
On a minimization algorithm- for Boolean functions

B y F . MÓRICZ

1. Logical design of circuits with a single output, using solid-state integrated
circuits, as primitive elements, leads to several non-traditional optimization problems
which require to find, for any given Boolean function, a formula (or all formulas);
composed from fixed Boolean functions as primitive elements, representing the given
function and minimal with respect to a given objective function.

In this note our purpose is to present an algorithm which (provided the objective
function satisfies a simple restriction) obviously leads to the exact solution of the
problem and, moreover, a limited number of its steps which can be implemented
on a digital computer delivers a fairly good approximative solution. (Of course,
the approximation will be the better the more steps are performed and thus a larger
computer may provide a better approximation.)

In view of the general nature of the problem, the algorithm will be formulated
here in a very general and comprehensive way which, for each practical application,
must be specified in accordance with the given particular primitive elements and
objective function. ,

2. Assume 0= {Sj, 92, ...} is a functionally complete system1 of a finite number
of Boolean functions, or in other words, of logical operations in a general sense
where the number of operands of each operation, i.e. the number of arguments of
each function can be arbitrary. Let X={x1,x2, ...} be the (countable) set of
the available Boolean variables. (In an actual realization of the algorithm to be
formulated we have, of course, to limit ourselves to a finite set of variables.)

The formulas considered here are all those composed of the constants 0 (falsity)
and 1 (truth) and of the given Boolean variables by means of operations belonging
to 0 . ? We say .that two formulas, F a n d G, are identically equal or that the equality
F=G is an identity if for every Valuation their values coincide; here by valuation
we mean a mapping which makes correspond to each of the variables belonging to
A'one of the constans 0 and 1.

A substitution instance of a formula F is, by definition, any formula that can
be obtained by replacing.all occurrences in F of some variables, say xh, .••,xir
(i\, ...,ir are different positive integers), by an equal number of formulas, say

1 See, e.g., A. Ádám [1], Chapter 4.
2 In other words, the following symbol strings are called formulas: (i) 0 and 1; (ii) any element

of X; (iii) 3(Fj,... Fr) where 3 € 0 is a Boolean function with r variables and F1,...,Fr are formulas;
(iv) nothing else.

98 F. Móricz

Hl,...,Hr, respectively; for the formula thus obtained we introduce the notation:

F(Xii: = Hi;...-,xir: = Hr).

Here the variables .v(l, . . . , xir and formulas Hl, ...,Hr are called substituends and
substituents, respectively. Analogously, by a substitution instance of an identity
F=G we mean any equality of the form

F(xh: = Hi,...; = Ht) = C(xu: = / / , ; . . . ; = Hr),

which is easily shown to be also an identity.
Consider now a formula F and an identity G = H the left-hand side G of which

is a (proper or non-proper) subformula of F. For each occurrence of G in F decide
independently whether it is to be left unchanged or replaced by H and proceed ac-
cordingly.. Any of the formulas that can be obtained in this way are said to arise
from F by a direct application of the identity G = H; the number of such formulas
is 2s, where s denotes the number of occurrences of G in F. If the formula F is left
untouched we speak of a trivial direct application. If G is not a subformula of F
then the only possible direct application is the trivial one.

The formula F' is said to be obtained from F by an application of the identity
G = H if F' arises from- F by a direct application of some substitution instance of the
identity G = H. Analogously as above, calling an application trivial if it leaves F
untouched, in case G has no substitution instance that is a subformula of F the
only possible application of the identity G = H is the trivial one.

We note that the minimization problem mentioned above has been studied
in detail so far mainly in the case of the classical propositional calculus, i.e. when
0 = {S1>92, 93}, where 9I(*I ,x2) — *IAx2 , 92(x1 ; x2) = x ^ x ^ and 93(x1) = x1 (ne-
gation). For practical applications also important is the case when consists of ShefTer's
alternative or Peirce's joint denial only3, or of some of their generalizations for sev-
eral variables, known as N A N D and NOR elements.

3. Let c(F) be a mapping from formulas to real numbers. We call the number
c(F) the weight of the formula F. An identity G = H is said to be weight-reducing if:

c(G)>c(H).

We shall assume that c(F) satisfies the following requirement, which in most
cases of practical application does indeed hold:

If the formula F' is obtained from F by anon-trivial direct application
of a weight-reducing identity then we have

c (F ') < c (F) .

This condition ensures that the direct application to a formula of a weight-
reducing identity is always efficient in the sense that it reduces the weight of this
formula. Some care must be taken, however, in connection with non-direct applica-

3 See the classical papers of C. S. Peirce [2] and H. M, S heffer [3].

Minimization algorithm for Boolean functions 99

tions since the analogous assertion is not necessarily true for them even in the most
simple cases occurring in practice.4

In most cases that are practically important, the meaning of the weight function
c(F), playing the role of an objective function to be minimized, is either'the length
of the formula F,5 or the cost involved in its technical realization under specified
circumstances.

4. After these preliminaries the minimization problem can be formulated
precisely as follows: Assume that we are given a functionally complete system
0 = {$!, •••} of a finite number of Boolean functions, a countable set X =
= {xl5 x2 , ...} of Boolean variables, and an objective function c(F), satisfying prop-
erty (-£), defined for all formulas that can be composed by means of the given
primitive elements. For a given Boolean function, represented by a formula' F,
consider the set J2r = # ' (F) = {Fj, F2, ...} of all formulas identical to F. Any formula
Fio, belonging to J*, such that

holds for all formulas Ft £ SF, is said to be a minimal representation of F. (In general,-
there exist several such formulas Fio.) An algorithm which, for any given formula .
F, selects a minimal representation of F is called a minimization procedure.

5. Now we have reached the stage where we-can outline the ideas on. which
our minimization procedure is based. ^

(1) Enter the formula F given as input datum, possibly in a converted form
suitable for the computer, on a list called the "list of formulas to be minimized".

(2) For any formula G newly entered on the list of formulas to be minimized,
form all its subformulas, and then all those formulas H that have at least one sub-'
stitution instance which is a subformula of G, and, finally, enter on a list called the
"list of the left-hand sides of applicable identities" all those of these formulas H that
do not yet occur there.

(3) For any formula H newly entered on the list of the left-hand sides of appli-
cable identities, generate all formulas K having a weight less than H has. For each
of these formulas K check whether it is identically equal to H\ if yes then enter the
identity H = K on a list called the "list of applicable identities".

(4) Apply directly to every formula occurring on the list of formulas to be
minimized all (weight-reducing) identities newly recorded on the list of applicable
identities and also all those substitution instances of these identities that are weight-

4 E.g. in case of the classical propositional calculus, taking the total number, of occurrences
of variables in the formula F as c(F)> •

. Xi A I , A Xt A X2 = XL A X2 A X2

is obviously a weight-reducing identity, but its substitution instance

XI A X-J A A 0"3 A X, A X5) = x t A (x3 A X4 A X5) A (x3 A X4 A X6)
is not.

5 There are many different weight functions called the lenght of a formula, e.g. those defined
as the number of occurrences of variables or as the number of occurrences of variables and function
symbols, etc. in the formula in question.

100 F. Móricz

reducing.6 Add those of the resulting formulas which are not yet contained in the list
of formulas to be minimized to this list.

If the list of formulas to be minimized is not enlarged in step (4) then the al-
gorithm is concluded by printing out one of the formulas with minimal weight occur-
ring on this list; otherwise it continues at (2) again.

6. It is easy to see that our algorithm finally leads to an exact solution of the
minimization problem formulated above. Indeed, if M is a minimal representation
of the formula /"given as input datum then F=M is an identity.

If M has smaller .weight than F has, i.e. the identity F=M is weight-reducing,
then it will sooner or later occur on the list of applicable identities, for F, as a sub-
formula of itself, is to be. found on the list of the left-hand sides of applicable identities.
Then, by a direct application of the identity F=M to F, we obtain M as a formula
to be added to the list of formulas to be minimized. Hence, finally, either M or
another formula of the same weight will be printed.

If, however, the weight of M equals thai of /"then F is already itself of minimal
weight. Each of the generated weight-reducing identities can be applied to F only
trivially, and thus the algorithm concludes after the first performance of step (4),
and the only formula on the list of formulas to be minimized will be F, as a minimal
representation of itself.

We emphasize that each of the formulas on the list of formulas to be mini-
mized (among others F itself) has to stay on this list even if a formula identically
equal to it of smaller weight is added to this list. Otherwise the application of a weight-
reducing identity might impede later, possibly more advantageous, application of
another such identity.

In practice, storage capacity or available running time limitations might prevent
the continuation of the algorithm until its conclusion. If one is forced to'interrupt
the algorithm, we propose to print out one of the formulas with minimal weight
from the list of formulas to be minimized.as an approximative solution.

7. It is expedient to give the input formula of the algorithm in the so-called
Lukasiewicz bracket-free notation (shortly ¿-notation; also known as Polish no-
tation), or to convert it into that form by a supplementary algorithm.7 The ¿-notation
considerably simplifies the performing the algorithm.

Among others, if the formulas are written in ¿-notation, it is relatively easy
to construct, by making use of the so-called push down store,8 the sub-algorithms
for the following tasks:

6 In view of condition (*) , a non-trivial direct application of a weight-reducing identity
always reduces the weight of the formula in question, but in case of a. non-direct application, as
we already noted, it might happen that some substitution instance of a weight-reducing identity

»is not weight-reducing (see footnote4).
In principle, a direct application of all identities newly recorded on the list of applicable iden-

tities to every formula occurring on the list of formulas to be minimized would suffice. However,
disregarding the weight-reducing substitution instances of these identities would lenghten our
algorithm to such an extent that it were not practically feasible any more.

' See J. Lukasiewicz and A. Tarski [4], pp. 30—50. As for a simple.proof of the unambiguous-
character of this notational system see, e.g., L. Kalmár [5], pp. 11—15.

8 See F. L. Bauer and K. Samelson [6].

Minimization algorithm for Boolean functions 101

(i) Elimination of the Boolean constants from a given formula;
(ii) Production, for a given formula G, of all formulas that have at least one

substitution instance which is a subformula of G;
(iii) Determination of the truth-value of a given formula for a given valuation

of the variables occurring in it and, by repetitions of this sub-algorithm, the decision
of the question whether two formulas are identically equal or not;

(iv) Application of an identity to a given formula.

8. As for the implementation of the algorithm on a computer, the most delicate
part is (3), since it requires producing, given a formula H, all formulas K that have
a smaller weight than H has. This part can perhaps most easily be realized in practice
by splitting it into two.steps:

(v) Production of all formula types of given weight. A formula type associated
with a given formula containing no Boolean constants can be obtained, by definition,
by replacing all Boolean variables occurring in this formula by a common one, x
(without subscript), say.

R, ' ft
(vi) Production of all the formulas of a given type containing variables from

a given set only, e.g. that of the variables occurring in the input formula.
Empirical evidence (in cases that are practically most important) shows that

weight-reducing identities with a smaller weight on the left-hand side, when applied,
are more efficient than those with a left-hand side having a greater weight. There-
fore it is advisable to apply the former ones first.

Hence, it is appropriate to generate and store the formulas in order of increasing
weight. Thereby, the algorithm, even if it is interrupted, delivers a well approximat-
ing solution. -

9. In the above version of the algorithm its run is controlled by the formula
F to be minimized, at least in the sense that»only those weight-reducing identities
are produced which are non-trivially directly applicable to F or to another formula,
arisen from F, occurring on the list of formulas to be minimized. In this of the
way a great deal of computing time and storage room may be spared if we have only
one formula to minimize.

If, however, we want to minimize several formulas, the above way might be
disadvantageous. Indeed, in this case the algorithm produces, separately for each
of the formulas to be minimized, all formulas, built up from the available stock
of variables, that have smaller weights than those occurring on the list of the left-hand
sides of applicable identities have. This might result in a very redundant repetition
in the production of formulas.

An alternative version of the algorithm consists, e.g. in case only positive in-
tegers occur as weights, in generating and tabulating a "complete system of independent
weight-reducing identities" up to a given ceiling for their left-hand side. In more
detail, this version produces a set Sit of weight-reducing identities such that

(a) Any weight-reducing identity such that the weight of its left-hand .side
does not exceed the given ceiling can be obtained, and therefore its direct applica-
tions can be replaced, by a finite number of direct applications of identities which
either belong to 9Jt or are weight-reducing substitution instances of identities belong-
ing to 9)1;

(P) 9W is minimal in the sense that no identity belonging to 9J? can be obtained

102 F. Móricz

by a finite number of direct applications of either other identities in 9)1 or such sub-
stitution instances of these as are weight-reducing.

This variant of the algorithm is advantageous if we have to minimize a large
number of formulas, since it requires to draw up the above chart of weight-reducing
identities together with all their appropriate substitution instances only once, and
then we have only to attempt to apply directly the identities in this chart to the
formulas to be minimized. Nevertheless, we have to take into consideration that
generating and tabulating the chart in question might require an enormous storage
capacity.

10. Another variant of our algorithm consists in that besides the weight-reduc-
ing identities we admit such ones as leave the weights of their left-hand sides un-
changed. More precisely, for every formula on the list of the left-hand sides of appli-
cable identities we generate all the identities H = K such that the weight of K does
not exceed that of H\ and then we apply any such substitution instance of each of
these as are not weigh-augmenting to all formulas on the list of formulas to
be minimized. (See especially steps (3) and (4) of the algorithm described above.)

For example, in case of classical propositional calculus with the weight of a
formula meaning its length (see footnote5), this variant of our algorithm enables
us to make use of the associative and commutative laws of conjunction and disjunc-
tion; these identities obviously do not change the length of a formula, but they may
prepare for the application of another, strictly weight-reducing, identity9.

Using this version of the algorithm we may, possibly, arrive at a minimal rep-
resentation of the starting formula much quicker, though the price of this may be
a much larger storage capacity used up. In yet another possible variant of our al-
gorithm, for which the remarks made just now apply still more strongly, we may
allow the application of certain weight-augmenting identities as well; e.g., in case
of the classical propositional calciilu! the use of distributive law in the direction
C V 1 V . V 2) A , V 3 = (X 1 A J C 3) V (X 2 A J R 3) may sometimes prove useful by preparing the way
for the application of a powerful weight-reducing identity.10

RESEARCH GROUP ON MATHEMATICAL LOGIC
A N D THEORY OF AUTOMATA OF THE
HUNGARIAN ACADEMY OF SCIENCES,
SOMOGYI BELA U . 7 ,
SZEGED, H U N G A R Y .

• The situation is illustrated by the following simple example, for which the author is indebted
to an oral communication of G. Specker:

(. . . ((*! V x2)V x3)...\'x,l)vxl = (... (((*! V *,) V xs) Vx3)... V .r„ _,) V .v„ =

= (. . . ((*, V x„) V x3)... V .v„ . ,) V x„.
10 The following example may serve as an illustration:

((X, V X2) A -ÏJ) V X2 = (X, A .V3) V (X2 A X3) V = (AT, A JV3) V XO .

Minimization algorithm for Boolean functions 103

References

[1] ÁDÁM, A., Truth functions and the problem of their realization by two-terminal graphs, Akadémiai
Kiadó, Budapest, 1968..

[2] PEIRCE, C. S., A Boolian algebra with one constant (c. 1880), Collected papers IV., pp. 13—18.
[3] SHEFFER, H. M., A set of five independent postulates for Boolean algebras with application

to logical constants, Trans. Amer. Math. Soc., v. 14, 1913, pp. 481—488.
[4] LUKASIEWICZ J. & A. TARSKI, Untersuchungen über den Aussagenkalkül, Sprawozdania

zposiedzén Towarzystwa Naukowego Warszawskiegó, Wydz. I l l , 23, 1930.
[5] KALMÁR, L., Another proof of the Markov-Post theorem, Acta Math. Acad. Sci. Hung., v. 3,

1952, pp. 1—27.
[6] BAUER, F. L. & K. SAMELSON, Sequential formula translation, Comm. ACM, v. 3, 1960, pp.76—83;

addendum ón p. 351.

(Received March 31, 1970; Section 10 added May S, 1970)

