Generalized context-free gfammars

By J. Gruska

1. Introduction. Generalized context-free grammars can be thought of as context-
free grammars all rules of which are of the form A —« where « is a regular expres-
sion. Generalized context-free grammars and their representation by a set of finite-
state diagrams are a convenient tool to describe context-free languages. In this
paper a classification of context-free languages accbrding to the minimal number of
non-terminals of generalized context-free grammars is studied and the corresponding
decision problems are investigated.

2. Definitions. By a generallzed context-free grammar we mean a quadruple
G=(V, X, P, 6) where ¥, X and ¢ have the same meaning as for context-free gram-
mars (see [2]) and P is a set (maybe infinite) of context-free rules such that for any
nonterminal AeV—2Z, the set {w; A—~w¢cP}c V* is regular. The relations = and
" 3 for a generalized context-free grammar are defined in the same way as for context-
free grammars.

It is obvious that a language L is context-free 1f and ony if L= L(G) for a gen- -
eralized context-free grammar G.

3. Representations. A generalized context-free grammar G=(V, X, P, ¢) can be
represented by a finite set of rules 4 —u, one for each nonterminal in ¥— 2, where
o is a regular expression over V. This in turn means that a generalized context-free
grammar can be represented by a finite set of transition diagrams, one for each
nonterminal of G, each of which represents a finite-state automaton which is cap-
able of recursively calling other finite state automata {1}, or G can be represented
by a finite set of the so-called flag diagrams, one for each nonterminal of G [4].

4. Problems. As suggested by Kalmar [4], for a context-free language L let
-N(L) be the minimum of the number of non-terminals of generalized context-free
grammars generating L. Since N(L) is also the minimum of transition diagrams
for L, N(L) may be thought of as a measure of non-finite state character of L.

5. Results. 1t will be shown now thit for any integer n there is a context-free
language L, such that N(L,)=n and that there is no effective way to calculate N(L).

Theorem 1. For any integer n there is a context- free language "L, C {a, b}* such
-that N(L,)=n.

3*



36 J. Gruska

Proof. The case n=1 is trivial. Let now n>1 and let L, be the language genera-
ted by the context-free grammar

o —aob, o -~aba’A,bab
A;—~d'Ab, A;~ba'*'4;, ba 2=i=n—1
A,~a"4,b, A,—bea, A,—b%a.

Let G be a generalized context-free grammar generating L, and such that no
generalized context-free grammar for L, has fewer nonterminals. It'means that
from any nonterminal of G an infinite set of terminal words can be derived. All words
of L, posses a very regular structure. It holds
4)) If x€L,, then x=ub?a?v, u (v) is uniquelly determined by v (by u) and neither u

nor v contains b2a4? as a subword.

From (1) it follows
(2) Allrules of G are of the form A —~uBv or A —~ub?a®v where u, v€ 2* and B E V—-x
(3) If A—~uBv, A—u’Bv or A —~ub®a’v and A —u’b?a*v are rules of G, then u=uv’".

If A—~uBv, A~uBv’ or A-ub*d’v, A—~ub®a*v’ are rules of G; then v=v".

- Since for any nonterminal A of G, the set {w; 4 ~w¢cP}is regular it follows
“easily from (1) to (3) that the set P must be finite and therefore G is a “‘normal”
context-free grammar. It was shown in [3], that the language L, can not be generated
by a context-free grammar having less than » nonterminals and therefore N (L,,) n.

Since N(L,)=n is obviously true we get the theorem.

Theorem 2. Let n=1 be an integer. It is undecidable for an arbltrary context-
free grammar G whether or not N(L(G))=n.

Proof. Let.us first consider the case n=1. Let x and y be arbitrary m-tuples of
non-empty words over the alphabet {a, b}. Let L(x), L(x, y) and L, be the langu-
ages defined by : ,

L(x) = {ba'rba® ... ba'*kcx;, ... x;,x;,; 1 =i;=m}

L(x,y) = L(x)cL*(y)
L, = {wycwyewBewl; wyw, € {a, b}*}

where, for a word w, wR is the reverse of w and for a language L, LR= {w®; we L}.

. By [2], given x and y, one can effectively construct a context-freg grammar G, ,
generating the language
- Lx,y = {a, b: C}*_L(X, y) an ’

If L(x, y)ALs; = 0, then obviously N(L,,)=1. Let us now consider the case
L(x, )AL, # 0 and let us assume that again N(Lx »)=1. Then there is a generalized
context-free grammar G=(V, X, P, o) with only one nonterminal ¢ which generates
the language L,

Since L(x, y)/\L # @, there are 1nd1ces Iy, ..., I such that if we denote

I=ba’1...ba"‘ X=x,-k...x,-l, j:IR, Y=X~&

then I"cX"cY el €L, , for no integer r=1.
Since the set R= {oz, o —~a€ P} is regular, there must exists an mteger N such
that if i> N, then z;=I'cX'*1cYi*1cJ*1 ¢ R and, moreover, if u;60,€ R, u;v;#¢,
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u; € {a, b, c}*, u;o0;5z;, then u; does not contain the symbol ¢. Hence there exists
a word #;¢p; € L(G) such that i; € {a, b}* and u;@i; cb; v;=z;. But then the word &, Ici; is
alsoin L, , and therefore L(G) generates the word u; &i; Icb;v;=I't1e X *1cYitteJi+1¢
- ¢L,, what is a contradiction. Thus N(L, ,)=1 if and only if L(x, y)AL; = 0. Since
it is undecidable for arbitrary x and y whether or not L{x, y)AL, = 0 [2], we get the
theorem for the case n=1.
For n=> 1 we proceed as follows. By Theorem 2, for n>2 there is a context-free
language L, {d, e}* such that N(L,_,)=n—2. For n=2let us consider the language
wy2 = {@,b,¢} = Lx, YAL,U{f} and for n>2let L,,,= L, , U{f}UL,_,
where f, d, e are new symbols. It is easy to verify that N (Lx . ,,) n if and only if
L(x,») AL, = @ and now the theorem for the case n>1 follows in the same way as
for n=1. .

Corollary. There is no effective way to construct for an arbitrary context-free
grammar G a generalized context-free grammar with fewest states and generating
the language L(G). _

It follows from this corollary that there is no effective way to determine for an".
arbitrary context-free grammar G the minimum of transition diagrams for the
language L(G). Can we, however, at least to minimize effectively the overall number-
of states of transition diagrams for L(G)? It was shown implicitly in the course of
the proof of Theorem 2 that the answer is again in negative.

O0oBuieHAble KOHTEKCTHO-CBOOOANBIE IPAMMATHKH

O6061IeHHbIe KOHTEKCTHO-CBODOHEIE TPAMMAaTHKH — 3TO TPAaMMAaTHKH UMeEIOIIRE OpaBuila
Braa A ~«, TAe A BCIIOMOraTeNbHbIi CUMBOI M & PETYIISIPHOE BHIPAKEHAE HAZl OCHOBBLIMU M BCIIOMO-
raTeNbHBIMU CHMBOJNIaMH. B paboTe ycTaHOBIeHa Kmaccu(HKAIMs KOHTEKCTHO-CBOOOAHBIX S3BIKOB
B 33aBUCHAMOCTH OT MHHMMAMNLHOTO YHCJAa BCIIOMOTATEJLHBEIX CHMBOJIOB OOOIIEHHBIX KOHTEKCTHO-
CBOOOOHBIX TPAMMATHK, KOTOPble HOPOXAAIOT HAHHBI KOHTEKCTHO-CBOOONHDI sa3bIK. JlokazaHa
aNropATMHUYECKas HEPa3pelIMMOCTh OCHOBHBIX. IPOGIeM CBSI3aHHBIX C 3TOM KiaccuduKammel, kaxk
Hanp. npobJeMa NOCTPOUTh MUHMMANBHYIO FPAMMATHKY AJIS HAHHOTO f3BIKA.
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