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Introduction 

The determination of the unrestricted local minimum of a function of several 
variables by the "direct search" methods consists in the sequential examination of 
function values belonging to randomly selected vectors as the independent variables. 
A comparison of each trial solution with the "best" one up to that time helps locate 
the approximate value of the minimum. Even the more sophisticated gradient 
methods [1, 2, 3] cannot dispense with a similar method for generating initial esti-
mates for subsequent iterative optimization. In certain cases (e.g. in the Gauss—-New-
ton method) a favourably chosen initial value is a prerequisite of convergence, 
whereas in others it allows the gradient method to be used for finding the absolute 
minimum of a function in a bounded region. Finally, the number of iterations can 
be reduced considerably if a good initial estimate of the minimum is available. 

We have found that the effectiveness of this method can be substantially improved 
if the initial estimate is chosen not as the vector corresponding to the lowest func-
tion value but, starting with the drawn vector, a step is performed according to the 
principles of the steepest descent and the function values are compared in these 
modified points. 

Both methods are described f rom the viewpoint of probability, and some 
problems of application encountered in practice are discussed. 

Statistical basis of the direct search method 

For the sake of simplicity let us consider the case of minimization. Let the func-
tion to be. optimized be the scalar-vector function 

/(/>!,./>2, -,Pn)=f(P) 

assumed to be continuous and single-valued in the bounded «-dimensional rectangle 
TczE„. Let us suppose further that f u n c t i o n f ( p ) exhibits a minimum in an inner point 
pmia of the region. . 

In order to find the point pmin 6 T that makes the function to attain its minimum, 
let us select some optimizing method which unambiguously determines a Tconw 
(eventually multiply interrelated) parameter interval characterized in such a way . 
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that any point of this interval could serve as initial value for the method to yield 
pmi0, in short : the method is convergent. By using the usual set theory notation 

Tcoav= {p; f rom which the gradient method converges to />min}. 

If the initial value is selected from the (T— Tconv) region, the method "gets s tuck" 
in local minima or some other special points, i.e. it is divergent. In other words, 
this region contains those points of T where such unfavourable properties of an 
"ill-conditioned" function may be experienced as e.g. saddle points or, if the Hes-
sian matrix is used, points where the Hessian is singular or not positive definite. 

If the problem is solved by successive iteration, a preliminary knowledge of 
some initial value / ?*€Tis an important condition. Should no other information be 
available, drawing is to be used for selecting an appropriate p*. Let us suppose that 
a process is available for drawing n numbers at random with equal probability to 
represent the components of p*. We shall now examine thé probability of drawing a 
"good" point that lies within Tconv. 

Let n (X) be the Lebesgue measure of some region XQ T c E„; then the probability 
of finding a point within Tcoav is given by 

P(pt£Tconv) = n(Tconv)/n(T) = Qconv. 

The probability of obtaining a good initial value can be increased by making 
several independent drawings one after another. The probability that at least one 
vector from among the set: p*, ...,pZ chosen independently lies within Tconv can be 
written according to the binomial distribution as 

Pxim) = P ( fo r at least one i: p*£Tcoay; i= 1, 2, . . . , m ) = 

= 1 ~(o)<?conv(l-i?conv)m= l - ( l - i ?conv) m - _ (1) 

The number of drawings to be made if we want to find at least one point in Tconv 
with a predetermined probability P is 

tn'l(P) — log (1 — (1 — £>conv) (2) 

whence the number of drawings is given by 

mi(P) = entier [m'^P)] + 1 

m[(P) being not an integer number. 
Now, provided that gconv is known, in case of some certainty we can perform 

in principle as many drawings as are necessary for determining at least one suit-
able initial value. The only problem is: which one of the m ^ P ) vectors belongs 
to T 9 
t v / •* conv • 

The generation of initial parameters by drawing for minimization is an evident 
yet n ot widely applied possibility just because it is difficult to give a reliable answer 
to th e above question. In practice there is no other possibility of selection f rom the 
vecto rs drawn than to compare the pertaining function values. This method, how-
ever, is not reliable because the vector resulting in the lowest function value often 
does not belong to Tcoov. Therefore a comparison of this kind, as a method of distinc-
tion, might be misleading. 
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In order to evalute this error characteristic of the direct search methods, let 
us consider now the probability that the vector with the lowest function value in a 
set of m vectors is an element of Tconv. 

Let Ak. be the event that k of the selected m points are elements of Tconv and 
introduce the following notation 

Pa(m, k) = P(m\nf{p*) < min/(/>*)! A.). 

P*€TC o n v c o n v 

Further on, let p* be the vector for which 

/ o n = . min Kptl 1 = 1,2,..., m 

Now, considering that upon drawing, the probability of finding k points in Tconv is 

P„(m, k) = P(Ak) = ^onv(l-gconv)m~k 

the probability we are looking for can be expressed as 
m 

P*(m) = P(j>* € Tconv) = 2 Pa{m, k) • P„(m, k) = 
*=i' 

= 1 - W - ' (3) 

This equation is, however, unsuitable for practical calculations. But even so, it 
reflects the uncertainty involved in the comparison of function values. A simple 
consequence of the equation is for example the inequality 

P ^ m y ^ P ^ m ) , (4) 
which follows f rom 

P*(m) 3= 2 ( 7 ) ^onv(l -Ceon»)"-* = 1 - ( 1 -0co„v)m = Pi(m). 

This inequality implies that a comparison of the function values provides absolute 
certainty for the selection of a point in the convergence region (provided that such 
a point is contained in the set) only under ideal conditions (i.e. if the function to 
be optimized has appropriate characteristics), whereas in other cases the compara-
tive technique may impair the efficiency of the search by drawing. This means that 
more than m1(P') drawings should be carried out in order to be able to single out 

. a point which is an element of Tconv with probability P. Although no certain distinc-
tion is possible between the points belonging to Tconv and others (e.g. those lying 
in the vicinity of a local minimum), generally there always exists a region Tmin a T, 
li(Tmin)^0, where the selection on the basis of function values leads to correct results. 
In other words, there exists a region where no mistake arises, and this is nothing 
else but the largest neighbourhood around pmm for all the points of which 
< / ( / ' ) is true, unless p'€ Tmm and p"£{T- Tmin). The exact definition of Tmin is 

Tmin={p;f(p)^ MIN ftp)}. (5) 
' c o n v / 

It follows from the definition that Tmin g Tconv. 
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The probability of finding a point in Tmin among m drawn vectors by compar-
ing the function values can be calculated by the binomial distribution; for the selec-
tion does not lead to error in this region 

P2(m) = P(p* 6 Tmin) = 1 - (1 - gminr, . (6) 

using for j?min the simple relation 

Finally, considering Eq. (5), it can be proved that 

P2(m)^P*(m). (7) 
The probabilities Px(m) and P2(m) are easy to calculate for any value of m and 

through definitions (4) and (7), they determine the lower and upper bounds of the 
probability function P*(m) 

1 - (1 - £?mi„)m ^ P\m) ^ 1 - (1 - £>conv)m, (8) 
The inverse m(P) of the function P*(m) shows how many drawings are to be car-
ried out to get one point lying in the convergence region in case of a predetermined 
certainty P. Although the inverse function cannot be calculated, an estimate of m (P) 
can be made using Eq. (8) 

m^P^miP^m^P), 
where 

m2(P) = entier [m'2(P)]+1 
and 

m2(P)= l o g ( l - / > ) / l o g ( l - 0 r a i n ) , (9) 

respectively which follows from (6) by. analogy to Eq. (2). 
The Upper and lower bounds defined in this way are, unfortunately, far f rom 

each other because in reality n(Tmin) is several orders of magnitude smaller than 
^(Tconv), consequently 

^min ^ Qconv • 

On the other hand, from Eqs. (2) and (9) 
m'l(P) ' l°g 0 — i?min) = ™ i ( P ) . l o g ( l - i ? c o n v ) . 

Now considering that the function x l o g ( l — x) is negative and monotoneously 
decreasing in the interval (0, 1), we get 

m2 (P) = log (1 - gconv) ^ gconv 
m{(P) l o g ( l - e m i n ) ~ gm i n ' 

therefore 
m2 (P) ~ m'2 (P)»mi (P) « m, (P). 

The modified method. Search from random sets modified by a step of steepest descent 

From the above considerations we conclude that a comparison of the function 
values belonging to a number of m2(P) vectors leads to p* £Tmi„. The smaller set 
m ^ P ) also contains at least one vector belonging to ^„„v, but we cannot find it 
owing to the lack of a perfect method for selection. 
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Since the comparison of function values as a principle of selection cannot be 
replaced with anything else, the error can be reduced only by generating a point 
within Tmin. Such a point could be made available only if an m2(P) number of 
drawings had been performed. This task becomes especially hard when practically 
nothing is known about gm i n ; e.g. in the case when, upon increasing the number of 
drawings f rom 100 to 1000, still no Pm i a £T m i a can be expected with certainty. We 
can get out of this apparent deadlock by not generating the parameter vector in Tmin 
by simple drawing. 

Let us carry out one drawing, then modify this point by moving along the 
direction-grad f{p)\p* until a minimum of the function at p** on this line is found. 
The number of drawings and searches be altogether m ^ P ) . It is a practical experience, 
which can be proved for a number of functions also theoretically, that if p*£Tconv, 
then p** £ Tmin is also valid. Therefore, by applying this strategy, an erroneous deci-
sion is practically out of the question. 

This statement has been verified in many practical applications. In parameter 
estimations and also in the case of the test functions to be shown later it has been 
found that the probability P**(m) = P(p** £ 7"conv) by far exceeded P*(m). The vector 
p** is that for which 

/(/>**) = . min / O f * ) . 1 = 1,2,. . . ,m 

As a consequence, if the random vectors are modified by a search for the minimum 
along the gradient direction, it is sufficient to make only mx(P) drawings correspond-
ing to the lower bound in Eq. (9). 

Examples 

We have succesfully used the modified method of generating initial values for 
optimization in the determination of rate constants in reaction kinetics. The function 
to be optimized was the sum of squares function 

f ( p ) = 2 ( y ' i - y i ( p ) ) 2 
' = i 

where 
y'={y'i,y'i, 

stands for the experimental data and 

y (p) = (yi (p), y2 (p), • • •, y, (p)) 

for the response function. The values of the response function y(p) in kinetic work 
can be obtained only after laborious calculations involving expansion, numerical 
integration, etc. For optimization of the sum of squares functions, we have used the 
Fletcher—Powell [4] method and a procedure we developed by modifying the New-
ton—Gauss type of iteration [5]. The modified drawing, when combined with one 
of the known gradient methods, is well suited according to our experiences for 
generating initial estimates in practical optimization procedures [5, 6]. Nevertheless, 
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this paper should be confined to a lesser job, i.e. to illustrate the application of the 
method on two test functions. 

In Table I, the results obtained with two test functions exhibiting several local 
minima in the parameter-space are shown. The absolute minimum for both functions 
lies at pmin=(0, 0), where / ( / j m i n ) = 0 . The functions themselves, and the parameter 
and the convergence regions, expected on the basis of the analytical properties of 
the functions, are specified in the first part of the table. In the second part of the 
table are listed the lower and upper bounds evaluated f rom probability functions (1) 
and (6), as well as the relative frequencies for both standard and modified drawings 
obtained as a result of several hundred computer runs. The values of gmin,i—0.01 
and i?min,ii—0.13 used for the computation of the lower bounds have been esti-
mated from the analytical properties of functions I and II, respectively. The upper 
bounds have been calculated not f rom the trivial measure of the convergence region 
defined in the table but f rom the relative frequencies found for single drawings, making 
use of the definition of r c o n v , i.e. pu t t ing / i (^ c o n v )= / '* ( l )= J P**( l ) . 

I. Table 

1. Optimizations I. II. 

test functions f ( p ) = (25 —Pi) sin2 ITp1 +PÎ f i p ) =p\(<J>l-W+\)+p\ 

parameter region T={p;\Pl\ — 4.5, \p,\ =s 1.5} T={P-,\P1\ 3= 2.5, |/>2| S 2.5} 

convergence region T'conv = { p ; Pi l<0.5 , |/j2| < 1 . 5 } 7"co„v ^ 0>;|/>i|<i.2,1/7,1 <2 .5} 

2. Probability of convergence depending on number of drawings 

number of drawings 1 3 6 9 12 1 2 4 6 8 

lower limit 0,010 0,030 0,059 0,087 0,114 0,130 0,243 0,427 0,566 0,672 

simple drawing 0,137 0,35 0,50 0,63 0,68 0,550 0,57 0,74 0,84 0,88 

modified drawing 0,137 0,35 0,55 0,71 0,83 0,550 0,78 0,92 0,97 1,00 

upper limit 0,137 0,357 0,587 0,735 0,843 0,550 0,798 0,959 0,992 0,998 

By comparing the lines of the table, it becomes obvious that the modified 
drawing, as expected, is more efficient than the simple one. Also, the relative fre-
quencies for modified drawings are in good agreement with the theoretical maxima, 
thus the method seems to be suitable for the elimination of the error involved in 
simple selection. 

A similar result has been obtained in multiparameter fits. The illustration, 
however, would be more complicated in this case, owing to the features of the sum 
of squares functions mentioned above and the excessive computer time needed for 
setting up a similar table. 

Though the modified method practically eliminates the error in the comparison 
of function values, the problem of generating initial estimates for optimization is 
far f rom being solved. As yet, no satisfactory answer has been found to the main 
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q u e s t i o n : h o w m a n y d r a w i n g s h a v e t o b e m a d e in a g iven c a s e ( w i t h o r w i t h o u t 
m o d i f i c a t i o n o f t h e v e c t o r s d r a w n ) i n o r d e r t o o b t a i n g o o d in i t i a l v a l u e s . N o m(P) 
i nve r se c a n b e g iven f o r t h e t h e o r e t i c a l f u n c t i o n in E q . (3), a n d t h e l im i t s m ^ P ) 
a n d m2(P), w h i c h m i g h t b e o f t h e o r e t i c a l i n t e r e s t a n d w e r e a p p l i e d s u c c e s s f u l l y 
in t h i s w o r k , c a n n o t b e c a l c u l a t e d i n p r a c t i c a l p r o b l e m s . ( I t is e a sy t o s h o w t h a t t h e 
c o m p u t a t i o n o f g c o n y a n d Qm i n w o u l d b e a m o r e c o m p l e x p r o b l e m t h a n finding t h e 
o p t i m u m i tse l f . ) T h e o n l y de f in i t e s t a t e m e n t w h i c h c a n b e m a d e is t h a t t h e n u m b e r 
of d r a w i n g s n e e d e d t o a s s u r e c o n v e r g e n c e i n t h e m o d i f i e d s e a r c h is a l w a y s o f a 
l o w e r o r d e r o f m a g n i t u d e t h a n t h a t n e e d e d i n t h e d i r e c t s e a r c h . I n p r a c t i c e i t p r o v e d 
t o b e a g o o d s t r a t e g y t o t r y t o find t h e in i t ia l v a l u e b y m o d i f i e d s e a r c h f r o m a s m a n y 
d r a w i n g s a s t h e r e a r e p a r a m e t e r s i n v o l v e d a n d t o r e p e a t t h e w h o l e of o p t i m i z a t i o n 
in c a s e o f d i v e r g e n c e . 

S u m m a r y 

When one tries to determine the unrestricted local minimum of a function of several variables 
by an iterative algorithm, it frequently happens that the algorithm is successful only if a sufficiently 
good estimate of the starting vector can be provided. Authors consider the following process: 
generate n random vectors, and apply one iteration of the steepest descent method for each of them; 
select as starting vector for subsequent optimization one that yields the least function value. The 
paper deals with the probability theory foundation of the modified drawing method, and with the 
discussion of the experiences of its application. It is proved that this strategy enhances the probability 
of convergence in practical optimization procedures. 

С о в м е с т н о е применение р а з ы г р ы ш а и м е т о д а " s t e e p e s t d e s c e n t " 
в з а д а ч е о п р е д е л е н и я н а ч а л ь н ы х значений д л я д а л ь н е й ш е й о п т и м и з а ц и и 

Если локальный минимум функции от нескольких переменных нужно определить итера-
тивным алгоритмом, тогда операция в большинстве случаев только в том случае удачная, 
если можно предписать относительно хорошие начальные значения со стороны переменных. 
Авторы и предлагают следующий метод для определения таких начальных значений: 

после генерации н случайных векторов, исходя из них, осуществляем по одной итерации 
методом "steepest descent" и из полученных векторов тот нужно выбрать для ихсодного зна-
чения, который является меньшим значением функции. Статья занимается новым, методом, 
как теоретическим сформулированием задачи теории вероятностных исчислений, и дает 
результат практических опытов, которые доказывают, что такая стратегия в действительности 
увеличивает вероятность конвергенции метода оценки параметров. 
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