On some aspects of the algebraic description -
of automaton mappings

By A. Apim

Introduction

The present paper is devoted to studying the super-finite partitions of finitely
generated (non-commutative) free semigroups, i.e. such partitions C for which the
relation C= C* is satisfiable with a right-congruence C* of finite index. The importance
of super-finite partitions arises from the fact that they are in a natural one-to-one
correspondence with the automaton mappings realizable by finite automata.

_ The . (sufficiently constructive) description of the super-finite partitions seems
to be a difficult task. The present article is intended to make only the first steps
to this direction; consequently, the introduction of the concepts and the elucida-
tion of their easily accessible properties take up a remarkable size in the paper.

Chapter I contains a survey of the (more or less known) correspondences be-
tween automaton mappings and partitions of sémigroups (§§ 1—2); furthermore,
after summarizing the previous results on finite right-congruences published in [2] (§
3), the main purpose of the investigations is exposed (§ 4). L2

Chapters II, III explain certain suggestions in order to give a description of
the super-finite partitions of finitely generated free semigroups, and obtain some
results in this direction. These two chapters are independent of each other, the
same problem is attacked by two different methods in them. Especially, the results
of Chapter II give an answer to the following problem: determine all partitions C
of a finitely generated free semigroup F(X) such that C is no right-congruence and,
by forming the union of two classes modulo C, a previously given right-congruence
C* is obtained (any other classes mod C remain unchanged). In Chapter II1, the
critical pairs of a right-congruence of F(X ) are characterized.

1 The results exposed in § 1—2 are given with or without proof; in the latter case, we refer to
the paper [1] where related questions are treated.

2 We note that the basic correspondence, asserted in Proposmon 8, was firstly discovered by
Nerode [4], see also {3], [6].

1 Acta Cybernetica



2 A. Adam

1. The super-finite partitions and their fundamental properties

§1

As in [2], we denote by F(X) the free semigroup (non-commutative, with unit
element e) generated by the finite set X= {x®, x®, ..., x(}.3 The elements of F(X)
are called also words, the elements of X are called generators, too. The length I(p)
of a word p is the number of generators whose product equals to p. &;(p), B;(p) are
defined by '

p = Ki(p)-B;i(p), l(mi(P))= i(él(P))-

Evidently, 8, (;(p)) equals to the (/(p)—i)-th factor in the “product of generators”
representation of p (0=i<I(p)).

The index ind C of a partition C of F(X) is the number of classes modulo C.
We note that C,=C, implies ind C,=ind C,. If the index of C is ﬁnite, then we
say that C is a finite partition. The finite partitions form a sublattice £, of the lat-
tice of all partitions of F(X). A partmon C is called a rtght congr uence if the im-
plication

p=q (mod C) = px=gx (mod C)

is satlsﬁed for every p(€ F(X)), g( € F(X)), x(€X):

Let 2,(£ 2,) be the lattice of all finite right-congruences (i.e. all finite partmons
being right-congruences) of F(X).

We say that the lattice & possesses the upper finiteness property (abbreviated:
UFP) if to any C,(€2) the relation C,> C, is fulfilled only by a finite (possibly
_zero) number of elements C,( € £), £ has the lower infiniteness property (abbreviated :
LIP) if to any C,(€2) there exists a C,(€2) such that C,<C,. (Consequently,
there exists an infinity of C,’s with the desired character.) The lattices-£,, £, possess
clearly both UFP and LIP. )

Let C be a finite partition of F(X). We define the partitions N (C) and M, (C)
by the following rules. (see also [1]):

- let p=q (mod N(C)) be true exactly if p=¢ (mod C) and px=gx (mod C)

for each x (where p € F(X), g€ F(X), x€X),

let p=q (mod M, (C)) be true exactly if pr=gr (mod C) for each r (where p,
g, r are elements of F(X))

Ev1dently, N(C)=C and M,(C)=C. We use the shorter notation ER'(C) in-
stead of .

123 i

: R(NTR(...N(C)...)))
and let N*(C) denote C. »

For the (easy) proofs of the following Proposition 1 and Lemma 1, we refer
to [1] (see there the assertions (1.2), (1.3), (2.12), (2.13)).

Proposition 1. For any partition C of F(X), M,(C) is a right-congruence, more-
over, M, (C) is maximal among the right-congruences C* satisfying C*=C.

3 X and F(X) are always considered to be fixed.
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Lemma 1. For any C(€2L,) we have
ind R(C)=(ind C)"*+1

where n denotes the cardinality of X.
Lemma 2. W(CY=M,(C) holds for each i.

Proof. We use induction for 7. If i=0, then N°(C)=C=M,(C). Suppose
R(C)=M,(C), let p=g (mod M,(C)) be true for the words p and q. The right-
congruence property of ilJIl(C) 1mp11es px=gx (mod M, (C)) for each generator x;
we get

p=q (mod N(C)) and px=gx (mod N(C))

by the supposition. This means that p, ¢ are congruent modulo R(R(C))=R+1(C).

Proposition 2. The subsequent three assertions are equivalent for any partition
C of F(X):

() Cis a right-congruence,
(i) N(C)=C,
(iii) M (C)=C

. Proof. Our preceding considerations show that M, (C)=N(C)=C for each C.
- Suppose p=q (mod C) where C is a right-congruence. We get pr=gr (mod C)
for every word r (by successive application of the right-congruence property), thus
p=q (mod M, (C)), hence C=M,(C); this implies (ii) and (iii).
Assume that C is not a rlght -congruence. There exist two words P, q and a
generator x such that p=¢ (mod C) and px Z¢x (mod C). Hencep #g mod (ﬁt(C)),
thus M, (C)=N(C)<C, consequently (ii) and (iii) are not fulfilled.

Proposition 3. The following three conditions are equivalent for any finite partition
C of F(X):

(1) There exists a finite right-congruence C* such that C*=C.
(2) The right-congruence MM, (C) is finite.
(3) There exists an integer i(=0) such that N (C)= ‘R‘”(C)

The partitions (belongmg to €,) that satisfy the conditions posed in Proposi-
tion 3 are called super-finite partitions of F(X). This notion is of basic importance
in the paper. The set of super-finite partitions is denoted by £;; clearly, 2,22,28,.
We shall see that £, is a lattice, as well (Proposmon 4).

- Pr. oof of Proposition 3.

()=(2). If C*=C and C* is a right-congruence, then C*=%M,(C) by the
minimality stated in Proposition 1, thus the finiteness of C* implies the finiteness
of M, (C).

(2)=(3). We prove the assertion indirectly. If (3) does not hold, then

- C>N(C)>N(C)=>N(C)> ...,
hence
ind 9(C) = i+ind C.
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On the other hand, Lemma 2 implies
ind M, (C)=ind N(C)

for any i; consequently, M, (C) is of infinite index.
(3)=(). If (3) is true, then (C) is a right-congruence by Proposition 2.
A successive application of Lemma 1 shows that

ind 9¥(C)=(ind C)*+V,
therefore N!(C) belongs to L,, i.e. N(C) is a convenient C* in (1).
Remarks. The equality in (3) implies
M, (C)=N(C)=NHYC)=N+2(C)=...
— [1] contains a detailed treatment of the equivalence of (2) and (3).

Proposition 4. The set L, of super-finite partitions of F(X) is a sublattice of the
lattice of ail partitions of F(X'). The lattice £ possesses both the upper finiteness property
and the lower infiniteness property.

Proof. In order to verify the first assertion, we have to prove that C, € £; and
C, €8, imply C;NC,€8, and C,UC,€9,. There exist two elements Cf, C,* of £,
such that Cf=C, and C=C, (by Proposition 3, (1)). C¥ N C¥ belongs to £, (since

. £, is a lattice) and the relations

CiNCs =G NC, =C UG

are obviously valid. Hence (1) is true for C;NC, and C,UC;, too.
£, has the UFP because £, has; £, has the LIP since £, has.

§2

In this §, we treat the natural correspondence between the super-finite parti-
tions of F(X) and the finitely realizable automaton mappings of F(X).

The customary definition of automaton mapping is: an assignment §, defined
on F(X), into a free semigroup* F(Y) is called an automaton mapping (or sequential
Junction) if ’ ' ’

(1) 1(B(p))=I(p) for each p(€ F(X)) and

@ Ku(B®)=BF(Ru(p) for each p(€ F)—{e}).

An automaton mapping f is called to be proper if to-any y(¢Y) there exists a
p(€ F(X)) such that B,(B(p))=y. The next result.shows that the notion of proper
automaton mapping is not an essential restriction of the general concept.

Proposition 5. Let B be an automaton mapping of F(X) into F(Y). Define the
set Y,(S Y) by the following rule: y(€Y) belongs to Y, exactly if there exists a
p(€ F(X)) such that y occurs in the representation of B(p) as a product of elements
of Y (in other words: if there exist p and i such that y=%3,(K;(8(p))), 0=i<I1(B(p))).
Then B is a proper mapping of F(X) into F(Y,).

¢ X and Y are (not necessarily disjoint) finite sets.
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Proof: 1t is evident that the range of § is mcluded in F(Y;). Let y be an arbltrary
element of Y;. Then
y="3,(8:(8(p)))=B:(B(K:(p)))

where the first equality follows from the definition of ¥;, the second one from
property (2) defining the automaton mappings (applied successively i times). Thus
B is proper if it is viewed as a mapping into F(Y;). The proof is completed.

Let B be an automaton mapping. We assign to ﬁ a (finite) partition Cj of F X)
_ in the following way:

p=gq (mod Cp) if and only if 23 {(B(P))= %l(ﬂ(q))

Now we state an assertion expressing that C; is common for two mappmgs (deﬁned
on F(X)) precisely when they are isomorphic in a certain (natural) sense:

Proposition 6. Conszder two proper automaton mappings B and B’ where B maps
F(X) into F(Y) and B’ maps F(X) into F(Y’). The equality Cj=Cy holds if and
only if (|Y|=1Y’| and) there exists a one-to-one correspondence 1.between Y and Y'

such that
B, (K:(B'(p))=1(B.(K:(B (p))))

Jor every p(€ F(X)) and i (0<1<l(p))

: Proof. Suppose Cy=Cy.. Let the ass1gnment B of the factor set F(X )/Cﬂ into

Y be defined by B(p) 5!31(13 () where p is the class (modulo Cp) containing p.
B is clearly a one-to-one ass1gnment onto Y (since B was supposed to be a proper
mapping). B’ can be defined in an analogous manner (with C,, instead of C s)- D
may denote the class mod. Gy, as well. Introduce the mapping 1 by the formula

1(»)=F(B~1(»)). Then we have
B, (KB »(P))) = B,(f(R:(p)) = F(Rip) =
= 1(B(R:(p) = (B, (B(R:())) = L(BL(K:(B(D)))).

Conversely, assume that an "assignment 1 satisfies the condition and z=1(y)
(where y€ Y, z€Y’). Define the sets W/(S F(X)), WZ(SF(X)) by what follows:’

peW” " if and only if 931(ﬁ(P))-— »s

' » pPE€ wr i and only if B,(8(p)) =z~
" The equivalence

i B,(B()=y (% B (P)=) (B B@))=1 () (= Z)
assures W’= W”' This holds for each y and 1(y)=z, consequently Cﬂ—Cﬂ.

Proposmon 7. To any finite partition ‘C of F(X), there exists an automaton
mapping B (defined on F(X)) such that Cg=C.

"Proof. Let Y be a set such that |Y |=ind C and p be a one-to-one mapping
of the factor set F(X)/C onto Y. The mapping B of F(X) into F(Y) defined by

B(p) = 1(&e_1(P) - k(K2 (D)) - (R Z5(P)) - 1(R1(P)) - u(Re(P))

(where k=1(p)) satisfies the requirements. The proof is completed.
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The last statement of this § elucidates the close connection between super-
finite partitions and finitely realizable automaton mappings. By virtue of this con-
nection, a (sufficiently constructive) description of the super-finite partitions would
also mean a description of the mappings in question. For the definitions of finite
automaton (of Moore or Mealy type), the mapping realized (in another terminology:
induced) by an automaton, moreover for the proof of the following assertion, we
refer to [1] (especially, assertions (4.12) and (5. 11)) where these questions are dis-
cussed in details.

Proposition 8. The subsequent three conditions are equivalent Sfor an automaton
mapping B (defined on F(X)):

1) C; is a super-finite partition of F(X).
- ﬂ . . ..
(ii) There exists a finite Moore automaton realizing p.
iii) There exists a finite Mealy automaton realizing f.
g

§3

In this § we give a short survey of the matter of the previous paper [2] where
a recursion procedure is introduced by which any finite right-congruence of F(X) is
obtained precisely once.

We say that the relation a(p, ¢q) is true (1) for the words p, g if there exists a
number i (1=i=I(g)) such that p=K;(g). For any H(ES F(X)), we denote by y(H)
the set of words p satisfying a(p, h)—1 with a suitable #(¢ H).

A finite subset H of F(X) is called an independent. complete set (abbreviated:
IC-set) if h;= K;(h,) implies h;=h, (and, consequently, i=0) for any two elements
hy, hy of H and to almost all words p(EF(X)) there exists an /(€ H) satisfying
h= 8, (p) with an appropriate z(>0) If H is an IC-set, then A and y(H) are dis-
joint.

Let a full ordering < be fixed in the set X of generators. We extend this rela-
tion to F(X) followmgly p<qif elther {pl=1q] and p precedes ¢ lex1cograph1cally
or [p|<lg|.

In § 3 of [2], a construction of (all) the IC-sets is given.

Let H be an IC-set, let us fix an arbitrary assignment ¢ of H into y(H). We
define the mapping 7% of F(X) onto y(H) by the subsequent recursion:

if p €y(H), then < (p)=p, -

if pcH, then 1%(p)= o (p), ‘
if the word P does not belong to y(H)U H, then

%(p) = H(H (PN B (p))-

Proposition 9. (The first statement of Proposition 4 and Proposmon 6 in [2]).
T H(Rl ()B4 (p) belongs to y(H ) U H for any p(€ F(X )) The domain of 1%, is the whole
semigroup F(X). The range of <% is precisely y(H). 14 is idempotent.

We define the partmon Cf; of F(X) such that p=g (mod C§) exactly if t4(p)=
=1% (g). The mapping ¢ is called rormal if ¢(p)< p for any word p.

The main result of [2] is:
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Proposition 10. (Theorems 2, 3 in [2].) Any partition Cf is a finite right-con-
gruence of F(X). If only normal mappings ¢ are permitted, then each finite right-
congruence C* can be produced in exactly one way in the form C§. _

In what follows, we shall use also the following facts asserted in [2]:

Proposition 11. (Proposition 7in [2].) If p is an arbitrary word and x is an arbitrary
generator, then

h(px) = 1§ (TH (p) x).

Proposition 12. (The first sentence follows from Proposition 8 of [2], the second
one from the constructions exposed in [2].) Any class modulo C§} contains exactly one
element g which belongs to y(H). If ,

g=p (mod Cf))  (gey(H)).

then 5 (p)=g and either g=p or g p.

§4

. In consequence of the propositions stated in § 2, the problem of describing all
(essentially different) automaton mappings (defined on F(X)) is equivalent to the
problem of the description of.all super-finite partitions of the semigroup F(X).

‘In § 3 we have sketched a description of the finite right-congruences of F(X); any
element of £, was produced um'quely.-Unfortunately, this method has the dis-
advantage that the lattice-theoretical structure of &, remains unexplained, i.e. even
if we know H, ¢, H’, ¢’, there exists no easy way to dec1de the validity of the relatlon
Ci=Cf.

If we fix a finite rlght—congruence C* and we ask for all the super-finite partl-
_ tions C satisfying C=C™, then these partitions C can be constructed rather easily
(the number of the partitions C is finite by the UFP of £,). If C* is varied, .then
every super-finite partition C is produced; however, the LIP of &, implies that, -
for each C, there are infinitely many constructions obtaining C (because of the ex-
istence of an infinity of finite right-congruences C* fulfilling C*=C). Consequently,
“this simple idea does not give a unique representation of the super-finite partitions
of F(X).

By a modlﬁcatlon of our prev1ous ideas, the following problem arises: the
finite right-congruence C* is varied and, for any C¥*, it is required to produce’ uni-
quely the partitions C satisfying M,(C)=C*. Then each C is obtained exactly once
(for the equality M, (C)=C* is satisfied by precisely one right-congruence C¥).
In what follows, the problem exposed now will be called “basic problem’.

In Chapter II, we shall make some considerations (being far from completeness)
concerning the basic problem. In Chapter I some other related questions will be
touched upon.
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II. On the description of super-finite partitions by using complexity numbers

§5

Let an IC-set H of F(X) be given. Denote the set y(H) by G, too. Let ¢ be a
mapping of H into G. The pair (H, ¢) detérmines a mapping % of F(X) onto G
and ari ght-congruence C§; by virtue of § 3. Since H, ¢ are throughout fixed, we shall
write 7 for® 1%.

" Let C® be an arbitrary partition of the set G(=v(H)). Let us a551gn to C@®
two partitions o (C®), o*(C) of F(X) in the following manner:

p=q (mod o (C®))
t(p)=1(q)  (mod C@);
P=q }(mod o*(C9))

exactly if
moreover,

precisely if either p=gq or
PEG & gcG & p= q ~ (mod C®)
" (where p€ F(X), g€ F(X)). '
Proposition 13. The equality
®(C®) = w*([CO)UCY

* is valid. The restrictions of the partzttons o(Cand o*(C (G)) to G coincide with C @,
“ Moreover, we have
ind C@=ind w(C (G))

Proof. Let us recall Proposition 9 and the definitions of @, w*, Cg. The restric-
tion of @*(C@) to G equals trivially to C©. The relation

. p=q (mod w(C(G)))
implies

p=1(p), q=1(g) (mod Cf)
and .- o
_ t(p)=1(q) (mod w* (C(G)));
consequently,

. w(C@®) = p*([CHUCE.
On the other hand, if
' P=q (mod w*(C@YU CP),

1(p=1(q) (m(_)d w*(C®)UCP),

then

hence . |
(mod w*(C9))

(p) = t(q) {(mod c©®)

5 However, we do not use the simple notation C instead of Cg. °
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(since 7(p), 1(g) belong to G and the elements of G are pairwise incongruent mod Cf),
thus :
P=q (mod w(C(G))).

The above considerations show also the validity of the assertion on the restric-
tion w (C*9) to G and the inequality :

ind C@=ind w(C9),

t00. Proposition 12 implies that each class modulo @ (C‘®)(=C§) has a non-empty
- intersection with G, hence :
: : - ind C*9=ind w(C©).
N ‘ A
Proposition 14. The assignment C'9 —w (CD) is a lattice-theoretical isomorphism
(where C® runs through all the partitions of G(=y(H)). The range of this assignment
is exactly the set of the partitions C of F(X ) Sfulfilling C=Cf.

Proof. Suppose C(G)<C(G) and
~ p=g  (mod o(C©@)).

Then : ] . .
: (p)=1(q9) (mod C®),
hence A
1(p)=t(q)  (mod C{),

thus .
. p=q (mod w(C{?)).

We have proved o (C@)=w (C{®).

Now assume that the relation C‘G)<C(G) does not hold. This means that there
exists a pair (p, g) (where p€G, q€G) such that p, g are congruent mod C(® but
incongruent mod C{®. The assertion on @ (C‘®) in the second sentence of Proposi-
tion 13 ensures that p, g are congruent mod w(C‘®) but not mod w(C{®), thus
w(CO=w(C{?) cannot be true. The first assertion of the proposition is verified.

Let C be a partition of F(X) satisfying C=C§. Denote by C@ the restriction
of C to G. We are going to show that C=w(C(9). Indeed, the three relations

p=q (mod C)
t(p)=1(q) . (mod C®)
P=q (mod w(C(G)))
are equivalent (by
p=1(p)

mod C

q= r(q)} ( )

and the definition of w). Thus C=w(C®), hence the range of w includes the set
- mentioned in the second sentence of the proposition. The converse inclusion follows
from the first assertion of Proposition 13,
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§6

The following idea seems to be a possible method for investigating the basic
problem (exposed in §4): :

(1) we assign a complexity number ¢(C) (being a non-negative integer) to
any super-finite partition C of F(X) (characterizing the “distance” of C and M, (C)
in some appropriate manner),

(2) for any pair (C*, m) (where C* is a finite right-congruence of F(X) and m
is a natural number) we denote by S(C*, m) the set of partitions C@ fulfilling
M, (w(C9))=C* and ¢c(w(CP))=m,

(3) for any finite right-congruence- C* of F(X), we give a description of the
partitions lying in S(C*, 0), S(C*, 1), ..., S(C*, m) where m is the largest number
such that S(C*, m)= &. .

Three different concrete choices of the complexity numbers ¢(C) seem to be
applicable:

(D Let ¢(C) be the difference

ind M, (C)—ind C.

(I) Let c(C) be the smallest integer j such that 9t/ (C)=M, (C) (cf. Remarks to
Proposition 3). ‘

(IID? Let ¢(C) be max min/(r) where the maximum is taken for all pairs
P, q such that

pZq  (modM(C)) (pEF(X), g€ F(X))
and (for each pair p, ¢) the minimum is taken for all words r such that
prZqr (mod C).

In what follows, we adopt the first choice, i.e. we define the complexity number
of C by .
, ¢(C) = ind M (C)—ind C.

The relation 9, (C)=C implies immediately the

Proposition 15, ¢(C)=0 exactly if M, (C)=C (ie. if C is a right-congruence).
Now we return to the former point of view that the IC-set H, the normal mapping
@ are fixed and 1=1%, C*=C§};, G=y(H) are defined by means of H, ¢. The fol-
lowing paragraph is devoted to get a certain representation of the partitions C (@ of
G satisfying
M (0(CO))=C* and c(w(C)=1;

this task is the same as that of characteriiing the set S(C*; 1).
Next we state some simple facts. The first of them is obviously valid:

Proposition 16. Let C©) be a partition of G such that M, (w(C9))=C*. Then
c(w(CO))=0exactly if CD is the smallest partition of G (i.e. if every class modulo C®
has only one element). ‘ :

¢ This third definition is justified only if the maximum always exists (i.e. if the set consisting
of the numbers min /(r) is bounded). I do not know whether or not this existence is valid for every
super-finite partition C.
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Proposition 17. Let C'9 be a partition of G such that M, (w (C9))=C*. Then

: c(0(CO)=1 B ()
- if and only if: . , o
ind C® = [G]-1. (62

Proof. By the deﬁmtlon of the complexity number, (6.1) can be wntten in
the form .
ind co(C(G)) = ind M (w(C(G)))—l
this equality is equlvalent to (6.2) because

ind C{j=|G]|
is implied by Proposition 12. .

Proposiﬁon 18. Let C9 be a partition of index |G|—1. The equality

|  Mye(CO)=C*.
" holds if and only if o(C®) is not a right-congruence.

~ Proof. We note that o(C@)=C* and
ind @(C®) = ind C¥ = |G|—1 = ind C*%I :
imply o (C(G)) >C*,
If w(C @) is a right- -congruence, then
om (w(c<G>))—w(c<G>)>c*

‘ If w(C(G)) is not a right-congruence, then

My (w0 (C@)<w(CD)

implies : .
- ind My (0€C@)) > ind w(C9)(= ind C*-1),
hence C ' '
-ind M, (0 (C@))=ind C*;

. on the other hand, Proposition 1 guarantees

. - S My (e(C@)=C*
The last two formulae ensure '
. M, (w0 (CD))=C*,

§7'

~ Let g4, g be two different elements of G such that g1< g.. We denote by c©,,
the partition of G in which {g,, g,} is one of the classes and any other class has one
element. In the form C(®, all the partitions (of G) of index |G|—1 (and only these)

91,92
can be obtained.
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THEOREM 1. The partition C=w(C{®,) is a right-congruence of F(X) if and

g1, 92

only if" g, XC H and each x(€ X) satisfies one of the following four assertions:®
() 8:1x€G & @(gx)=g,x.
(i) g1x=g, & @(g:X)=g:.
(ii)) gy x€H & ¢(8,X)=¢(8:X).
(iv) g1x€H & {9(g:1%), 9(g2X)}= {21, &2}-

Proof
Necessity. Suppose that Cisa rlght-congruence We have &ixeG UH by g;€G
and G=y(H) for each x(€ X) (where i may be 1 or 2).

E81=82 (mod C{))

g1 92
implies
- 81582 (mod C),
hence -
: &1x=gx  (mod C),
thus ’

(g1 x)=1(g.x)  (mod C{9,).

91,892

Caée 1: g,x€G and
gix=g,x  (mod C*).

Then g, x < g, x (by Proposition 12) and 2:x(GU H) cannot belong to G, i.e. gzx €H.

Moreover,
&1 x=1(8%)=1(g:X)= ¢ (g2X),
this means that (i) is satisfied.
Case 2: g, x€G and ’

- ’ 81X #gaX (mod C*).

In this case

81x=1(g X) #1(g2X),

hence

: &x=g; and 1(gX)=g,

(because g, x(=1(g,x)) and t(g,x) are different elements of G but congruent mod C),
consequently

gx€H and ¢(g.x)=1(g:x)(=gy)

(by g1 < g, g,x). (ii) is fulfilled. ’
Case 3: g, x€ H and :
g x=gx  (mod C¥).

Similarly to Case 1, we cah deduce g,x € H and
L (&1 x)=1(g1%)="1(g%)= 9 (g2 %),

thus (iii) is valid.

Case 4: g,x¢ H and
. : s x#gx  (mod C*).

? Usually, g, X denotes the set of words g,x where x runs through the elements of X
® The assertions (i), (if), (iii), (iv) exclude each other.



On some aspects of the algebraic description of automaton mappings 13

- In analogy with Case 2, .
{1(81%), 1(g:%)}= {81, 82}

If 7(g,x)=g, and 7(g.Xx)=g,, then g,#g,x implies g,x€ H; in case of validity
of 7(g1x)=g, & t(g,x)=g,, H must contain g,x likely to Case 2. In both sub-
cases, r(gzx) equals to ¢ (g, x), hence (iv) is true.

Suﬁ?czency Assume g, XS H, let p, g be two words being congruent mod C
and x be a generator. Suppose that one of (i), (i), (iii), (iv) is valid for x.

Case 1:
p=q (mod c*.

Then o
px=gqx (mod C%),
hence
Cpx=gx (mod C).
Case 2: :

p#q (mod C¥).
Then we have

t(p)=g and 1(g)=g,
(possibly after interchanging p and ¢q), thus

T(PX)= t(g1)=t(gx)=1(¢x)  (mod C;%)

(because the equalmes follow from Proposmon 11, the congruence is implied by
each of (i), (ii), (iii), (1v)) consequently

px=qx (mod C).
The proof of Theorem 1is ﬁmshed

Now we are going to describe a procedure for obtalmng the elements C of -
S(C*; 1) such that any partition Ci is produced (not uniquely in general, but) at most
{X| times.

Denote by R(p) the set of elements g of F(X) fulfilling ¢< p (where peF(X ))

Construction I. The construction is described in the subsequent rules.

Rule 1. Consider the generators x¥, x®, .., x™ (the superscripts are thought
to be fixed), let us choose an arbitrary x(")(EX )

Rule 2. Denote by G; the set of elements® g(€G) satlsfymg gxWecH.

“Rule 3. If g, €G—G,, then define the set ;(g,) by

6:(g:) = GNR(gy).
Rule 4a. If g,€G;, B,(g.)= x®x® and R (g2)= 0 (g:x?), then define the set

®;(g.) by
6; (g, = (GﬂfR(gz))—(G,-U {RZ(gZ): R1(82)})-

® The number of elements of G, is, in general, small in comparation to [G|. This fact has
the consequence (advantageous when Constructlon I is performed practically) that, in what follows,
the more complicated Rules 4a, ...,.4d (and more rather Rules 5a, 5b) are executed remarkably.
fewer times, than the simpler Rule 3.
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Rule 4b. If g£,€G;, B,(p(gx™)=xP and g,#¢(g.xP)x®, then define

®; (g, by .
6/ (g) = (G ﬂ‘ﬁ(gz))—(G,- U {Rl(q)(gZx(')))})‘

Rule 4c. If g,€G;, By(go)=xPx® (where x1V) is a generator, different from x(?)
and 8, (g2)=¢(g2x), then define G;(g,) by

®;(g2) = (GNR(g2)—(G: U {Ku(g2)})-
Rule 4d. If £,€G;, B,(p(gx)=x? and g,#¢(g.x?)x®, then define

;(g2) b
= 67 (g2) = (GNR ()~ G:.

Rule 5a. If g.€G; and ¢@(g.,x™)=g,, then define the set 03” (g.) as the set of
the elements g,( € G; NR(g,)) satisfying

(g1 x?) ¢ {81, g2}

Rule 5b. If g.€G; and ¢(g.x")=g,, then define B (g,) as the set of elements
g:1(€ G;NR(gy) fulfilling at least one of the formulae

o(gx M) 6 {gs 0(8xD)},  @(£:xP) 6 {81, 9 (81D}
Rule 6. If g, € G;, then define the set ®;(g,) by 1°
0;(g2) = 6; (g UG/ (g,)
Rule 7. Let us form the set I'; of pairs (g;, g») in the following manner: (g, gz)

belongs to I'; exactly if g,€G and g, € ®;(g,).
Constructlon 1 is completed.

THEOREM 2. The partition C= w(C;f)gz) of F(X) is no right-congruence if and only
if the pair (g,, g>) is contained in :

r,ur,u..ur,
where n=\|X1 and any I'; (where i can be 1,2, ..., n} is produced by Construction I,

Proof

‘Necessity. Suppose that C is no right-congruence. We verify g, € ,(g,) (with a
suitable i) according to several possible cases.

Case 1: there exists a generator x® such.that g,x®€G. Then g,€ G—G; (by
Rule 2), consequently, g, €®;(g,) (by Rule 3).

Case 2: g,x€ H holds for every x(€X). Then there exists an x?(¢€X) which
does not satisfy the assertions (i), (i), (iii), (iv) occurring in Theorem 1.

Case 2a: g,xW € G (thus g, € G—G)). If the premissa of Rule 4a are satisfied,
then g, K,(gs) (by the falsity of (ii)) and g;# R (¢(g.x"))(=K,(g,) (by the
falsity of (i)), hence g, € ®{(g,). If the premissa of Rule 4b are true, then we get
g1 # 8,(0(g.x")) in a similar way, consequently g,€®/(g,). If the premissa of
Rule 4c hold, then g; = &, (g) (since the contrary would imply (ii)), hence g, € ®; (gz)
In the case of the vahdlty of the premissa of Rule 4d, the membership g, € 6 (g,) is
obvious.

10 The sets ®;(g,) and ®; (g,), defined in the previous rules, are obviously disjoint.
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Case 2b: g,xV ¢ H (thus g, €G)). If the. premissa of Rule 5a are fulfilled, then
¢ (g, x") differs from both g, and g, (by the falsity of (iii) and (iv)), hence g, E(ﬁ (go).
If the premissa of Rule 5b hold and g,= @ (g,x"), then the same inference is valid.
If the premissa of Rule 5b are true and g; = @ (g,x¥), then the inequality ¢ (g, x®¥) =
#p(gyxV) (implied by the falsity of (iii)) guarantees g, € ®; (g.).

We have obtained g; €®;(g,) in every case, this membership is equivalent to
(gl, g2) €I'; (by Rules 6, 7).

Suﬁ?czency Assume (g,, g,)€I'; for some i, hence g1€® (g2) by Rule 7 We
are going to show that either gzx(') € G or each of the assertions. (i), (ii), (iii), (1v) is
" false for g, g, and the generator x®.

Case 1: g,€ G—G;. Then clearly g,x? ¢ G. ‘
Case 2: 2,€G;. Now g:xP ¢ H and the set ®;(g,) (containing g;) was defined
by Rule 6. Thus g; belongs either to & (g,) or to &7 (g,).
Case 2a: g, € ®{(g,). We can distinguish four situations according as the premissa
of Rule 4a or 4b or 4c or 4d are satisfied. In every situation, it is trivial that (iii),
(iv) are false (because of g,x ¢ G) and it is easy to check that also (1), (i) do not
hold.
Case 2b: g, €®/(g,). Then (i), (i) cannot hold (since g,x® ¢ H) and; whether
the premissa of Rule S5a or the premissa of Rule 5b are valid, we can simply show
- that (iii), (iv) are false, too. '

Theorem 2 and Prepositions 17, 18 imply at once

COROLLARY. Let (gy,8,) run through the elements of
‘ nunu Ur,.

Then each partition C;f’y2 belongs to S(C*, 1); conversely, any element of S (C* 1)
is obtained thus at least once, at most n=|X| times.

(T he multlphclty of an element of S(C*, 1)‘is here understood from a construc-
_tive point of view;i. e. our last assertion corresponds to the facts that Construction
I produces the elements of any I'; umquely and, of course, the same pair (g, g,)

occurs in =n conponents of the union I'y/U .. UF )

III. A characterization of the critical pairs of finite right-congruences
§8

First we expose three problems concerning the finite partitions of F(X).

(D Let Cf and Cg be two right-congruences of F(X). Let a necessary and
sufficient condition of the relation C§=C§. be given such that the condition con-.
cerns to the pairs (H, ¢) and (H’, ¢’).

(ID) Let C*= C§j be a right-congruence of F(X). Describe the right-congruences’
C**(> C*) satisfying the assertion: if C**=C’"=C* for a right-congruence C’, then
either C'=C™** or C'=C*
© (II) Let C*=Cgbea rlght-congruence of F(X). Describe the partitions C(>C*)A
fulfilling the statement: if C=C’=C" for a right-congruence C’, then C’'= :



16 A. Adim

It seems that the solution of (I) would be a remarkable aid for solving (II),
furthermore, an analogous relationship exists between the problems (II) and (III).
It is clear that (III) is another formulation of the basic problem posed at the end
of §4.

In the remaining part of the paper, we shall make some considerations concerning
the problem (I).

Let C be a right-congruence. We say that the unordered pair (p, g) of words is a
critical pair of C if .

. p=q (mod C)

and one of the following four assertions hold:
p=e;
. q=e,
’ B, (p) =B, (9),
fu(p)ERi(g)  (mod C).

The correspondence between a right- congruence and the set Q of its crmcal pairs
was studied in Chapter II of [3].
Among others, the subsequent result was proved:

Lemma 3. The congruence
P=q (mod C)

is true if and only if there exists a critical pair (p’,q") of Canda word F such that
p=p'r,q=q'r.

. Proposition 19. Consider two right-congruences C=C§ and C’'=C§g. of F(X).
Let Q, Q' be the sets of critical pairs of C, C’, respectively. The following four statements
are equwalent

(A) C=C".

(B) For each h(€ H) :
h=q(h) (mod C’).
(C) For each p( € F(X))

p=tg(p)  (modC).
(D) For any (p, q) € Q there exist three words p’, q’, t such that

p=p't, 9=q't, (¥, q)EQ.
Proof
(A)=(B). h and ¢(h) are congruent mod C, hence-also mod C’.
(B)=(C). We shall use induction. The unit element e satisfies (C) obviously
~ (by t%(e)=e). Assume that (C) holds for p(€ F(X)), we show that (C) is true for
px, too, instead of p (where x € X).
Case 1: 1% (p)x € G(=y(H)). Then

%(px) = G(Px=px  (odC)
(by Proposition 11 and the right-congruence property of C’).
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\

Case 2: 1§ (p)x € H. Then we get

%(px) = ¢(1%(P)x) = th(p)x =px  (modC’)

by a similar way (using also Proposition 12).

The first statement of Proposition 9 shows that there exists no further pos-
sibility.

O)=(A). If

‘ p=q  (modC),

p=g(M=w@) =g (modC)

(by Proposition 12 and the connection of C and %).

(A)=(D). If (p, g)€ Q, then p and g are congruent mod C, thus also mod C’.
Lemma 3 assures the validity of (D).

(D)=(A). Let p, g be congruent mod C. There exists a critical palr (P1» ql)'
of C such that p=p,r and g=¢,r (by Lemma 3). (D) guarantees pl—p t, =q't
with suitable (p’, ¢’ )€ and t(EF (X)). Consequently, p=p'tr, q=q tr, hence.
p=4q (mod C’).

In what follows, we shall characterrze the critical pairs of a right-congruence
represented in the form C§. First (recalling the first sentence of Proposition 9)
we introduce a notation: let H be the set of elements p(€ F(X)—{e}) satisfying

% (8.:(p) %r (p)eH.

§9 will contain certain preparations to the proof of Theorem 3, exposed in § 10.
~ In the remaining part of the paper, we write t instead of t§ and C instead of C§.

then

§9
Lemma 4. HEH’ and HNy(H) =
Proof. If p€(y(H)— {e}) U H, then fu(p) € y(H), hence
©(8:(9))B1(P)= K:(P)B1 (p)=p.
This implies peH or pQH accordmg to pEH or p€y(H), respectively.

Lemma 5. Let p, q be elements of F(X). Ifr(p)qu(H) then ‘t(pq)—r(p)q If
1(p)g € H, then 1(pq)= o(t(p)q)-

Proof. We verify the first statement by induction with respect to the length
of g. The assertion is trivial for e (as ¢). Suppose that it is true for the words of
length &, assume I(q) = k4 1. Denote &,(q) and B,(q) by x and ¢’, respectively

(thus g=xq’, x€X, I(q")= k). We note that the supposition r(p)qu(H) implies
T(pxey(H), therefore 'r(r (px)=1(p)x. We have )

1(pg)=1(pxq )=1(px)q'=(x(P)X)g'=1(p)xq’ —f(p)q

where the second equality is implied by the induction hypothesis and the th1rd one
follows from Proposition 11. The first statement is proved.

2 Act'a Cybernetica
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Suppose 1(p)g € H (thus g=e¢), write ¢ in the form!! g=¢’x (x € X). Then 7(p)q’
belongs to y(H) and the inference

t(pg)=1(pg’ x)=1(2(pq")x)=1(t(P)g’ x)=1(x (P)g)= 0 (r(p)q)

is valid (the second equality is again a consequence of Proposmon 11).
We are now able to assert a result, which yields, supposmg pEH particularly, a
recursive characterization of H:

Proposition 20. Assume p¢ F(X), g€ F(X)—{e}, t1(p)g€y(H)UH.. ]f‘r(p)qe
€v(H), then pg¢ H. If t(p)q€ H, then pgc H.

Proof. In both cases, the condmon posed on 7(p)g 1mphes t(p)Rl(q)Ey(H),

hence
($2(p0)B1 (p9)= (PR @)B1 ()= (PR, (OB, @ =(P)g
(using Lemma 5). The definition of H completes the proof.
Lemma 6. If pc F(X)—({e}UH), then t(p)= e, K;(1(»)=1(8:(p)) and
B,(c(p)=B:(p). ‘
Proof. ©(8,(p))B.(p) €y (H) 1mplles
1(P)=1(8:(2)B1(P))= (K1 () B1(p)(+e)

(by Lemma 5); the equalities to be proved follow by applying the operators &,, %,
for the left-hand and right-hand sides of this equality.

Lemma 7. Let p, q be elements of F(X)—({e}UH). Ifp=gq (mod C), then & (p)= -
=RK,(g). (mod C) and B,(p)=B,(q). .

]’roof. The supposition implies 7(p)=1(g). Thus
. T(Rl (P))= R1(T (P)): Rl(f (Q))= T(Rl(q))

and . _
B,(p)=3,(t(p))=B1(7(9))=B:(q) -

-are true by Lemma 6.
Lemma 8. If p€ H, then_either 1(p)=e or
f(p) Z/(x(p))  (mod C)

B, () % B, (1 (p)).

Proof. Suppose that each of the three alternatives, stated in the lemma, is false
for p(€ H), we are going to get a contradiction. The supposition

K ()=K(x(p))  (mod C)
 (K(p)=1(Ki @ (P)) = K1 (7(p))
(since T(p), &, (z(p)) belong to y(H)).

or

implies

11 This notation differs from the previous meaning of ¢’, x.
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Denote by i the minimal posmve number fulfilling K;(p)€HU {e}. Use the

- notation p;= K;(p), p.=B;(p). We have 1(p))p, € H (smce ©(p)p. € y(H) would
imply p¢ H and t(p)p. € F(X)—(y(H) U H) would lead to a contradiction to the

minimality of 7 by Proposition 20), thus <p(r(p1)p2) is defined (and belongs to y(H)).
We have the equalities

(Y (H)> )Rl (T (Pl)Pz) =1(py) Rl (Pz) T (Pl K, (Pz)) =
=1 (R1 (Plpz)) =8, (T (PlP2))= K, (q’ (= (Pl)Pz))
(the second and last ones follow ‘frc')m Lemma 5). On the other hand,

B, (7 (pUP2)= B (pr)= b 1(p)= 931(1(11)) B, ((prp2))= 231(</>(r(p1)pz))

Hence we get
T(pIP=¢ (T (Pl)Pz),

this is a contrédiction to the disjointness of H and y(H).

§10.

Let p, g be two elements of F(X) (p=gq is permitted). We shall obtain a neces-
sary and sufficient condition for the pair (p, ¢) in order to be a critical pair. Evidently,
7(p)=1(q) is a necessary condition; however, it is not sufficient.

Denote by i the least posmve integer satisfying &;(p)¢€ {e}UH; analogously,
byj the least posmve integer fulfilling &;(¢) € {e} UH.

THEOREM 3. The pair (p, q) is a critical pair of the right congruence C§ if and
only if one of the subsequent conditions (i), (ii), (iii) is satisfied (, posszbly after inter-
changing p and q) : .

(i) e=p=1(q),
(i) p€ F(X)—H, qEH and t(p)=1(q),
(iii) peH gcH, r(p)—z(q) and either

K(P£K;(g) - (mod CP)
B,(p)=B,(q). |

Proof. As we have formulated the theorem, (i) and (ii) do not exclude each
other. A non-overlapping system of conditions (equivalent to the system consist-
ing of (i), (i), (111)) can be got by replacing (i) by the following condition (i"):

(') g€ F(X)—H and e=p=1(q).

In the verification of the theorem we shall dlstmgmsh three cases:

(I) p and q are contained in F(X)—.

(I) pe F(X)~H and g¢H.

(I1I) p and ¢ belong to H.

"~ We shall show that, in the cases (I), (II), (III), the crlterlon for the inclusion ( P, q)€ Q
is (1"), (ii), (iii), respectlvely

or

2%
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Case 1. Suppose (p, q) € 2. If p#e and g#e, then Lemma 4 leads to a contradic-
tion; if p=e, then t(q)=1(p)=e, hence (i) is satisfied. — (i") 1mphes (p, 9)ERQ.
ev1dently

Case IL. (p, g) € Q implies (ii) trivially. — Conversely, assume that (i) is valid.
Then clearly .
p=q  (mod (),

we are going to prove that either p=e or
Ki(p) 2 81(9) (mod C)

B, (p) =B, (q).

ezt(p)=1(q)

or

Suppose p=e. Then

by Lemma 6, moreover, one of the inferences
t($,(0)= Ku(:(0)= Kt (@) Zt(Ru(9)) . (mod C), -
B, (p)=B,(t(p))=B,(7(9)) #B.(9)

is true (the equalities follow from Lemma 6; either the incongruence or the inequality

is implied by Lemma 8). Hence (p, ¢)€ 2 in any possible case. '
Case III. Assume that (iii) is not fulfilled, we want to show (p, ¢) ¢ Q. It suf-

fices to study the possibility when r(p) 7(q). ‘Since (iii) is supposed to be false,

we have
ﬂgi(p)"‘%j (‘I) (thus ’—])
and . : .
Ki(p)=K;(g) (mod C).
Hence ' :
g B,()=3,(B:(p)=B:1(B,(9)=B.,(q)
an '

K= KUPK(B(D) =R, @)K (B,@)=Ri@)  (mod C),

consequently (p, g) € Q. — Suppose (p, q)q Q, our aim is to prove thét (iii) is false.
This follows trivially unless 7(p)=1t{(q), i=/j. Assume that these equalities are true.

The suppositions imply
fu(p)=R4(q) (mod )
-B,(p)=3,(9).

Apply Lemma 7 for the elements %,(p) and 8,(g) (mstead of p and q, resp) where
h can be1,2,3,...,i—1. We get, on the one hand,

K:(P=Ki(@=8,(¢g) (modC),
By (K ()=Bu(K(9)  @=h<i),
B,(p)=B:(q)=;(q).

and

on the other hand,

hence
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O HeKOTOpLIX acCHeKTaX ajreGpandecKoro ONHCAHHA
: ABTOMATHBIX OTOOpaxeHHil

Ilycte F(X) — cBoGoanas noayrpynna (C eAMHUUEH), NOPOKAEHHASA KOHEYHBIM MHOKECTBOM
X. Usyuarotcs pasbuenus C nonyrpynnsl F(X) Tak, uto oTHomerne C=C* ynoBieTBOpSEMO He-
KOTOPOii NMpPaBOil KOHTPYIHTHOCThEO C*, MMEIOIICH KOHEYHOE YMCIIO KiaccoB. Takwe pa3buenus
C Ha3wIBAIOTCA Cynep-KOHEYHEIMH. B §§ 1—2 M3JIaTal0TCA HEKOTOPBIC OCHOBHBIE (110 CYILECTBY, U3~
BECTHBIE) CBOMCTBA CyNep-KOHEYHBIX pa3bHeHHi, BKIIOYAsi MX CBsI3b C KOHEYHO INPEACTABUMBIMH
aBTOMaTHbIMU OTOOpaxkeHusaMu. KpoMe Opyrux mpensoxexmii npusogutcs (6€3 10Ka3aTenbsCTBa)
TeopeMa Nerode-a: pa3OHeHHe COOTBETCTBYET KOHEYHO NPEACTABAMOMY aBTOMAaTHOMY OTOOpaxe-
HHIO TOTZA H TOJILKO TOTAA, €CIIH OHO SIBJISIETCS CYNeP-KOHEYHBIM.

* § 3 naér pa3toMe npenpLayliel cTateu [2] aBropa. B §4 dopmymmpyercsa cieayroias apo6-
JIeMa: I1yCTb 11 IPOU3BOJILHOM NPABO# KORTPYIHTHOCTH C* € KOHEMHBIM YMCJIOM KJIACCOB OMHCAHBI
ONMHCTBEHHBIM 06pa3oM Takue pa3buenust C, yro C* sBUseTCs HanbGONMbIIEH M3 BCeX TIPaBbIX KOH-~
Irpy3HTHOCTEH Menble yem C. B § 6 BBoauTcs yucno cnoxHocTi ¢(C) Cynep-KOHEMHOTo pa3oueHuns
C xak ind C* — . ind C (rze ind C* — 4KCIIO KJIACCOB 110 MOAYJIIO 3TOH HaubOMbIIE} NPaBOi KOHTPY-
entHocTH C*). § 7 CONEPKUT METOXR ONMMUCHIBAIOLIHA CYMep-KOHEYHbIE pa3GueHUs, BBIIOJIHAOLIME
¢(C)=1, 310 onucanre, BOODLIE TOBOPS, HE OIHO3HAYHO, HO MHOTO3HAaYHOCTH HE IPEBOCXOAMT
yyclIa 3JIEMEHTOB MHOXECTBa X.

Tlapa (p, q) >neMeHTOB MOJYrpynne!l F(X) HA3BIBAETCA KPUTHYECKOH [JIs MPaBOii KOHIPY3HT- -
HoctH C, ecyit p =g (mod C) 1 X014 661 OAHO H3 HETHIPEX YCIIOBHI BLIONAAETCA: p=¢, g=e, By(p) =
=B,(q), Ri(p) = K,(q) (mod C), roe e — enunnua nonyrpynnst, 1 8,(p), B,(p) onpenensiorcs oTHO-
wenusmMi p=8:(p) Bi(q), Ki(p) ¢ F(X), Bi(p)€ X. B § 10 ycTaHaBNMBAKOTCA KPHUTHYECKHE TAphI
TIPOK3BOJIbHOM NPaBOH KOHIPYIHTHOCTH C C KOHEYHEIM YHCJIOM KIIaCCOB, PEANONATasi, 4To C maHo
MeToaAoM paboTsr [2].
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