
On the behaviour of some cyclically 
symmetric networks 

B y A . ADAM a n d U . K L I N G 

Zusammenfassung. In diesem Artikel beschäftigen wir uns mit dem folgenden 
speziellen Typ von Netzwerken: die Punkte des Graphen werden durch Px, P2, ..., P„ 
bezeichnet; es existiert ein Zahl k (1 ^k</;) so daß von jedem Punkt P, die Kanten 
zu den Punkten 

-Pi-lJ Pi-2> •••! Pi-k 

und nur zu diesen führen (wobei die Subtraktion modulo n gemeint wird). Wir 
setzen dasjenige kontinuierliche Modell fort, das im Abschnitt 3 der Arbeit [2] 
eingeführt wurde. Der Zustand 9t eines derartigen Graphen heißt zyklisch, wenn 
es eine positive Zahl p gibt, so daß nach einem Zeit-Intervall der Länge p der aus 
91 entstehende Zustand mit 91 übereinstimmt. Wir unterscheiden im § J reguläre 
und nicht-reguläre Zustände. In den §§ 2—3 wird das Funktionieren eines Graphen 
mit einem regulären Anfangszuständ diskutiert; wir stellen fest, daß jeder reguläre 
Zustand zyklisch ist. im § 4 beschäftigen wir uns mit dem Funktionieren eines 
Netzwerkes mit einem nicht-regulären-Anfangszustand; unser Hauptergebnis be-
sagt, daß kein nicht-regulärer Zustand zyklisch sein kann. • 

§ 1. Introduction 

In this paper we deal with the function of a special graph-theoretical class of 
networks. (We speak of a network if numerical values or numerical functions are 
assigned to the vertices of a graph.) We shall point out that the behaviour of net-
works in question can be described more explicitly in comparation to the general 
model elaborated in Sect. 3 of [2]. It is throughout supposed that the reader is familiar 
with Sections I—3 of . the former article [2]. 

Now we delimit the graph-theoretical structure of the networks to be investigated. 
Let G(n; m1,m2, ..., mk) (where l i m 1 < / ) i ! < - < m l . < / i ) denote the graph con-
sisting of n vertices, labelled as Pls P2, ...,P„, so that the directed edge P{Pj exists 
if and only if there is an integer h (1 s / i sAr) for which the congruence 

i—j = mh (mod n) 

holds.1 We shall regard the graphs G(n; 1, 2, ..., k) (where I < n ) in the whole 

1 For the isomorphism problem of these graphs see [1] and the most recent papers [3], [4]. 
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paper. We note that the subscripts of the vertices of such a graph (and consequently, 
also the subscripts of the functions assigned to them) are mostly understood 
modulo n r 

Let a state 
?r = <«,(/) ,«¡(0,. . . .«„(*)> 

(at the instant3 /) of a graph G. (containing n vertices) be considered. Let us denote 
by 31 [+/>] the state of G at the instant t+p where p is an arbitrary non-negative 
real number. (More precisely: let us apply the continuous model defined in Sect. 3 
of [2] for G, starting with 2t at / ; let [+p] be the vector 

{*1(t+p),x2(t+p), ...,«„(/+/>)>.) 

We say that 91 is a cyclic state (and p is its period) if there.exists a positive p such 
that 9f = 21 [+/>]• In the contrary case, 91 is an acyclic state. 

We use for a,(0) the shorter notation P¡, too. 
Let us consider a network G(n\ 1,2,. . . , k). Assume that there exists at least one 

vertex Pj with Uj(t) = 1. (If this holds for P}, then each of aj-^t), <Xj_2(t), <Xj_3(t), ... 
...,ctj_k(t) is 0.) We say that the vertices 

(1) Pi + l> Pi + n , ••• , Pj-o, Pj 
form an arc (at the instant /) if 

1 = a^) > a; + 1(/) > cci+2(t) > ••• > uJ_k_1(t) == 

S = *j-k + l(t) = ayJft+aO) = ••• = ctj-i(t) = 0 

(and, of course, a j ( t ) = l) hold. Evidently, the number of vertices of an arc is neces-
sarily at least + 1. (We emphasize that /"¡-does not belong to the arc (1).) A state 
of a graph G(n\ 1, 2, .. . , k) is called regular (at t) if each vertex is contained in an 
arc (obviously, it may be contained in only one). In a regular state, we denote by 
(p(Pi, t) the first vertex P} in the sequence 

Pi +1 > f i + 2 J P i + 3 > 

which satisfies «,(/) = 1; in other words, <p(Pt, t) is that vertex Pj in the arc contain-
ing Pi+1 which fulfils <Xj(t)= 1. (Pf and Pi+1 are in the same arc unless a , ( / ) = l . ) 

In what follows, we shall obtain that a state of a network G(n; 1,2, ...,k) 
is cyclic if and only if it is regular (Propositions 2, 8). 

§ 2. Discussion of the behaviour of a network starting 
with a regular state 

Let us consider a regular state of a network G(n; 1, 2, ..., k) at the instant 0. 
Our next aim is to give a detailed discussion of the function a( associated to a vertex 
Pi (chosen arbitrarily) of G during the time interval [0, r]. Our treatment is based 

2 For example, we write simply "the vertex /", +," instead of "the vertex Pj whose subscript 
is determined by j = / + / (mod n), 1 

3 In what follows, t will be almost everywhere 0. 
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upon Sect. 3 of [2]. We shall formulate several consequences of the present discus-
sion in §3; one of these consequences is anticipated just now: 

Proposition 1. If 

91 = <ai(0), a2(0), ...,a„(0)> 

is a regular state,, then we have 
«/(r) = «,•+* +1(0) 

for each i (i can be 1, 2, ..., n). 

We are going to perform the discussion. We distinguish three cases according 
to the possibilities 0 < / ? ; < l , /?; = (), Pt — l. Any case is subdivided to some sub-
cases with respect to the smallest integer /; satisfying Pi+h = <p(Pi, 0). In every dis-
cussed case, the following statement will be always, true: whenever <*;(<) = 0 and 
there exists a positive number e such that aj(t')>0 holdsfor every t'fulfilling / — e. < 
-=./'< t, then ocy+1(0 = l- We shall apply this method of inference (in a number of 
steps) without being mentioned explicitly. 

. Case I: 0 < / 5 i < l . We distinguish three subcases. 
Case 1/a: h > 2k+'\, in other words, each of Pi + 1, + •••>Pi+2k + i differs 

from <p(Ph0). This assumption implies (by the definition of the regular state) 

Pi^Pi + l^ >Pi+k > Pi+ k + 1 — Pi + k + 2 =•'••= Pi+2k + l-

The behaviour of a t in [0, r] can be described as follows: 
(i) in the interval [0, t ( l — pt)] the value of a ; grows linearly from'/?; to 1, 

(ii) in the interval [ t(1 —/?,), r ( l —/?i+1)) a ; is constantly 1, 
(iii) in the interval [t(1 — P'i+1), t ( I — Pi+k + 1)] a( is constantly 0, 
(iv) in the interval [r(l ~pi+k+x), t] (of length rpi+k + l) the value of a ; grows 

linearly from 0 to T-Pi+k + 1/t = Pi+k + 1. 
Indeed, PI gets edges exactly from the vertices PI+1, PI+2, PI+K. None of 

•ai + l , ...,ocl+k can be 1 in the interval [0, r ( l —pi+1)). However, at every instant t 
of the interval [ t (1 - / ? i + 1 ) , r ( l - / 3 i + J i + 1)), (exactly) one of a, + 1(i), ...,cci+k(t) is 1. 
In the interval [T(1 —y?i+t + 1), T) <xi+k + 1 is constantly 1, thus each of a i + 1 , ..., ai+k 
is constantly 0. We have also a i + 1 ( t ) = ••• =a I+ ) t(T) = 0, hence a( may grow in 

. Case l /b : jk + 2 31 h == 2A:+1. Then 

Pi> Pi + l^ '•• > Pi +h-k-l = Pi + h-k — Pi + h-k+1 — = Pi + h-1 — 

1 = Pi + h> Pi + h + l — Pi + h + 2 — £ Pi + h + k-
The condition of the case implies the inequalities 

i + 2 S i + h-k ^ / + ¿ + 1 i + h-l 'rS i + 2k, . 

thus Pi+k+1 = 0. The behaviour of a ; satisfies the assertions (i), (ii) of Case 1/a, 
moreover, 

(iii) in the interval [r(l —Pi+1), T] a ; is constantly 0. Indeed, since a i + t + 1 ( / ' ) < l 
at each instant t' of the interval [0, T), the behaviour of a i + 1 , ..., a i + t i s similar to 
Case 1/a (with t instead of x(l —P i+k + 1)). • 
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Case 1/c: /1 = k+ 1. Then 

1 = Pi + k+l^ Pi+k+2 — Pi+k + 3 = ••• = Pi + 2k+2-
The behaviour of can be described as follows: 

(i) in the interval [0, t(1 — /?,)] the value of ot,- grows linearly from /?,- to 1, 
(ii) in the interval [r(l — /?,), t] a i is constantly 1. 
Indeed, none of <*i+1, a1 + 2 , ..., a i + k can reach 1 in the interval [0, t (2 - j 8 J + t + s ) ) , 

furthermore r < t (2 —/?i+t + 2). 

Case 2: ^¡ = 0. We distinguish four subcases: 
Case 2/à : /; = A" -I-1. We can prove by ideas similar to Case 1/c that a ; grows 

linearly from 0 to 1 in the whole interval [0, t]. 
Case 2/b: h = k. Then 

1 = Pi+k^Pi+k+1 = Pi+k + 2 — ••• — Pi + 2k + l-

The behaviour of a, is as follows : 
(i) in the interval [0, t (1 —/ifl+t+1)] af is constantly 0, 

(ii) in the interval [r(1 — /? i+fc+1), r] a t grows linearly from 0 to 

( t - T ( 1 -j8,-+t + i))/T = Pi+k + 1. 

Case 2/c: 1 S h k-l and Pi+k+1 = 0. Then 

Pi = Pi+i = ••• = p:+h-1=0,1 = pi+h>pi+h+1>-

••• > Pi + k + l> Pi+k+2 = Pi + k+3 — ••• — P, + 2k + 2-
The same conclusions (i), (ii) are true as in Case 2/b. 

Case 2/d: 1 si /1 S k-l and 0i+k + 1 = O. Then 

Pi = Pi+i = -= Pi+h-i = 0, 

1 = Pi + h>Pi + h +1 = fii+h+2 =••= Pi + k + 1 = 0. 

In this case a, is constantly 0 in the whole interval [0, T]. 

Case 3: /?; = 1. This case can be discussed similarly to Case 1. The single modifi-
cation is that T(1— Pi)=0, thus the conclusions (i) do not occur in the subcases. 

§ 3. Propositions on the behaviour of a network starting 
with a regular state 

We are going to expose some statements which summarize the discussion per-
formed in the preceding paragraph. Let g be the least common multiple of fc+l 
and n. 

Proposition 2. Any regular state is cyclic; gr/(k +1) is a suitable period. 
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Proof. If we apply Proposition 1 gj{k +1) times, then we get 

a.-(0) = 0 W + i , ( r ) = a , + 2 ( f c + 1 ) ( 2 r ) = ••• = ai+g(gz/(k+ 1)) = ai(gxj(k+ 1)) 

for every /. 

Proposition 3. If 11 is a regular state, then the state 91 [ + i] is regular for each 
non-negative t. 

Proof. Assume that the instant of 91 is denoted by 0. Let d be the greatest in-
teger so that dx ^ t. We get by successive application of Proposition 1 that the con-
clusion of the present proposition is true for dx. By analyzing § 2, we obtain that 
it holds for t too (because t—dx< x). The proof is completed. 

An easy consequence of our former investigations is 

Proposition 4. If 91 is a regular state and t is a non-negative number, then the 
number of arcs of 9t equals to the number of arcs of 9l[ + ?]. 

Let us fix a vertex P ; , let us consider the sequence 

( 2 ) P¡> P i + (k + l)> P ¡ + 2(k + l)> ^ ¡ + 3(l[ + l)> •••) P i - { k +1) 

consisting of g/(k + 1 ) (distinct) vertices and the sequence 

( 3 ) Pi + ll •Pf+(*-t-l) + l> Pi + 2(k + l) + l> J?i+3(fe + l ) + l5 •••! + 

which consists likewise of g/(A: + l) vertices. Either n,k+ 1 are relatively prime 
to each other (thus g = n(k + 1 ) and both of (2), (3) contain all the vertices) or 
(2), (3) are disjoint.4 Let us define the instants vh and wh by 

vh = * (/'-/?,+(A-I)(*+D) and wh = x (A-/? i + ( »_ 1 ) № + 1 ) + 1 ) 

(where h can be 1,2, . . . , g/(k +1)). This definition implies immediately 

Lemma 1. For any h, 

x(h — 1) S ct ë tA and x(h — \) ^ wh S xh. 

Lemma 2. For any h we have one of the three possibilities 

(aj) vh < wh 

(a2) vh = wh = xh 

(a3) wh = r(h — 1) and vh = xh 

(according as 

(bx) P i + 

(kg) Pi + (h-l)(k + l) — Pi + (h-l)(k + l) + l = 0 

(^3) Pi+(h-l)(k + l) = 0, Pi+(h-l)(k + l) + l = !)• 

4 For, if (2), (3) contain a vertex in common, then some multiple of k+1 is congruent to 1 m o -
dulo it, hence n and k+1 are relatively primes. 

3 Acta Cybernetica 
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Proof. The equivalence of (a,) and (b,) can be shown easily (for all the three 
values of /), the proof is completed by the remark either (bj) or (b.,) or (b3) is true 
since the state is regular. 

Lemma 3. If vh_1<wh_l and vh < wh for some / ; ( ^ 2), then either wh _, = vh = 
= x(h — 1) or < vh-r. 

Proof. The supposition implies 

Pi + (h - 2)(t + 1) > Pi + (ft - 2)(t +1) +1 > 

Pi + (A - IX* + 1) > Pi+ (* - 1)(* + !) +1 • 

The sequence (consisting of k + 1 numbers) 

( 4 ) Pi + (A-2)(t + l ) + l> "/+ (ft — 2)(& +1) + 2 s Pi + ((i-2)(k+l)+3> •••> Pi + (ft-l)(fc + l) 

is monotonically decreasing unless /?;+{/._1)(ifc + 1) = I (by the regularity of the state), 
thus we can distinguish two cases. 

Case 1: (4) is monotonically decreasing. Then the number 

Pi + (h-2)(k + l) + l — Pi + (h-l)(k + l ) { = (vh — r — W„-i)/r) 

is positive, hence w,,.! < vh — x. 

Case 2: l i ( fc+1) = 1. Then, on the one hand, vh = r(h—l); on the other 
hand, A+(/,-2)(* + i)+i = 0, this implies wh_1 = t ( / j - 1 ) . 

By use of the numbers vh, wh we can explicitly characterize the behaviour of a ; 
in the interval [0, gx/(k + 1)): 

Proposition 5. Let us consider a regular state at the instant 0. The function at, 
assigned to a vertex Pn satisfies the following four assertions: 

(A) If (l S h ^ g/(k+ l) and) vh<wh, then is constantly 1 in the interval 
K . ".'J.5 

(B) If (2 S h S g/(k + 1) and) w h w h , then arrows linearly in the inter-
val [v^ — t , vh] from 0 to 1. 

(C) If < Wj, then <xi grows linearly in the interval [0, u j from 1 — vjx to 1. 
(D) The value of a,- is 0 at all the instants of the interval [0, gxj(k + 1)) which 

are not referred to in (A), (B) and (C). 

Proof. Let an instant t lying in [0, gx/(k+\)) be considered. There exists a 
number h such that x(h — 1) S t -c T/I (where 1 S /; ^ g/(k -f-1)). By using Pro-
position 1 successively, h — 1 times (with t — x, t — 2t, t — 3T, ..., t — x(h — l) instead 
of 0), we get 

<*;(0 = ai + (t + i ) 0 - T ) = <*i + 2(* + i ) ( ' -2T) = ••• 
a i + (ft_2)(k + 1 ) ( / - t ( A - 2 ) ) = cci+ih^m + 1)(t-x(h- 1)), 

i.e. the behaviour of af in the interval [x(h — 1), xh) is the same as the behaviour of 
a i + ( h _ 1 ) ( t + 1 ) in [0, t ) (with the appropriate translation). 

5 Since wh = + 1 may occur, two or more intervals of this character can be joined. 
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First we show (A). The function a i + ( h _ i ) ( k + 1) takes the value 1 exactly in the 
sub-interval 

[ t ( l — Pi + (h-l)(k + l))> T 0 ~ Pi + (h-l)(k + l) + l)) 

of [0, t) by Cases 1/a, 1/b, 1/c, 3/a, 3/b, 3/c of the discussion in § 2 (even if at least 
one of 

Pi + (h-l)(k-H) = 1> + (/i-l)(t + l) + l = 0 
is true). 

In order to verify (B), let /( —T) be such an instant that a¡(t) = 1 but, for every 
positives, there exists a t* fulfilling a ; ( i * ) < l and t — a Thena i + ( h _ 2 ) ( t + 1) 
has the analogous property at the instant t — (h — 2), and T S t — x(h — 2) < 2x. 
By analyzing the discussion and by Proposition 1, we get that a;+ ( / l_2 ) № + 1 ) grows 
linearly in [f — r(/r — 1), t — x(h — 2)] from 0 to 1, consequently a ; behaves in [t — x, t] 
analogously. 

(C) follows from the discussion immediately. 
(D) is equivalent to the subsequent statement: any function a,- is 0 at t unless 

t is contained in an interval (t', f ' + t] such that a ;(i'-|-T) = 1. This statement fol-
lows easily from the discussion and Proposition 1 in the interval [0, 2r], it can be 
extended for any non-negative t by Proposition 1. 

The last assertion we state relying upon § 2 is the evident 
Proposition 6. The following three statements are equivalent for a regular state: 
(A) The state is steady. 
(B) Every arc of the state consists of exactly k + 1 vertices. 
(C) k + I is a divisor of n and the number of arcs in the state is n/(k + 1). 

§ 4. Study of non-regular states 

The purpose of this paragraph is to show that only the regular states are cyclic. 
First we define the irregularity indices of an arbitrary permitted state6 91 by the fol-
lowing three rules: 

(i) if /? ; - !</? ;< 1, then / is an irregularity index, 
(ii) if /?,_! = /?;>(), then i is an irregularity index, 

(iii) if /?,-i = /?; = 0 and each of /?I + 1 , i?i+2> is < 1 , then i is an irre-
gularity index. 

(The conditions in (i), (ii), (iii) exclude each other.) We agree that no remain-
ing number (out of the set {1 ,2 , . . . ,«}) is an irregularity index. The irregu-
larity number of the state 21 is the number of its irregularity indices. 

If (i) or (iii) holds for i, then i is called a strong irregularity index, the number 
of strong irregularity indices is the strong irregularity number of 21. If (ii) holds for i 
then we call i a weak irregularity index. 

Lemma 4. The irregularity number of 91 is 0 if and only if 2Í is a regular state. 

Proof. It is obvious that the definition of the regular state does not admit 
any of the possibilities (i), (ii), (iii). — Conversely, assume that no vertex fulfilling 

6 A state is permitted if a, = l , Pjíz(P¡) imply a.j = 0. 

y 
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the condition of either (i) or (ii) or (iii) occurs in 91; let Pt be an arbitrary vertex. 
If ft = 1, then 

Pi-k = Pi-k + 1 = Pi-k + 2 = ••• = P i - 1 = 0 

(since the state is permitted). If 0 1 , then (since otherwise (i) or (ii) 
would be violated). If /?,-'= 0, then either one of Pi+1, P-, + o, • ••, Pi+k is 1 or 
(in consequence of (iii)). Thus 9i is a regular state. 

Lemma 5. Let 91 be a state at the instant 0 and t be a positive instant such that 
the functioning of the network is defined (at least) in the interval [0, /]. If i is not a 
strong irregularity index at 0, then i is a strong irregularity index nor at t. 

Proof. Let t* be the (possibly non-existing) least real number such that 0 S t* ^ t 
and none of a, + i, a,+2, • ••, a i+fc takes the value 1 in the interval [t*, Either t* = 0 
or there exists a number q such that 1 ^qSk and to every positive e there exists a 
t' satisfying both t*—s < t' < t* and ai+q(t')= 1. 

Case 1: t* > 0 and q<k. We have 

« , - ! ( ' * ) = « . ( ' * ) = 0 , 

the functions a ,_i , a,- are equal and increase linearly in the whole interval [/*, i] 
from 0 to (t — t*)/T. (Necessarily / — / * < T; if the contrary were true, we should 
get a contradiction to the hypothesis that the functioning is defined in [0, r].) 

Case 2: t* > 0 and q = k. We have 

« • _ ! ( * * ) S « , ( / * ) = 0 . 
Three subcases are possible: 

Case 2/a: ai_1(t*)=0. This subcase can be treated similarly to Case 1. 
Case 2/b: a,•_!(/*)>() and t — t* < r. Then at increases linearly in the whole 

interval [i*, t] from 0 to (t — t*)/x. ai-1 increases linearly from 

* i / n t n f a ' - l ( i * ) + ( / - i * ) / T i n i f + 
' - l U ; i 0 l l in [ / * , i * + T ( l - « , _ ! ( / * ) ) ] if a,-x(.t*)Ht-t*)lT>1. 

In the second of these cases a , . ! is constantly 1 in [/* + T(1 — t ] . 

Case 3: t* = 0 and /?, _ x > f t . Let us assume that t is so large that all the inter-
vals to be discussed are in [0, /]. (If this assumption is not fulfilled, then the sub-
sequent discussion is altered so that it breaks off at the instant t.) In the interval 
[0, t (1 — j?;_i)] both a i _ 1 and af increase linearly. In [r(l — ft_i), r( l — ft)) a ^ is 
constantly 1 and a ; increases linearly. In [r(l — ft), f] a i s constantly 1 and is 
constantly 0. 

Case 4: t* — 0 and /?,-!=/?,. Then ? < r , furthermore ai_1, a,- are equal and 
increase from 0 to t/x similarly as in Case 1. 

Case 5: t* does not exist. Then there is at least one number q such that 1 S g g i 
and ai+q(t) = l, thus a,(i) = 0. i fulfils the conditions of neither (i) nor (iii) at t. 
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Lemma 6. If the strong irregularity number of a state 91 at the instant 0 is positive 
and the functioning of the network in the interval [0, t] is defined, then the strong 
irregularity number of the state 21 [ + T] is 0. 

Proof Let i be an arbitrary index. If i is not a strong irregularity index, then 
we can apply Lemma 5. Otherwise, let us define t* and q as in the proof of Lemma 5. 
If / * > 0 then Cases 1, 2 of the preceding proof remain valid; if t* does not exist, 
then the inference of Case 5 can be applied. We have still to study the cases when 
i* = 0 and i fulfils (i) or (iii). 

If (i) is true, then 

« M 1 - A ) ) = 1 and a ;- i(T(l —/?,)) = 0. 
i is not a strong irregularity index at T(1 — f}¡) consequently nor at T (by Lemma 5). 

If (iii) holds, then it is easy to see that the functioning of the graph is defined 
at most in the interval [0, T); this contradicts the supposition of Lemma 6. 

Lemma 7. Let 21 be a state at the instant 0 such that the strong irregularity number 
of 21 is 0. If the functioning of the network in the interval [0, T] is defined, then the 
irregularity number of 21 [ + T] is 0. 

Proof Whenever j is an arbitrary index and t' is an instant such that O S / ' ^ T , 
then j cannot be a strong irregularity index at t' (by Lemma 5). We shall study a 
function a¡ in [0, t]. Let us define t* and q in the same manner as at beginning of the 
proof of Lemma 5. 

Case 1: t* >0. Necessarily q — k (since now the value 1 "steps" from j to j+ 1, 
similarly to the case of a regular state, discussed in § 2). Hence <xi_1(t*)=-ai(t*)=0. 
In the interval 

0 V * + < 1 - 0 ^ 0 * ) ) ] 

a¡_ l5 a¡ increase parallel (i.e. <xi_1 — a.i remains constant). In the interval 

D * + T(1 - « , - ! ( / * ) ) , T] 

(provided that it exists) a,-^ is constantly 1 and a¡ continues its growth. 
Case 2: t*= 0. We distinguish two subcases. 
Case 2/a: Pi-1 = Pi. This assumption implies that the functioning of the net-

work is defined only in [0, r ( l — /?¡)), i.e. it contradicts the supposition of Lemma 7. 
Case 2/b: P¡- i>Pi- In the interval [0, x(l — j8,--i)], a¡-i and a¡ increase paral-

lel. In 
| > ( 1 - & - i ) , t ( 1 - / ? , ) ) 

a¡_! is constantly 1 and a¡ continues its growth. In [t(1 —P¡), r] a¡ is constantly 1 
and a ^ is constantly 0. 

Case 3: t* does not exist. We get a,(x) = 0 similarly to Case 5 of the proof of 
Lemma 5, hence i does not fulfil the condition of (ii). 

Proposition 7. If the state 21 (at the instant 0) is non-regular, then either T'max 
is defined for 21 and 0 < T'max < 2T or 2l[ + 2t] is regular.1 

' jfrá« was introduced in [2]. 
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Proof. Assume that the states 91 [ + i] are definable whenever The 
state 9I[ + T] cannot have a strong irregularity index (by Lemma 6), hence the state 
91[ + 2T] is regular (by Lemmas 7 and 4). 

Proposition 8. Any non-regular state is acyclic. 

Proof. Let 9Í be a non-regular state (at the instant 0). If the state 91[-H] is not 
definable for every positive t (i.e. if does exist), then 91 is obviously acyclic. 
Assume that 91 [-W] is defined for every t. Let 91 be cyclic and p be a period of it, 
we shall get a contradiction. Let d be the least integer such that dp^2x holds. On 
the one hand, 

91 = 91 [ +p] = 91 [ + 2p] = • • =91 [ + dp], 

thus 9Í [ + <//>] is non-regular. On the other hand, 9I[ + 2r] is regular by Proposition 7, 
hence also 9l[ + i/p] is regular by Proposition 3. 

§ 5. On some possibilities for future researches 

Let us consider a graph. Denote by A the set of its permitted states (i.e. all 
the mappings of the vertex set into the interval [0, 1] such that the restriction mentioned 
in Footnote 6 is satisfied), by Ar(czA) the set of its regular states. We define two 
partitions 7r1; 7To of A and a further partition 7r3 of Ar in the following manner: 

9t(C^4), 9I'(£/1) are in a common class mod n1 if there exists an integer s such 
that 0 ^ s ^ n - 1 and 

a l = a i + s> a 2 = a 2+s> •••) a n - l = a s - l J a / | — a s 

where 91 = (o^, a2, ..., a„>, 91' = {<*[, a2, ..., a„). 
91(6^), 9l ' (6/l) are in a common class mod n2 if the inequalities oc;<o(j and 

a-<0!j are equivalent to each other for every index pair i,j. 
91 (£A r), 9I ' (6^ r ) are in a common class mod n3 if there exists a non-negative 

real number t such that 9f[ + / ] = 9 t ' . 
The partitions and n2 generate a sublattice of the lattice of all partitions of 

A; similarly, 7i1; 7r2 and tt3 generate a sublattice in the partition lattice of Ar. Various 
questions (concerning both the lattice-theoretical properties and numerical problems) 
can be raised on the lattices generated in this manner. 

Finally, we mention a problem of this character. Let Ah be the set of the states 
9l = («j, a2 , ..., a„) fulfilling the three requirements: 

(i) a,- = 1 holds for exactly one index i, 
(ii) the state is permitted, 

(iii) whenever / and / ' are two indices such that 1 {PiJU^iP,), 
$ {PjUxCF,), then the inequalities 0 - c a j < I , 0 < a , ' < l , hold. 

It is easy to see that a randomly chosen element 9I' = (ai, a2, . . . , a n ) of A 
satisfies 9t ' [- t-t]£Ah with probability 1 where t = r ( l — max (a^, a2, ...,a'nj). 

Let us consider the graphs G(3; 2), G(4; 3), G(5; 4), . . . , G(n; n — 1), ... . Start-
ing with the general member G(n; n — 1) of this sequence, we denote by Q„ the 
factor set Aj,n)ln2 where A¡,n) denotes the set Ah with respect to the graph G(n; n — 1.). 
Qn is a finite set. On the other hand, let us define the subsets Al"'x) of Ai,n) so that 
9f if and only if the regular state Vf[ + t] (with the least possible / ( = 0)) 
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(exists and) consists of x arcs (x ^ «/2). The sets A(
H

N'X) are pairwise disjoint (for 
varying x), moreover, %eAl">x), W (¿A(£>x'>, 2t = 2I' (mod TT2) imply x = x'. Let Q<x> 
be the subset of QN which consists of the classes whose elements are in A£",X). It is 
interesting to examine the asymptotical behaviour of the numerical function 

/ (» , x) = 
|fl.<">| Ifi.l 

1-12] 
(Evidently, ¿ f ( n , x ) S l . ) A discussion shows that the first values of / (« , x) are: 

/1 
X 2 3 4 5 6 

1 1 ! 1 1/2 1/6 1/24 

2 1/2 5/6 17/24 

3 1/4 

We conjecture tha t / (« , [(« —1)/2]) converges to 1 if n tends to the infinity. 
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