On theSeinigrbup of automaton mappings
‘with finite alphabet

By P. D6M3sI

- Let F(X) denote the free semigroup generated by a (non-empty) finite set X,
and consider the set K, of all automaton mappmgs of F(X) into itself. It has been
shown (see [4] and [6]) that K, is a semigroup under the usual multlphcatlon of
mappings. It is also kndwn that the subgroup A, consisting of all one-to-one mappings
from K, has cardinality of continuum prowded X has at least two elements (see
[1D. ThlS implies that neither 4, nor K, has any finite generating system.

Let G, and L, denote the group and semigroup, respectively, of all automaton
mappings of F(X) into itself induced by finite automata (see [4] and [6]). It has -
been proved in [2] that G, and L, have no finite generating system (except for the
trivial case). In this paper we show that neither K, nor L, has any minimal generat-
ing system provided X has more than one element. Tt is an unsolved problem whether
A, and G, have any minimal generating system.

Before proving our statement, we introduce some notions and notations.

First of all we. assume that. F(X) has the identity element e. By the length |p|
of a word p¢ F(X) we mean the number of all occurences of elements from X.
(Thus |e|=0.) We say that a word ¢ is an initial part of p if there exists an r € F(X)
such that gr=p, this situation is denoted by ¢S p. If ¢ is & proper initial part of p, -
ie. ¢Sp and |g|<|p| then we use the notation q<p.

Take two non-empty sets X and Y. A mapping ¢ of F(X) into F (Y) is called
automaton mapping if for. any pe F(X ), lp|=lo(p)| and ¢ (pq)=¢(p)r hold where r
is a suitable word in F(X) (see [3]). It is well-known that every automaton mapping
can be induced by automaton and conversely.

Consider an arbitrary automaton mapping ¢: F(X)—~ F(Y) and let pPEF(X).
If for a g € F(X), (p(pq) ¢ (p)r hold then let us denote this r by ¢,(q). Let 1# F(X)—~
—~F(Y) be a mapping for which ¥ (¢9)=9,(g) (g€ F(X)) holds. Th1s @, is called a
state of ¢ induced by p. It should be noted that every state of an automaton mapping
is an automaton mapping.

We say that ¢: F(X) -~ F(Y) is an automaton mapping with finite alphabet if
¢ is.an automaton mapping and X and Y are finite. An automaton mapping with
finite alphabet is finite if it has finitely many different states. It is known from [3]
that an automaton mapping is finite if and only if it can be induced by a finite auto-
maton. Thus the semigroup L, consists of all finite automaton mappings.

Let X be an arbitrary non-empty finite set and consider the semigroup X, of
all automaton mappings of F(X) into itself. Take ¢ € K, and let I(¢) denote the
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set of all p € F(X) for which there exist x;, x, € X with x, # x, such that ¢, (x;) = ¢, (x,).

Consider the set J(¢) of all words p from I(p) whose each proper initial part-¢q .

satisfies the condition g ¢ I(¢). If e € I(¢p) then let J(p)={e).
The following holds.

Lemma. If p ¢ J(¢™) and 9™ (p) § J(¢®) then p ¢ J(p® (p‘”) for any o™, o® ¢
€K, and p€ F(X).

Proof. By the definition of I(g), it can easily be seen that p€I(p™ ¢®) if and
only if pcI(pW) or eM(p) € I(¢®). Therefore, if p¢I(e™) and oM (p)¢I(p?®)
then p § I(pWe®),i.e. in this case our Lemma is valid because J(@P o®@) S [(pMep®@).

Assume that p€I(pV)\J(¢™). Then, by the definition of J(¢), p has a
proper initial part g such that g€ I(¢W). Therefore, q¢ I{(pW @), i.e. taking into
consideration g < p, we get p ¢ J (oM ¢®),

It remains to be shown that our Lemma is valid in the case of (p(l) (p) € I(e®)\
\J(@®). Let rc ¢®(p) denote a proper initial part of ¢ (p) for which r¢ I(¢®).
(By the definitions of J(¢®) and I(¢?) there exists such r.) Thus there exists a
proper initial part g of p such that ¢ (g)=r. Therefore, by ¢ (q)€I(¢®) we
have g€ I(e® @), Since g p this means that p ¢ J(p® ¢(2’) which completes the
proof of the Lemma. :

We have the following

Theorem. If X is a finite set having at least two elements then neither K, nor L,
has any minimal generating system.

Proof. Let K be a generating system of K, or L,. First we show the existence
of a ¢ € K for which J(¢) has at least two elements.

Let L denote the set of all elements ¢ from K for which J(¢) has only one
element. Take arbitrary elements o, @@, ..., o™ ¢ L. Using our Lemma it can be
proved by induction that J(o® ¢®... ™) has at most n elements.

Let x; € X be fixed. We define a mapping y € L, as follows:

x if peF{(x)),
x;-otherwise.

. l//,,(X)={
Since J(i) is infinite thus y cannot be given as a product of mappings from L.
Therefore, K\ L is not empty, i.e. there exists a ¢ € K such that J(¢p) has at least
two elements. _
Let py, po€J(¢p) different words such that

lp1|=min lg} and |p|= min |q|. O
q€d q€J(@\(ry)

Take two mappings o@, (p(2) from K, defined as follows. For any p€ F(X) and.
x€X, let

o®
()= {x-otherwise- @
and
x if Cp,
0P ()= { =P 3
_ @,(x)-otherwise.
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Let us show that a) We®=¢, b) ¢® and ¢® can be given -as products
of elements from K\(¢) and ¢) if ¢ € L, then ¢ and ¢ are in L,.
To prove our theorem by the choice of ¢, it is enough to show that a)—c) are
valid.’
By the deﬁnmon of automaton mappings it is obv1ous that a) holds.
In order to prove b) it is enough to show that whenever ¢ is among g™; Q(2>
., 0 (€K) then gMo® . o™ ({((p(” @®). In .other words for any pair YO,

(e K, ,
. YD @ = M ' . 4
an . - .
: YD QY@ 52 @, . (5)

By (1), for each word g(€ F(X)) with |¢|<|p,| we have q¢I(p). Thus, using

(2) and (3) we get g ¢ I(e®)UI(e®) provided |g|<|p,|- Therefore, if there exists -
a g€ F(X) with |g|<|p,| and g €I(y"' o) then (4) and (5) holds. If such ¢ does
not exist then for -arbitrary pEF(X ) Wlth |pl=1p.1| there is an re F(X ) such that

(p EX r —(P v
’ (F)or a g given Y € K., let us denote by I(k, {) the number of all elements from
1(y) of length k. Then, taking into consideration the fact that p € I(p™ ¢®) if and

only if pel(p®) or ®(p)€l(@®) we get 1(py), YP @) =1(Ipy); ¢). In the same -

way we get -
I(1pas l//‘”@l//(”)zl(lpll‘ . - (6)

By (3) it is obvious that p, ¢ I(¢®). On the other hand by (1), p; and p, are
in J(¢), i.e. p,Ep,. Thus, taking into consideration (2) we get 22§ 1(0W).

It |pi|=|p,| then I(|psl, @®), I(ps), 9®)<I(psl, @) because of py, ps
~ €J(p)(S1(¢)). This, by (6), means that I(py), ), 1(|psl, 9®)<I(|ps, w<1><o¢<2>)
Therefore, in this case (4) and (5) hold.

Let |py|<!p,!. Then, by (1) I(¢) has no word of length |p1| except for p;. Smce
p141(p®?) thus, by (3),.1 (pals 6®)=0, i.e. I(|ps} 9P)<I(prls 9). Therefore, by (6),
(5) holds in this case too.

We now show that (4) holds if | p]|< |ps]. As has been shown it can be assumed
that ¢ ¢ I(YD @y ®) if |q| < |p,| because in the opposite case (4) holds. Thus g ¢ I(y©)
holds as well, that is, for every word r€ F(X) of length less than or equal to [p,|
there exists a € F(X) such that Yy (¢)=r. Therefore, YO (p,) =p, implies Yy (s)=p,
for a suitable s€ F(X) with ssp,. In this case s€ I(/® o) because of p, € I(¢p).
On the other hand; by |p,|=|s| and (2), p,#s implies rQI(qo(‘)) from which (4)
follows.

. Now suppose that Y@ (p,)=p,. Let us write p, in the form p,=pr where p|=
=|p,|. We can assume that there exists a word g€ F(X) such that ¥ (g)=p (because,
as has been shown, in the opposite case (4) holds). Moreover, by (1), p, & p,, that
is, p#p,. Since Yy (p))=p, thus p=y® (p,). Thls by lP‘”(q)—p means that g#p; .
Therefore for arbitrary s€ F(X) we have o{(s)=s, ie. gs¢I(¢®™). Thus if for
py(=pr) there exists no word r; € F( (X) such that t,b(l)(rl) r then (4) holds, because-

" inthis case there is a word r; € F(X) with gr, € I(y® qnp@)) Now assume that ,/,(1) (r)= .

=r(r, € F(X)). Then gr, € I(y™ oy/®) because of p, € I(p). Therefore, (4) holds
Thus we have got that (4) and (5)-are valid in all possible cases, i.e. b) holds.

. 3



254 P. Domosi: Semigroup of automaton mappings

It remains to be shown that c) is valid. It is clear that the number of all states
of @p, is less than or equal to that of all states of ¢. Therefore, using (2) and (3) we
get that both ¢ and ¢® have finitely many different states. Thus ¢ € L, implies
oW, o< L . This completes the proof of our Theorem.
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