to the hypothesis that the functioning is defined in [0, $\tau]$.)

Case 2: $t^{*}>0$ and $q=k$. We have

$$
\alpha_{i-1}\left(t^{*}\right) \geqq \alpha_{i}\left(t^{*}\right)=0
$$

Three subcases are possible:
Case $2 / \mathrm{a}: \alpha_{i-1}\left(t^{*}\right)=0$. This subcase can be treated similarly to Case 1 .
Case $2 / b: \alpha_{i-1}\left(t^{*}\right)>0$ and $t-t^{*}<\tau$. Then $\alpha_{i}$ increases linearly in the whole interval $\left[t^{*}, t\right]$ from 0 to $\left(t-t^{*}\right) / \tau$. $\alpha_{i-1}$ increases linearly from

$$
\alpha_{1-1}\left(t^{*}\right) \text { to }\left\{\begin{array}{ccc}
\alpha_{i-1}\left(t^{*}\right)+\left(t-t^{*}\right) / \tau \quad \text { in } \quad\left[t^{*}, t\right] & \text { if } & \alpha_{i-1}\left(t^{*}\right)+\left(t-t^{*}\right) / \tau \leqq 1 \\
1 & \text { in }\left[t^{*}, t^{*}+\tau\left(1-\alpha_{i-1}\left(t^{*}\right)\right)\right] & \text { if } \\
\alpha_{i-1}\left(t^{*}\right)+\left(t-t^{*}\right) / \tau>1 .
\end{array}\right.
$$

In the second of these cases $\alpha_{i-1}$ is constantly 1 in $\left[t^{*}+\tau\left(1-\alpha_{i-1}\left(t^{*}\right)\right), \tau\right]$.
Case 3: $t^{*}=0$ and $\beta_{i-1}>\beta_{i}$. Let us assume that $t$ is so large that all the intervals to be discussed are in $[0, t]$. (If this assumption is not fulfilled, then the subsequent discussion is altered so that it breaks off at the instant $t$.) In the interval $\left[0, \tau\left(1-\beta_{i-1}\right)\right]$ both $\alpha_{i-1}$ and $\alpha_{i}$ increase linearly. In $\left[\tau\left(1-\beta_{i-1}\right), \tau\left(1-\beta_{i}\right)\right) \alpha_{i-1}$ is constantly 1 and $\alpha_{i}$ increases linearly. In $\left[\tau\left(1-\beta_{i}\right), t\right] \alpha_{i}$ is constantly 1 and $\alpha_{i-1}$ is constantly 0 .

Case 4: $t^{*}=0$ and $\beta_{i-1}=\beta_{i}$. Then $t<\tau$, furthermore $\alpha_{i-1}, \alpha_{i}$ are equal and increase from 0 to $t / \tau$ similarly as in Case 1 .

Case 5: $t^{*}$ does not exist. Then there is at least one number $q$ such that $1 \leqq q \leqq k$ and $\alpha_{i+g}(t)=1$, thus $\alpha_{i}(t)=0$. $i$ fulfils the conditions of neither (i) nor (iii) at $t$.

Lemma 6. If the strong irregularity number of a state $\mathfrak{V l}$ at the instant 0 is positive and the functioning of the network in the interval $[0, \tau]$ is defined, then the strong irregularity number of the state $\mathfrak{H}[+\tau]$ is 0 .

Proof. Let $i$ be an arbitrary index. If $i$ is not a strong irregularity index, then we can apply Lemma 5. Otherwise, let us define $t^{*}$ and $q$ as in the proof of Lemma 5. If $t^{*}>0$ then Cases 1,2 of the preceding proof remain valid; if $t^{*}$ does not exist, then the inference of Case 5 can be applied. We have still to study the cases when $t^{*}=0$ and $i$ fulfils (i) or (iii).

If (i) is true, then

$$
\alpha_{i}\left(\tau\left(1-\beta_{i}\right)\right)=1 \quad \text { and } \quad \alpha_{i-1}\left(\tau\left(1-\beta_{i}\right)\right)=0
$$

$i$ is not a strong irregularity index at $\tau\left(1-\beta_{i}\right)$ consequently nor at $\tau$ (by Lemma 5 ).
If (iii) holds, then it is easy to see that the functioning of the graph is defined at most in the interval $[0, \tau)$; this contradicts the supposition of Lemma 6.

Lemma 7. Let $\mathfrak{A}$ be a state at the instant 0 such that the strong irregularity number of 9 I is 0 . If the functioning of the network in the interval $[0, \tau]$ is defined, then the irregularity number of $\mathfrak{A}[+\tau]$ is 0 .

Proof. Whenever $j$ is an arbitrary index and $t^{\prime}$ is an instant such that $0 \leqq t^{\prime} \leqq \tau$, then $j$ cannot be a strong irregularity index at $t^{\prime}$ (by Lemma 5). We shall study a function $\alpha_{i}$ in $[0, \tau]$. Let us define $t^{*}$ and $q$ in the same manner as at beginning of the proof of Lemma 5.

Case 1: $t^{*}>0$. Necessarily $q=k$ (since now the value 1 "steps" from $j$ to $j+1$, similarly to the case of a regular state, discussed in § 2). Hence $\alpha_{i-1}\left(t^{*}\right)>\alpha_{i}\left(t^{*}\right)=0$. In the interval

$$
\left[t^{*}, t^{*}+\tau\left(1-\alpha_{i-1}\left(t^{*}\right)\right)\right]
$$

$\alpha_{i-1}, \alpha_{i}$ increase parallel (i.e. $\alpha_{i-1}-\alpha_{i}$ remains constant). In the interval

$$
\left[t^{*}+\tau\left(1-\alpha_{i-1}\left(t^{*}\right)\right), \tau\right]
$$

(provided that it exists) $\alpha_{i-1}$ is constantly 1 and $\alpha_{i}$ continues its growth.
Case 2: $t^{*}=0$. We distinguish two subcases.
Case $2 / \mathrm{a}: \beta_{i-1}=\beta_{i}$. This assumption implies that the functioning of the network is defined only in $\left[0, \tau\left(1-\beta_{i}\right)\right)$, i.e. it contradicts the supposition of Lemma 7.

Case $2 / \mathrm{b}: \beta_{i-1}>\beta_{i}$. In the interval $\left[0, \tau\left(1-\beta_{i-1}\right)\right], \alpha_{i-1}$ and $\alpha_{i}$ increase parallel. In

$$
\left[\tau\left(1-\beta_{i-1}\right), \tau\left(1-\beta_{i}\right)\right)
$$

$\alpha_{i-1}$ is constantly 1 and $\alpha_{i}$ continues its growth. In [ $\left.\tau\left(1-\beta_{i}\right), \tau\right] \alpha_{i}$ is constantly 1 and $\alpha_{i-1}$ is constantly 0 .

Case 3: $t^{*}$ does not exist. We get $\alpha_{i}(\tau)=0$ similarly to Case 5 of the proof of Lemma 5, hence $i$ does not fulfil the condition of (ii).

Proposition 7. If the state $\mathfrak{A}$ (at the instant 0 ) is non-regular, then either $T_{\max }^{\prime}$ is defined for $\mathfrak{H}$ and $0<T_{\text {max }}^{\prime}<2 \tau$ or $\mathfrak{Y}[+2 \tau]$ is regular. ${ }^{7}$

[^4]Proof. Assume that the states $\mathfrak{M}[+t]$ are definable whenever $0 \leqq t \leqq 2 \tau$. The state $\mathfrak{N}[+\tau]$ cannot have a strong irregularity index (by Lemma 6), hence the state $\mathfrak{N}[+2 \tau]$ is regular (by Lemmas 7 and 4).

Proposition 8. Any non-regular state is acyclic.
Proof. Let $\mathfrak{A}$ be a non-regular state (at the instant 0 ). If the state $\mathfrak{V}[+t]$ is not definable for every positive $t$ (i.e. if $T_{\max }^{\prime}$ does exist), then $\mathfrak{F l}$ is obviously acyclic. Assume that $\mathfrak{Y}[+t]$ is defined for every $t$. Let $\mathfrak{N}$ be cyclic and $p$ be a period of it, we shall get a contradiction. Let $d$ be the least integer such that $d p \geqq 2 \tau$ holds. On the one hand,

$$
\mathfrak{N}=\mathfrak{N}[+p]=\mathfrak{Y}[+2 p]=\cdots=\mathfrak{Y}[+d p]
$$

thus $\mathfrak{N}[+d p]$ is non-regular. On the other hand, $\mathfrak{M r}[+2 \tau]$ is regular by Proposition 7 , hence also $\mathfrak{N}[+d p]$ is regular by Proposition 3 .

## § 5. On some possibilities for future researches

Let us consider a graph. Denote by $A$ the set of its permitted states (i.e. all the mappings of the vertex set into the interval $[0,1]$ such that the restriction mentioned in Footnote 6 is satisfied), by $A_{r}(\subset A)$ the set of its regular states. We define two partitions $\pi_{1}, \pi_{2}$ of $A$ and a further partition $\pi_{3}$ of $A_{r}$ in the following manner:
$\mathfrak{Y}(\in A), \mathfrak{H}^{\prime}(\in A)$ are in a common class $\bmod \pi_{1}$ if there exists an integer $s$ such that $0 \leqq s \leqq n-1$ and

$$
\alpha_{1}=\alpha_{1+s}^{\prime}, \alpha_{2}=\alpha_{2+s}^{\prime}, \ldots, \alpha_{n-1}=\alpha_{s-1}^{\prime}, \alpha_{n}=\alpha_{s}^{\prime}
$$

where $\mathfrak{V l}=\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle, \mathfrak{V l}^{\prime}=\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\rangle$.
$\mathfrak{Y l}(\in A), \mathfrak{Y l}(\in A)$ are in a common class mod $\pi_{\dot{2}}$ if the inequalities $\alpha_{i}<\alpha_{j}$ and $\alpha_{i}^{\prime}<\alpha_{j}^{\prime}$ are equivalent to each other for every index pair $i, j$.
$\mathfrak{Y}\left(\in A_{r}\right), \mathfrak{V}^{\prime}\left(\in A_{r}\right)$ are in a common class mod $\pi_{3}$ if there exists a non-negative real number $t$ such that $\mathfrak{T H}[+t]=\mathfrak{P r}^{\prime}$.

The partitions $\pi_{1}$ and $\pi_{2}$ generate a sublattice of the lattice of all partitions of $A$; similarly, $\pi_{1}, \pi_{2}$ and $\pi_{3}$ generate a sublattice in the partition lattice of $A_{r}$. Various questions (concerning both the lattice-theoretical properties and numerical problems) can be raised on the lattices generated in this manner.

Finally, we mention a problem of this character. Let $A_{h}$ be the set of the states $\mathfrak{N}=\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle$ fulfilling the three requirements:
(i) $\alpha_{i}=1$ holds for exactly one index $i$,
(ii) the state is permitted,
(iii) whenever $l$ and $l^{\prime}$ are two indices such that $1 \leqq l<l^{\prime} \leqq n, P_{i} \ddagger\left\{P_{i}\right\} \cup \%\left(P_{i}\right)$, $P_{l} \notin\left\{P_{i}\right\} \cup \chi\left(P_{i}\right)$, then the inequalities $0<\alpha_{i}<1,0<\alpha_{l}^{\prime}<1, \alpha_{i} \neq \alpha_{l}^{\prime}$ hold.

It is easy to see that a randomly chosen element $\mathfrak{V 1}^{\prime}=\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\rangle$ of $A$ satisfies $\mathfrak{V ^ { \prime }}[+t] \in A_{h}$ with probability 1 where $t=\tau\left(1-\max \left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}\right)\right)$.

Let us consider the graphs $G(3 ; 2), G(4 ; 3), G(5 ; 4), \ldots, G(n ; n-1), \ldots$. Starting with the general member $G(n ; n-1)$ of this sequence, we denote by $\Omega_{n}$ the factor set $A_{h}^{(n)} / \pi_{2}$ where $A_{h}^{(n)}$ denotes the set $A_{h}$ with respect to the graph $G(n ; n-1$.). $\Omega_{n}$ is a finite set. On the other hand, let us define the subsets $A_{h}^{(n, x)}$ of $A_{h}^{(n)}$ so that $\mathfrak{Q} \in A_{h}^{(n, x)}$ if and only if the regular state $\mathfrak{Y}[+t]$ (with the least possible $t(\geqq 0)$ )
(exists and) consists of $x$ arcs $\left(x \leqq n / 2\right.$ ). The sets $A_{h}^{(n, x)}$ are pairwise disjoint (for varying $x$ ), moreover, $\mathfrak{A} \in A_{h}^{(n, x)}, \mathfrak{T}^{\prime} \in A_{h}^{\left(n, x^{\prime}\right)}, \mathfrak{N} \equiv \mathfrak{I}^{\prime}\left(\bmod \pi_{\mathfrak{2}}\right)$ imply $x=x^{\prime}$. Let $\Omega_{n}^{(x)}$ be the subset of $\Omega_{n}$ which consists of the classes whose elements are in $A_{h}^{(n, x)}$. It is interesting to examine the asymptotical behaviour of the numerical function

$$
f(n, x)=\frac{\left|\Omega_{n}^{(x)}\right|}{\left|\Omega_{n}\right|}
$$

(Evidently, $\sum_{x=1}^{[n / 2]} f(n, x) \leqq 1$.) A discussion shows that the first values of $f(n, x)$ are:

| $x$ | $n$ | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $1 / 2$ | $1 / 6$ | $1 / 24$ |  |
| 2 |  |  | $1 / 2$ | $5 / 6$ | $17 / 24$ |  |
| 3 |  |  |  |  | $1 / 4$ |  |

We conjecture that $f(n,[(n-1) / 2])$ converges to 1 if $n$ tends to the infinity.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY

INSTITUT FÜR NACHRICHTENTECHNIK DER TECHNISCHEN HOCHSCHULE MÜNCHEN, BR DEUTSCHLAND

## References

[1] ÁoÁm, A., Research problem 2-10 (Isomorphism problem for a special class of graphs), Journal of Combinatorial Theory, v. 2, 1967, p. 393.
[2] ÁdÁm, A., Simulation of rhythmic nervous activities, II. (Mathematical models for the function of networks with cyclic inhibition), Kybernetik, v. 5, 1968, pp. 103-109.
[3] Dıoкović, D. Ž., Isomorphism problem for a special class of graphs, Acta Math. Acad. Sci. Hing., v. 21, 1970, pp. 267-270.
[4] Elspas, B. \& J. Turner, Graphs with circulant adjacency matrices, Journal of Combinatorial Theory, v. 9, 1970, pp. 297-307.
[5] Kling, U. \& G. Székely, Simulation of rhythmic nervous activities, I. (Function of networks with cyclic inhibitions), Kybernetik, v. 5, 1968, pp. 98-103.
(Received April 17, 1970)


[^0]:    ${ }^{1}$ For the isomorphism problem of these graphs see [1] and the most recent papers [3], [4].

[^1]:    ${ }^{2}$ For example, we write simply "the vertex $P_{i+1}$ " instead of "the vertex $P_{j}$ whose subscript is determined by $j \equiv i+l(\bmod n), 1 \leq j \leqq n^{\prime \prime}$.
    ${ }^{3}$ In what follows, $t$ will be almost everywhere 0 .

[^2]:    ${ }^{5}$ Since $w_{h}=v_{h+1}$ may occur, two or more intervals of this character can be joined.

[^3]:    ${ }^{6}$ A state is permitted if $\alpha_{i}=1, P_{j}=\not \subset\left(P_{i}\right)$ imply $\alpha_{j}=0$.

[^4]:    ${ }^{7} T_{\text {max }}^{\prime}$ was introduced in [2].

