Combihed'application of drawing and steepest descent
in generating initial estimates for subsequent optimization

By K. VARGA and P. FEJES

Introduction

The determination of the unrestricted local minimum of a function of several
variables by the “direct search” methods consists in the sequential examination of -
function values belonging to randomly selected vectors as the independent variables.
A comparison of each trial solution with the “best’ one up to that time helps locate
the approximate value of the minimum. Even the more sophisticated gradient
methods [1, 2, 3] cannot dispense with a similar method for generating initial esti-
mates for subsequent iterative optimization. In certain cases (e.g. in the Gauss—New-
ton method) a favourably chosen initial value is a prerequisite of convergence,
whereas in others it.allows the gradient method to be used for finding the absolute
minimum of a function in a bounded region. Finally, the number of iterations can
be reduced considerably if a good initial estimate of the minimum is available. -

- We have found that the effectiveness of this method can be substantially improved
if the initial estimate is chosen not as the vector corresponding to the lowest func-
tion value but, starting with the drawn vector, a step is performed according to the
principles of the steepest descent and the function values are compared in these
modified points.

Both methods are described from the v1ewp01nt of probability, and some
problems of application encountered in practice are discussed.

Statistical basis of the direct search method -

For the sake of simplicity let us consider the case of minimization. Let the func- .
tion to be optimized be the scalar-vector function '

f(pllmpzs ’Pn)Ef(p)

assumed to be continuous and single-valued in the bounded n-dimensional rectangle
TCE,. Letus suppose further that function f(p) exhibits a rmmmum in an inner point
Dmin of the region. .

In’order to find the point p,,;, € T that makes the functlon to attain its minimum,
Jet us select some optimizing method which unambiguously determines a T,,,,
(eventually multiply interrelated) parameter interval characterized in such a way .



54 K. Varga and P. Fejes

that any point of this interval could serve as initial value for the method to yield
Dmin> iDl short: the method is convergent. By using the usual set theory notation

Teonv={p; from which the gradient method converges to p;,}-

If the initial value is selected from the (T— T,,,) region, the method “‘gets stuck’
in local minima or some other special points, i.e. it is divergent. In other words,
this region contains those points of T where such unfavourable properties of an
“ill-conditioned” function may be experienced as e.g. saddle points or, if the Hes-
sian matrix is used, points where the Hessian is singular or not positive definite.

If the problem is solved by successive iteration, a preliminary knowledge of
some initial value p} € T is an important condition. Should no other information be
available, drawing is to be used for selecting an appropriate pf. Let us suppose that
a process is available for drawing n numbers at random with equal probability to
represent the components of pf. We shall now examine thé probability of drawing a

“good” point that lies within 7T,,,.

Let u(X) be the Lebesgue measure of some region X C T C E,; then the probability

of finding a point within 7T, is given by

P(.pr E TCOI’IV) = ﬂ(Tconv)/# (T) = Qconv‘

The probability of obtaining a good initial value can be increased by making
several independent drawings one after another. The probability that at least one
vector from among the set: pF, ..., p¥ chosen independently lies within T,,,, can be

~written according to the binomial distribution as

P,(m) = P(for at least one i: pf€Teonys i=1,2,...,m)

{l

=1- [0] Qconv(l Qconv) =1 _(1 —Qcon;/)'fl' 3 ’ (l)

The number of drawings to be made if we want to find at least one point inT, onv
with a predetermined probablllty Pis

) m (P) lOg (1 - P)/log (1 Qconv) (2)
whence the number of drawings is given by. ’
m,(P) = entier [m;(P)]+1

mi(P) being not an integer number.

Now, provided that g,,, is known, in case of some certainty we can perform
in principle as many drawings as are necessary for determining at least one suit-
able initial value. The only problem is: which one of the m (P) vectors belongs
to Tconv -

The generation of initial parameters by drawmg for minimization is an evident
yet not widely applied possibility just because it is difficult to give a reliable answer
to th e above question. In practice there is no other possibility of selection from the
vectors drawn than to compare the pertaining function values. This method, how-
ever, is not reliable because the vector resulting in the lowest function value often
does not belong to T.,,,. Therefore a comparison of this kind, as a method of distinc-
tion, might be misleading. :
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-In order to evalute this error characteristic of the direct search methods, let
us consider now the probability that the vector with the lowest function value in a
set of m vectors is an element of T,,,,.
Let A, be the event that k of the selected m pomts are elements of T, and
" introduce the following notation ’

Po(m, k) = P(minf(pf) < minf (P A45).

pi € Tconv qu Tconv
Further on, let p* be the vector for which

f@) =, _min f ().

" Now, considering thalt uI')Aon drawing, .the probablhty of finding k points in T, is
. m . -
: Pb(m’ k) = P(Ak) = [k] Qléonv(l _Qconv)m_!‘
the probability we are looking for can be expressed as ‘
. m - )
P*m) = P(p*€Teony) = 2, Po(m, k). Py(m, k) =
k=1 _ .
_ 3 ; * mi g . ik
= 2 B(_min f(pi) < jmin - f(p3)) [ k] Geonv(l =0ean)™ ™ ()

This equation is, however, unsuitable for prnctiéal calculations. But even. so, it
reflects the uncertainty involved in the comparison of function values. A s1mple
consequence of the equat1on is for example the inequality

‘ P*(m)=P,(m), ()
which-follows from : :

P*(m) é kzl’ [r]:] Qléonv(l Qconv)m -k 1‘—(1 Qconv) = Pl(m)

This inequality implies that a comparison of the function values provides absolute

certainty for the selection of a point in the convergence region (provided that such -

a point is. contained in the set) only under ideal conditions (i.e. if the function to

be optimized has appropriate characteristics), whereas in other cases the compara-

tive technique may impair the efficiency of the search by drawing. This means that

more than m,; (P) drawings should be carried out in order to be able to single out

_a point which is an element of T,,, with probability. P. Although no certain distinc-
tion is possible between the points belonging to T.,,, and others (e.g. those lying

in the vicinity of a local minimum), generally there always exists a region T,,;,, < T,

1(Tin) #0, where the selection on the basis of function values leads to correct results.

In other words, there exists a region where no mistake arises, and this is nothing .

. else but the largest nelghbourhood around p,,;, for all the points of which f(p’ )<
© <f(p) is true, unless P €Ty and p” €(T— T,yn). The exact definition of 7,

min - {p f(p)

4It follows from the definition that T,

min =—= TCOHV

mln

)} ©)

min
149 (T" Tconv)
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The probability of finding a point in T,;, among m drawn vectors by compar-
ing the function values can be calculated by the binomial distribution; for the selec-
tion does not lead to error in this region - :

Py(m) = P(p* €T pin) = 1= (1= 0pmia)™ . (®
- using for g, the simple relation .
Omin =1 (Tmin) /0 (T).
Finally, considering Eq. (5), it can be proved that
' Py(m)=P* (m). | ™

The probabilities P, (m) and P,(m) are easy to calculate for any value of m and
through definitions (4) and (7), they determine the lower and upper bounds of the
probability function P*(m)

1= (1 —Qmin)m = P*(m) =1 —(1 - Qconv)m'. . ' (8)
The inverse m(P) of the function P*(m) shows how many drawings are to be car-
ried out to get one point lying in the convergence region in case of a predetermined
certainty P. Although the inverse function cannot be calculated, an estimate of m(P)
can be made usmg Eq. (8)

my(P)=m(P)=my(P),

where : .
my(P) = entier [my(P)}+1

i (P) = log (1— P)flog (1— gmi)s ©

respectively which follows from (6) by. ana]ogy to Eq. (2).

The upper and lower bounds defined in this way are, unfortunately, far from
each other because in reality u(7y;,) is several orders of magnitude smaller than
(T eonv)s consequently

and

Qmin < Qconv-
"On the other hand, from Egs. (2) and (9) A
mZ(P) lOg(l Qmm) = ml(P) IOg (1 Qconv)

Now consxdcrmg that the function xlog (I'—x) is negative and monotoneously
decreasing in the interval (0, 1), we get

m;(P) — log (1 QCOI’IV) QCOI’IV

=

mi(P) - log(l Qmm) @min-

b

therefore
» my(P) == my(P)=>mi(P)=m,(P).

The modified method. Search from random sets modified by a step of steepest descent

From the above considerations we conclude that a comparison of the function
values belonging to a number of m,(P) vectors leads to pf € T,,;,. The smaller set
m,(P) also contains at least one vector belonging to T,,,,, but we cannot find it
owing to the lack of a perfect method for selection.
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Since the comparison of function values as a principle of selection cannot be
replaced with anything else, the error can be reduced only by generating a point-
within T,,;,. Such a point could be made available only if an m,(P) number of
drawings had been performed. This task becomes especially Liard when practically
nothing is known about g,;,; €.g. in the case when, upon increasing the number of
drawings from 100 to 1000, still no pj;, € Thin can be expected with certainty We
can get out of this apparent deadlock by not generating the parameter vector in T,
by simple drawing.

- Let us carry out one drawing; then modify this point by moving along the
direction-grad f(p)|,s until a minimum of the function at pi* on this line is found.
The number of drawings and searches be altogether m, (P). It is a practical experience,
which can be proved for a number of functions also theoretically, that if pf € T.ony,
then p *€ Toin Is also valid. Therefore, by applying this strategy, an erroneous deci-
sion is practically out of the question.

This statement has been verified in many pract1ca1 apphcatnons In parameter'
estimations and also in the case of the test functions to be shown later it has been
found that the probability P** (m)=P(p** € Teony) by far exceeded P* (m) The vector

p** is that for which
S = _min f(pf).

Asa consequence if the random vectors are modified by a search for the minimum
along the gradient direction, it is sufficient to make only m, (P) drawmgs correspond-
ing to the lower bound in Eq. (9) . A

Examples

'We have succesfully used the modified method of generatmg initial values for
optimization in the determination of rate constants in reaction kmetlcs The functlon
to be optimized was the sum of squares function -

'f(p) ;2( y,(p))2

wnere
—(ylay29 . aytl) .

stands for the experimental data and
y(P)=(n (P), 32 (P, - 2:(p))

for the response function. The values of the response function y(p) in kinetic work
can be obtained only after laborious calculations involving expansion, numerical
"integration, etc. For optimization of the sum of squares functions, we have used the.
Fletcher—Powell [4] method and a procedure we developed by modifying the New-
ton—Gauss type of iteration [5].. The modified drawing, when combined with one
of the known gradient methods, is well suited according to our experiences for
generating initial estimates in practical optimization procedures [35, 6]. Nevertheless,
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‘this paper should be confined to a lesser job, i.e. to illustrate the appllcatxon of the
method on two test functions.

In Table I, the results obtained with two test functions exhlbmng several local
minima in the parameter-space are shown. The absolute minimum for both functions
lies at pi.=1(0, 0), where f(pmin)=0. The functions themselves, and the parameter
and the convergence regions, expected on the basis of the analytical properties of
the functions, are specified in the first part of the table. In the second part of the
table are listed the lower and upper bounds evaluated from probability functions (1)
and (6), as well as the relative frequencies for both standard and modified drawings
obtained as a result of several hundred computer runs. The values of g.,;,=0.01
and @, n=0.13 used for the computation of the lower bounds have been esti-
mated from the analytical properties of functions I and II, respectively. The upper
bounds have been calculated not from the trivial measure of the convergence region
defined in the table but from the relative frequencies found for single drawings, making
use of the definition of T, i.e. putting p(0cony) = P*(1)=P**(1).

I. Table
1. Optimizations 1. ' 1I.
test functions f(p) = (25 —pY)sin® Ip, +p} Fp) = pi((P3— D+ +pi -
parameter region T={p;|p.| = 45,[p| = 1.5} T= {p;Iﬁll = 2.5, |p.| = 2.5}
convergence 1egion |  Teony = {p; [P2]<0.5, |pa| < 1.5} Toonv = {P; |P1l<1.2,|p:| <2.5}

2. Probability of convergence depending on number of drawings

number of drawings| 1 - 3 6 9 12 1 2 4 6 . 8

lower limit 0,010| 0,030{ 0,059 | 0,087 | 0,114] 0,130 | 0,243 0,427 0,566| 0,672

simple drawing 0,137} 0,35 | 0,50 | 0,63 | 0,68 | 0,550} 0,57 | 0,74 | 0,84 | 0,88

modified drawing | 0,137] 0,35 | 0,55 | 0,71 | 0,83 0,‘550 0,78 | 0,92 | 0,97 | 1,00

upper limit 0,137 0,357 0,587 0,735 0,843 0,550 0,798 | 0,959} 0,992 0,998

By comparing the lines of the table, it becomes obvious that the modified
drawing, as expected, is more efficient than the simple one. Also, the relative fre-
quencies for modified drawings are in good agreement with the theoretical maxima,
thus the method seems to be suitable for the elimination of -the error involved in
simple selection.

A similar result has been obtained in multlparameter fits. The lllustratlon
however, would be more complicated in this case, owing to the features of the sum
of squares functions mentioned above and the excessive computer time needed for
setting up a similar table.

Though the modified method practically eliminates the error in the comparlson
of function values, the problem of generating initial estimates for optimization is
far from being solved. As yet, no satisfactory answer has been found to the main
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question: how many drawings have to be made in a given case (with or without
modification of the vectors drawn) in order to obtain good initial values. No m(P)
_inverse can be given for the theoretical function in Eq. (3), and the limits m, (P)
and m,(P), which might be of theoretical interest and were applied successfully
in this work, cannot be calculated in practical problems. (It is easy to show that the
computation of .., and g@n;, would be a more complex problem than finding the
optimum itself.) The only definite statement which can be made is that the number
of drawings needed to assure convergence in the modified search is always of a
lower order of magnitude than that needed in the direct search. In practice it proved
to be a good strategy to try to find the initial value by modified search from as many
drawmgs as there are parameters involved and to repeat the whole of optimization
in case of divergence. .

Summary

When one tries to determine the unrestricted local minimum of a function of several variables
by an iterative algorithm, it frequently happens that the algorithm is successful only if a sufficiently
good estimdte of the starting vector can be .provided. Authors consider the following process:
generate nrandom vectors, and apply one iteration of the steepest descent method for each of them;

~select as starting vector for subsequent optimization one that yields the least function value. The

_ paper deals with the probability theory foundation of the modified drawing method, and with the
discussion of the experiences of its application. It is proved that this strategy enhances the probablhty
of convergence in practical optimization procedures

CopMecTHOE NpHMEHEHHe Pa3birpbima u MeToHa “steepest descent”
B 3a/1a4e onpede/ieHHs HAYAJBHBIX 3HAYCHHIA NJA Aa/bHeiuleili ONTHMH3 auuH

Ecnu A0KaAbHbIA MUHUMYM GYHKLUHA OT HECKOJIBKHX TIEPEMEHHBIX HYXKHO OIPEACNUTh HTEpa-
- THMBHBIM AJICOPUTMOM, TOTAA OHEpands B OOJILITHHCTBE CiIy¥aeB TOJIBKO B TOM ClIyYae yJayHas,
©CNTM MOXHO IPEANHCATE OTHOCHTEIBHO XOPOMME HAYANbHbIE 3HAYEHWS CO CTOPDOHEI IEPEMEHHBIX,
ABTOPEI U IIPEJIATAIOT CHEAYOIMI METOM MJiA OUPEAETICHUSA TAKUX HAYAIIBHBIX 3HAYCHHUN:

oCJIe TeHePALMH H CIIYYaifHBIX BEKTOPOB, HCXOM U3 HHUX, OCYINECTBIIAEM MO OOHOH HIepalun
MeTonoM “‘steepest descent’’ ® M3 MONYYEHHBIX BEKTOPOB TOT HYXXHO BBLIOpaTh IJIsi MXCOOHOIO 3Ha-
YeHUs, KOTOPBIA ABIAETCH MEHBLIOHM 3HauyeHueM yHkuun. CTaTbsa 3aHUMAETCSI HOBBIM. METOIIOM,
KaK TEOPEeTHYECKHM CHOPMYTHpPOBAaHMEM 3aJiayd TEOPHUH BEPOATHOCTHBIX HCYHCICHHMH, M JaeT
‘Pe3ysibTAT MPAaKTUHECKUX OMBITOB, KOTOPbIE JOKA3BIBAIOT, YTO TaKas CTPATErUA B nencrnnrenbx{ocm
YBETHYHBACT BEPOATHOCTE KOHBepI‘eHHHI{ MeTOJa OUEHKH IapaMETPOB.
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