Notes on maximal congruence relations, -
automata and related topics
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Abstrﬁct :

The paper starts from the fact that if », is an equivalence relation on a free
semigroup A, then (uniquely) exists a greatest right compatible refinement of r,
(see e.g. [3, chapter 9] and [4, 1. §]). ‘

In Part 1, the authors generalize the above question and investigate it in the
case when A is an arbitrary semigroup. They present a constructive proof for one
of the concerning theorems (Theorem 1”) e.g. they show that if r, is an equivalence
relation on A, then the relation

def = {(x, YY(x, yYergAN(Va, b) [a, be A=((ax, ay), {xb, yb), {axb, ayb) € ry)]}

is the greatest congruent refinement of ro in the sense that whenever r, is a congruence
relation on A and r; Cry, then r,Cr,,.

In an interesting way, it turns out that in the deﬁmtlon of r,, requiring
(axb ayb) € ry too (in addition to {ax, ay), (xb, yb)€ ry), is not superfluous: generally
it does not follow from the other two.

The most general theorem of Part 1 is proved by usmg lattlce theoretical consi-
derations (Theorem D).

In Part 2, it is proved (Theorems 2 and 2") that a partial reverse of Theorem 1
is equivalent to A having some sort of the special “qua31 -trivial” structure (Defini-
tion 1).

In part 3, we represent every equivalence class of initially connected Moore
automata, the elements of which induce the same automaton mapping. f, by the
function f, derived from f by putting for every w& X* (X is the input alphabet)

F(w) &L “the last letter of F(w)”.

These functions f we simply call automata. We draw a short parallel between
the notion of an automaton fand the classical notion of a Moore automaton. During
this the theorems of Part 1 prove to be directly applicable to the automata f, and in this
way classical results concerning Moore automata can be deduced (e.g. the Corollary
of Statement 1).

As a generalization of the fact that the semigroup of a finite Moore automaton
. is also finite, we prove (Statement 2) that if r is a right congruence relation of finite
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index, on a semigroup A, then r can always be refined into a congruence relation
of finite index.

In connection with the general investigation of the semigroup of the so-called
_ semigroup-machine (A,"A, §), where A is an arbitrary semigroup and (Va,bcA)
5(a, b) ¥ ab; we- introduce the ¢ ‘congruence relatrons of right uniformity, left uni-
formity and umformlty” (Def. 8).

At the end of Part 3, we prove that the possibility of simulating an automaton
f by an automaton g, depends essentially on the semigroups of f and g, and is
independent of their input alphabets which may be different.

1. Maximal compatible refinements of equivalence relations; generalizations -

In this paper by the word relation we shall always mean a binary relatron r over
some nonvoid set A i.e.
rc AX A A2

6 ”»

If we define an assomatlve bmary operatlon o> on A, we have the semigroup
(A, o). For the sake of simplicity, we shall refer to A as a semigroup simply by-the
same letter A, instead of (A, o) and instead of x o y we shall write xp. Ifan equrvalence
relation r on A has the property

(V25,3 WK y>ErA<u wyer) = (xu, yw>€r] '(1_.1)

we call it a congruence relation on A (as a semigroup). If we regard only “one half”
of (1.1), namely '

(v x, y, w(x, y/‘Er/\uEA) = {xu, yuyer] ., . (1.2)
C(Vx, 3, W(x, Y ErAucA) = (ux, wher), . (1.3)

then we call r a right or left congruence relation respectively. Of course, a congruence
relation is at the same time a right congruence relation as well as a left one. Conversely, :
because of the transitivity of r (a$ an equivalence relation)

(Vr) [(1-DA(1.3) = (1.D)].
(Vr)[((l A, 3)) < (1.1)]
i.e. r is-a congruence relation iff

(Vx, y, (x, y)erhuc A) = ((xu, yuy, {ux, uyy€r)). (1;4)

We shall always use (1.4) instead of (1.1).
The following notations will also prove useful

or

Hence

#A &L {r|r is an equivalence relation on A},
AA X {r|r is a reflexive relation ori A},
FA & {rjr is 4 symmetric relation on A},

TA E {r|r is a transitive relation on A},
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TIAE TAN LA,
- TRA L TANZRA,
FAA L FANZRA,
‘%QA & {rlris a congruence relation on A},
%QRA & {rr is a right congruence relation on A},
@A {r[r is a left congruence relation on A}.

Of course, by definition, ¥A = ZA ﬂy’Aﬂﬁ" A and by the equlvalence of (1.1)
and (14) .
, GoA = GorANGgLA.
_ Further notations
' X {Y]YCX}

(here and all a]ong the symbol “c? may stand for “=" too)
' 1x ¥ ((z, z)|zeX}.:

* If rcA2 and nis a natural number the n-th power of r we deﬁne as

' rnd_ef {<x y>l(3205 215 -:-a n)[(zo, Zl,.-”’ nEA)/\
/\ZO - X/\Z - y/\(<20’ Zl> <Zn—1’ zn>€r)]}
and the transitive closure of r is

o de
r

. 3 (S 5)

1%
et

=1

~ Asis well known, for any set X, 71X forms a complete lattice with respect to the
partial ordering .
In this case, the meet and j Jom operatrons are the followmg

def

nNz= Nz (1.6)
2€Z z€Z : . :
(VZcnX)yand, _ ,
- vz¥ |z - A
z€Z z€Z :

where N, U denote the lattice-theoretical operations and N, U are the usual
symbols of the set-theoretical intersection and union respectively. We agree (as

usual) that .

Nz=X, Uz=0.

z€Q . z€Q
E.g. if X=AZ2 nA? is a complete lattice with meet operation (1.6) and join operation
(1.7). However, if we replace nA? with 7 A, we must modify the join operation of
(1.7) for 7 A to be a complete Jattice (under the partial ordering )

def ¢ def
U r—= U r.
rezZ. rEZ rez (18)

\
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The reason why transitive closure (1.5) has entered is just the transitivity of the ele-
ments of 7 A. It can easily be checked that with the operations 1 and LI, (7 A, C)
is indeed a complete lattice.

‘Using the following notation for any two lattices V and W, V-W=“W is
a complete sublattice of V', the following “‘directed graph” is valid

TSA BorA
N Nga \%A. (1.9)
Ngan”  Ng,A”

(The relation “—"" is itself a partial ordering over the complete sublattices of any
complete lattice, as it is reflexive, antisymmetric and transitive.)

The “edges” in (1.9) between J A and ¥A may be verified simply by using
definitions (1.6) and (1.8), while for those between €A and ¥, A we must take into
account (1.2), (1.3) and (1.4) also (to show that the meet and join operations always
result in an appropriate — belonging to ¥,z A etc. — relation). This is a routine
calculation. (A%~ A is not true, because the join operation in 7 A (see (1.8)) dif-
fers from that in 7A2 (see (1.7))).

The common unit element of all these complete lattices i1s A%, while the zero
element of T RA, €A, CorA, €orA and €A is 1,, and that of A and LA
is @. For any two relations r, r; for which r, Cr, we say that r, is less than or equal
to r, or r is greater than or equal to r,, or (equivalently) r, is a refinement of r,

Theorem 1. If A is a semigroup and

(@ re€TARA and MC{GA, Co A, CorA, oA},
or . :
(b) : F €T A, mryNFA =0 and M=TFA,

'~ then the set HE! M\ nr, has a (unique) greatest element r
‘Q

@ryeH)(VnlreH=>rcr) (1.10)
Proof ' S

(a) By the definition of ry, 1sCry, so H#0 (the case is not trivial). Being
M a complete lattice and HCM, there is in M a least upper bound of H (see (1.8)
and (1.9))

I (1.11)

reH
for which r¢H = rc r, of (1.10) holds. So we have only to prove that
rg€mry. L (1.12)

Being r, the transitive closure of a subset (|J r) of ry (see (1.11), (1.8) and (1.5))
rcH . .

and r, being transitive, :
r,Cry : (1.13)
i. €. (1.12) holds. -

(b) Again H#0 (the case is not trivial) and by an argument, similar to that
of (a), we again have (1.13) i.e. (1.12).
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Now we proceed by giving a constructive proof for a special case of Theorem 1,
part (a)

Theorem I’ If A is a semigroup, ro € A, M {@or A, (KQLA %QA} and H 2 MN
Nargy, then (1.10) holds.

Proof. First we deal with the case M=%,A and then point out the obvious
differences for the case M€{%qrA, oL A}.
Let

e e € ro (Ve B, BEA = (ax, ay), (vb, 3B, (axb, ayby €rl}. (.14

Obviously, r,,Cr, i.e. r, €nr, and-it can easnly be verified that r,, satisfies con-
dition (1.4), so
rn€€oANnr, = H.

It remained to prove (1.10) for r,, in place of r,

(Vr)[reH = rcr,]. o (1.15)

By the definition of H
(i) re%oA :
r¢H o jand : (116
i) rcr,

From (i) of (1.16) follows (see (1.4)) that .
(‘v’a b, x,yEA)(VrGH)[(x yyer = ({ax, ay), {xb, yb), {axb, ayb)Er)] C(1L17)
From (1.17), (ii) of(1.16), and (1.14) we get that

(Vx, y € A)(VreB)Kx, yyer = (x, y)€ral,

which is equivalent to (1.15).
If e.g. M=%, A, then b, {xb, yb) and {axb, ayb) above must be deleted etc.

Remark. Condition (1.4) suggests that requiring {(axb, ayb)€r, too in (1.14) '
is perhaps superfluous, but this is not at all the case

Fact. In definition (1.14), condition (Va, b€ A)[{axb, ayb)€ry] does not follow
from

(Va, beA)[{ax, ay), (xb, yb) € ryl.

. Proof. We construct an example. Let A={l, 2}* (the free monoid, generated
by the set {1,2}) and
ro <= {(uow, wazdu, v, w, z€ {1, 2} A€ {1, 2}* U {4, A), 1,13, (1, 2), (2, 1), (2, 2)},
where A
AEL the empty word (of any free monoid).
It can easily be seen that ry€%A, because (B, y)€r, means that (denoting the

length of the words in A by “lg”) lg (B)=Ilg () and if Ig (B)>2, then removing
the first and last symbols from f# and y, the remaining word will be the same.
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Constructing from this r, relations -

= {{x, y)Kx, y)EreA(Ya€ A)ax, ay), (xa, ya)y€ ri)}

and r, — the latter according to (l.lzi) —, then by an easy calculation we get that
Fm Dl Tm#E s Tm€6A, r,§6qA. Namely, r,=1a and r,—r, = {(1, 2), (2, 1)}.

/ dcf

Remark. If A is a monoid (i.e. a semigroup, having a umt element) then (1.14)
becomes simpler

2 {(x, Y] (V a, b)[a, b€A=><axb ayb) € ro)}. ’ (1.18)

2. ‘A characterization of quasi-trivial semigroups

We shall introduce the followmg

Definition 1. We call the semigroup A right quasi-trivial iff [A|=3 and there is
a decomposition of A:A = A;gUAsr, AjgN Ay =8, for which there is a func-
tion fra:Aer —~Agzg (in case Arp=0) and frat Z(fra)=layyzy' and

¥x€ANY A[ { - yEAlR]-l
(FxCA)TYEM |2 = | 1 (), if yeAse)”

We analogously interpret the left quasi-trivial property. We can refer to both
of right and left quasi-triviality by saying simply quasi- trivial. We call’ the semi-
group A strongly quasi-trivial, iff the structure of A is one of the following three
alternatlves

@D (Vx, »lx, yeA = xy=x],

(i) (Yx, y)[x, y€A = xy=yl, 2.1
(i) (FeeA)(Vx, p)lx, y€A = xy=c]. '

Obviously, if A is strongly quasi-trivial, then it is quasi-trivial also, but the con-
verse is not true. Further, it can easily be checked that the quasi- tr1v1al structure is
associative.

As a characterization of quasi-trivial and strongly quasi-trivial semigroups,
we prove the following theorem, which is a partial reverse of Theorem 1°.

Theorem 2. If A is a semigroup with |A}=3, r,C A? and HE MNizr, where
() M=%geA,
(i) M=%, A,
(ii) M=%, A,
then the needful and sufficient conditi-on of
(Vr[((ro €L2AYN(1.10)) = ro€ TA] 2.2)

1 As usual, 2 and £ stand for “domain’* and “range respectively. The symbol ““t” is used
to denote the restriction of functions. :
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is that ;
(i) A is right quasi-trivial,
(i) A is left quasi-trivial, ' (2.3)
“(ili) A is strongly quasi-trivial,
respectlvely : - )

Remark If in (2.2) we change “= r,€ ZA” into “= r,c%A”, then (2.2) re-
mains the same.

Proof.-First of all, transform (2.2) into an equivalent form

(Vro) [((ro€ SRA) N (re ¢ TA))= 1(1.10)]. - 2.4)

If (2.4) is true, then it must hold for every r, of the form '
re & 1,U{(a, bY, {b, a), (a, c), {c, a}},

a,b,ccA, a#b#c%a. -

(Evidently, for any such rg, ro € %A and rg ¢ T A)
(i) M=%,z A. If one of the two equivalence relations

ry = 1aU{(a, b), (b, )} (cry) -

(2.5)

and
re = 1,U{(a, ), {c, )} (< ro)

is not a right congruence relation, then (2.4) does not hold for ry=rg. (Because if
e.g. 1, §%or A and r, € or A, then taking r,)=r., (1.10) will hold; and if also r ¢ €, A,
then r,=1, will satlsfy (1.10).) On the other hand, if r,, r, E(KQRA then sup (H) by
virtue of its belonging to A, must contain (b, c) (as (b, a), (a c)Ero)therefore in this
case sup (H)€H, ie. (2.4) holds. This argument is valid for any ro ofthe type (2.5),
50 an equivalent transcription of (2.4) is the following

(Va; b)[(a, be d) = (1.U {(a, b), (b, a}) €% ar Al | (2.6)
Using criterion (1.2), (2.6) is further equivalent to . -'
(Va, b, x)[(a, b, x€A) = (ax = be({aa bx} c {a, b}))] N eN)

Now we shall deduce (2.3) (i) from (2.7) (the converse is obvious: if A is rlght
quasn-trlvlal then (2.7) holds). Indeed, define the subset A,r of A so

Air & (xIx€ AA(Y Ny € A=yx=)]) (2.8)
(obviously, A,z may be empty), and let
' A T A—A,,. (2.9)

Fix an arbitrary
- x€Ayp  (if Ar#9).

By the definition of Az, there is a y€ A, for which
'  yX#y, say yx=z. (2.10)
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Then because of |A|=3, there is a u€ A, u=y, usz. According to (2.7)
(z =)yx = uxV({px, ux} < {3, u}).
As z#y (see (2.10)) and, by its choosing, z=u, yx=2z¢{y, u}, so
(Vi)[(u # yAu # 2) = ux = z]. .11
Let us now examine zx. On the basis of (2.7), if u#y and u=z

(zx = yxV({zx, yx} < {z, yP)A(zx = uxV({zx, ux} < {z, u}). (2.12)

As yx=ux=z — from (2.10) and (2.11) —, (2.12) is not other than
zx = zV({zx, z} < ({z, }N {z, u}) (= {z}))

ZX=2.

ie.

Summing up, if x€A,g, then the value of wx does not depend on w
(Afra:Asg = A)(Yw, X)[(WEAAXEAR) = wx = fra(X)]. (2.13)

Taking now into consideration that the structure of A is associative; if x{AzR and
w, s€A, then

Sea@)=s)x=w(s)=wfra(x), Wra()=fra(),
independently of w, i.e. fra(x) € Aog and '
Sra(fra (D))= wfra (x)=/1ra (%),
from which we conclude, that in (2.13)

(Z2(fra) C A2r)A(frat B (fra) = 19(/'“)) (2.14)

i.e. A is right quasi-trivial.
(ii) M=%, A. The argument is analogous to that of case (i).
(iii)) M=%,A.The left counterpart of (2.7) being

(Va, b,x)[a, b, x€A=>(3.ca = xbV({xa, xb} < {a, b}))], (2.15)

we get in a similar way as in case (i), that in case (iii) — using condition (1.4) among
others — (2.2) is equivalent to (2.7)A(2.15), i.e.

(Va,b,x)[a,b,x€¢ A=((ax = be({ax; bx}c{a, bPH)A
A(xa = xbV ({xa, xb} < {a, b})))]. (2.16)
There are two distinct (disjoint) subcases of case (iii) ‘
(@) (Va, b)[(a, b€ ANa = b)y=abc {a, b}],
B (a,b)la, be Aha=bAab¢ {a, b}] (i.e. ().
(«) Fix a, b for which, say, lét )
ab=a (a,bcA, a=b). ‘ 2.17)
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If ¢4 {a, b}, then as now case («) is valid,

: ch€{c, b} (2.18)
and on the basis of (2.7) and (2.17) -
cbhefa, c}. ‘ (2.19)
- As a#b, from (2.18) and (2;19) follows
‘ ch=c. _ (2.20)

Further (2.7), (2.17) and (2.20) give that

bb¢{a, bYAbbE {c, b}
i.e. because of a=c;
bb=b.

From the above we can conclude that

th)[xEA = xb=1x]. 2.21)
Now let : _ ’
yHEbExAY. ' (2.22)
On the basis of (2.15), (2.21) and (2.22)
_ (xy = xbV({xy, xb} < {y, bP)A(xb = x¢ {y, b})
1.€. : : B
xy=x (x=y). : (2.23)

From (2.23), quite in a similar way as starting from (2.17), we can deduce that
(2.21) is true for y in place of . And finally, as y(2b) was arbitrary, we get

(Yu, w)[u, we A = uw=ul]. 29

If at the beginning in (2.17) we alter ab=a into ab=b, then the final. result
will be ‘ ,

(Vu, wu, we 4 = uw=w]. (2.25)
(f) We can start with : ,

(a, b, cc A)A(a=bscsa)hab = c. (2.26) .
From (2.15) and (2.26)
(aa = abV ({aa, ab} = {a, bY)A(ab = c§ {a, b,
from which ' . : ~
' aa=c. ) - (2.27)
Similarly, by means of (2.7) and (2.26), we get

bb=c.
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To determine ac, using (2.15), (2.26) and (2.27), we can write
(ac = abV({ac, ab} < {c, bP))N(ac = aaV ({ac, aa} < {c, a}))A

Aab = chaa = cA(a#=b#c+#a)
ie.
. ac=c. (228)
Likewise
. be=ca=cb=c.
For ba, using (2.7), (2.26) and (2.27)

(ba = aaV({ba, aa} c {b, aP))A(aa = c§ {b, a})
and from this ,
ba=c. 2.29)

At last, starting from (2.15), (2.26) and ch=ca=c, in the same way as leading
to (2.28), we have
ce=c. : (2.30)
Summing up (2.26) to (2.30) .

(VX DI e b cf) = xy=cl. @31)
If z¢A—{a, b, ¢}, then in the same fashion as in (2.29) we have
zb=za=c.
Analogously to deducing (2.31); we conclude, that
(Vu, w[(u, we {z, b, c}) = uw=c] N - (2.32)
and.
(Y, W[, wE {2, @, €)= uw=c]

and similarly, if wcA—{z, q, b, ¢}, then

wz=zw=ww=c. N 4 (2.33)
Summarizing (2.31), (2.32) and (2.33)
(Vx, »Ix, yEA = xy=c]. _ (2.34)

As (2.24), (2.25) and (2.34) correspond to (2.1) (i), (2 1) (ii) and (2. 1) (iii) re-
spectively, we are ready. -

Remark. In the proof of part (iii) and up to (2.13) in that of part (i) (analogous
statement holds true of part (i)) we did not make use of associativity.

In the following we give a second proof for part (iii), on the basis of (2.13) and
its left counterpart, without making use of property (2.14) and the left counterpart
of it i.e. again not taking into account associativity.

Second proof for part (iii) of Theorem 2. Let
A= ARUAgu (A1r N Agg = 0)
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the decomposition of A, defined by (2.8) and (2.9) (this decomposition exists — and
is unique — for any semlgroup A), and let

A=A UAy (A NAy = 0)

be the left counterpart of the former decomposition..
If one of A, and Ay, is A itself, we are ready, evidently having (2.1) (i) or (2 1) (ii)
respectively.

Agg # OAA % 0 S (2.35)

then
. (Vx J’)[(XEAlL/\yEAm) =y =Xy = x]
ie.
{Aml~ |Awl=1,
“{e} gAlR:AlL .

and consequéntly _

" Agg = Ay = A— {e}
(e is the — unique — 1dent1ty element of A)

Furthermore

) (Vx ¥) [(XEAzL/\yEA2R) =Xy = fLA(X)— fRA(y)]
i.€. _

fRA—fLA constant. : o (2.36)

‘Being |A|=3, |dul(=]4.)=2, $0 there are x, y€A,g, x#y, for which on
one hand ex=/fra(x)=fra(y)=ey, while on the other hand ex=x=y= ey, which
is a contradiction, and therefore (2.35) is impossible. Thus, let e.g.

Asg = ANA, # 0

(the symmetric counterpart is quite analogous)
From this 1mmed1ately follows (2.36) with A,g=A,;=A ie. (2 1) (iii)..

"To close Part 2 of our paper, we formulate the fo]lowmg

Theorem 2. If A is a semigroup and |A[ 3 then the following three statements
. are equivalent

() M = %arA,
@ { (i) M= %A, ro€ A%, Hdchﬂnro and (Vro)[(roey%A/\(l 10))=>r0€.7'A]
(iii) M-= % A,
() A is right quasi-trivial,
®) ! (i) A is left quasi-trivial,
|Gii) A is strongly quasi-trivial,
() €A =%arA,
© { () $A =%,
1) %A =%,A
(ie. @) = B)®) = () for x=i, i, iii).

6 Acta Cybernetica
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Proof. 1t follows from the proof of Theorem 2 ((a) = (b) is Theorem 2 itself).

3. Some gquestions of the semigroups and the simulation of automata

In this part of our paper the focus will be on automata, and we shall take
known several widely accepted notions and notations of automata theory.

The set of all initially connected Moore automata, having the same input alpha-
bet X and output alphabet Y, can be partitioned into equivalence classes, regard-
ing two automata equivalent iff they induce the same automaton mapping

Xt~ (Y5 —{A)) , . (.1)

with the following property
(Vng*)(ngX)(i V) fluw) = f(u)Z]/\f(A)E Y.

From this easily follows that

(Vue XH[lg (fw) = Ig (2)+1].

As is known, the functions f defined in (3.1) are in one-to-one correspondence
with the functions _ .
[ X*=~Y . 3.2
(if for all u€ X*, f(u) is the last symbol of f(u)).

In the following — unless otherwise stated — by the word automaton we shall
‘always mean a function f of the type (3.2) and the (not necessarlly finite) non-void
sets X and Y we shall take given.

As a generalization of rlght and left compatlble partitions of the semlgroup A
we formulate the following

Definition 2. If r€€qog A, the partition p is a right compatlble partition on (the set
of classes) Afr ift

(VxX)(VZ,y, Z,, Wi, W2)[(x€A/\(Zla Zy, Wy, WaeAlr)A
/\(Zl {’C} o= WI)A(Z2 {x} c Wz)A<le Zz>EP) = <Wls Wz> €p).2

The meaning of left compatible partition on a partition is analogous.

2

Remark. “Compatible partition on a compatible partition r
compatible partition on the factor semigroup A/r.

is an ordinary

Definition 3. Given a set Z and r €4Z, we call the function .
natr: Z —~Zjr (3.3)
which has the following property
(V)[x€Z = x<(nat r)(x)],

the natural mapping belonging to the partition r.

2 If a binary operation, written as multiplication is defined on a set S, and T, UcS, then
T-U = TU"—”{m|teT/\ueU}
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The composition (consecutive application) of two functions f and g we write
in the form

 g0f, (80)(0) & £(g (). (34)

Definition 4. Given a semigroup A, r€%,z A and the se't Y, we call the function
k:Alr—Y right compatible-free (in short RCF) iff

(V ‘1, S)[(k - (nat q)OS) =4 = 1A/r]

where ¢ is a right compatible partition on A/r and s:(A/r )/q — Y (s is uniquely deﬁned
by g) (see Definition 2, Definition 3, (3.3) and (3.4)).
The meaning of Ieft companble free (LCFY is analogous. Iff above rc%,A and
g€¥€,(A/r), we call the function k homomorph-free (in short HF). :
For any function f; we define the following equivalence relation

SO B PYEDNNSG) = 10D} (3.5)
Now we are ready to prove the following '

Statement 1. Given a function A=Y where Aisa semigroup, the decompo-
sition

, ‘f:_(nat-r)ok (where rE(gA)
(exists and) is unique if at least ene of 'the _folloWing conditions holds
| () r€.gA and k is RCF,
(i) re®oA and k is LCF,
| (i) r€6,A and k is HF
(see (3.3), (3.4) and Definition 4).

Proof o
v (i) Let » be the greatest (“roughest”) right compatible refinement of f° (see
(3 5)) which exists (and is unique) on the basis of Theorem 1’. If /= (nat 7)ok’
is another decomposition, for which 7r, then according to Theorem 1, Fr and
there is a right compatible partltlon q#l A On Afr (see Deﬁmtlon 2), for which
= (nat g)ok” (for some k”) i.e. k' is not RCF -
(ii) Quite analogous to case (i)..

(iii) The argument needs only sllght and obvious modifications on that. of
case (i). .

Definition 5. We supply r and k (which we have introduced in Statement 1) .
- with subscripts R, L and C according to cases (i), (i) and (iii) in Statement 1 respec-
tively and write '

() f= (natrgs) kg, natrR',d_ef R,,
(i) - f= (natry ok, natrLf £ Lf‘,
(i) f = (natrey)okey, natre, & C,.

6*
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" Wecall Ry, L, and C, the greatest right compatible, the greatest left compatible
and the greatest homomorphic component of (or contained in) f, respectively, while
rcs we call the congruence relation of f.

Remark. As a consequence of Theorem 1’, for any f(:A—»Y)'
reyCragCf° and repCri Cf° (3.6)

Corollary of Statement 1, part (i). For any equivalence class K of initially con-
nected Moore automata, the elements of which induce the same automaton mapping
F (see (3.1)) there is a (unique) automaton A in K, which is the state-homomorphic
image of all members in K.

Proof. 1t easily follows from (3.1), (3.2) and bart (i) of Statement 1) (cf. [3,
Chapter 9], [4, 4. §], [6, § 1.11] and [7, § 3.1]).

Definition 6. For an automaton f, the factor-semigroup
def
S, = X*re,
we call the semigroup (characteristic semigroup) of {3

The usual way' of defining the semigroups of automata is found in the following

Definition 7. If M={Q, X, 6) is an automaton without output (with state-set Q,
input alphabet X and next-state function ), the semigroup of M is

S(M) & X*[o (M), | X))
where ¢(M) is the congruence relation Qf M and

| o(M) & {(x, »)Ix, yeX* A(Vq)[g€ Q=gx =gy]}. 38
(It can easily be checked using (1.4) that indeed o (M) €%, X*.) ‘

Remarks
. (a) On the basis of Theorem 1’ (see (1.14) and the end of the proof of Theorem 1/,
and (1.18) in the Remark at the end: of Part 1) using the notations of Definition 5

rr = {6 Mx, yEXTA(Va)la € X* = fxd) = f(ya)l}, ‘
roy = {x PIx, yEX*A(Va)lae X = flax) = flay)]}, (3.9
reg = {(x, Y)lx, y€X*A(Va, b)a, be X* Nf(axb) = flayb)i}.

(b) (3.9) is a more explicit formulatioﬁ of (3.6), and further we can write
rep = (% VKX, y) ergp AV @) @€ X™ = (ax, ay) €rggl},

res = {(x, WKx, Yy Er AV a)a€ X* = (xa, yayery). (3.10)

3 See (3.2) and our agreement following it; and Def. 5.
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(c) From the Corollary of Statement 1, Definitions 6 and 7, and equatlons 3. 9)
-and (3. 10), easily follows that (if 4 corresponds to f)

: S(A) S ' .11
Q(Z)'=' res- | (.12)

(d) If the state-set Q (of A) is finite, then we can even deduce from equations
(3.7) to (3.12) that S(A) is finite too. More generally, in the language of semigroups

and

Statement 2. If A is a semigroup, r€%ozA and [A/r|<oo, then there exists
- anr’crandr’ €% oA, for which [A/r’|< . (Analogous statement is true of r€%oA.)

Proof Let (like (3.10)) |
r S {(x, mKx, y>€rA(Va)[a6A:><ax ayyerl}, - (3.13)

from which we can see at once using (1.4) that 7" €%, A (and evidently r’cr). To
prove the finiteness of A/r’, we rewrite (3.13) in the following way :

r L {(x, polx, )Er/\(Va b)[(a, by€ r=(ax, byyerl}. - (3.14)

(3.14) > (3_.13) is obvious. (3.14) can be obtained from (3.13) by taking into account
thatr €@ or A, so{a, byer = (ay, by)erand beingr € T A, ((ax, av)erA{ay, byyEr)= -
. = {ax, by) €r. Now, with each element x €A, we can associate a function

(s Alr~ ANA(VO)[CEAJr=C () 0:(C)] e

' (thlS was hinted by F. Gecseg) With the functions of 3. 15), an equlvalent form of
(3.14) is

R ERICRNITN NN
VBy‘ the definition of the functiens ¢, (see (3 15))

{p,xc A} {plo: Alr—Ajr} & F,

so r’ can be obtained from r by splitting each class in A/r into not more than |F|
subclasses and therefore
. |A/r'| = |AJr]-|FL. : ©(3.16)
Taking , o
|A/r| = <o,

‘then |F|—m and from (3.16) we get

}A/r | = m-m" = m"‘“<oo : (3.17)
Remarks :
(@) (3.17) is also valid for m’s of any cardmahty, but only m< oo has pract1cal
significance. .

(b) Several authors declare that “any semlgroup_ls 1somorph10 to the-semi-
group of an automaton” (in the sense of Definition 7), but this is wrong: we must-
say “‘any monoid” instead of “any semigroup” and so the statement will already
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‘be true. This easily follows from (3.7) and (3.8), or more generally from the simple
fact: every factor-semigroup of a monoid is again a monoid. The mistake in the
“proof” of the former defective assertion, which uses the so-called semigroup ma-
chine ’

My= gef <A, A, 5>, (¥sy, 52)[5 (51, 52) il 3152]

(where A is any semigroup) is that even if A has no identity element, A* does have,
when applying (3.8) to Ms. We cannot even be sure of

S(Ma)=A; (3.18)
(for any semigroup A, Al_ A, if A is 2 monoid and if not, then A “the monoid
which we get by attaching to A an external unit element’), because if A is not a
monoid, then it can well have right uniform elements. The notion of right uniform
elements we introduce in the following

Definition 8. In the semigroup A, the elements ¢ and ¢” are-said right unifoﬁn iff
(Vx)[x€A4d = xc=xc]

and the relation of right uniformity in the semigroup A we denote with ug(A).

The meaning of left uniformity is analogous and the notation for the correspond-
ing relation is « (A). At last, the relation u(A) % «g(A)Nwuy (A) we call the relation
of uniformity on A.

Remark. Evndently ur(A), uy (A) w(A)€%,A. As an example, suppose A is
right (left) quasi-trivial (see Def. 1), then ug(A) = Afg UfSa (u,L(A) AL UfLs) (see
3. 5)) In this case u(A)# 14 iff. Ajg=0 (A;.=0) and f¥a= 14 (ffa=1,), so there
exist A’s for which ug(A)=u(A) («L(A)= u(A))

A trivial example for uniform elements is the case when A is strongly quasi-
trivial and (2.1) (iii) is valid (Def. 1). A less trivial example is the following: take an
arbitrary semigroup A, and choose a c€A, and let ¢ A,, AZA U {¢'}. If we
deﬁne the operations in A so

(Vx, y€A)[x, €A, = (xy(in A) = xy(in Ag)Ac’x(in A) =
= cx(in Ag)Axc’(in A) = xc(in Ag)Ac’c’(in A) = cc(in A))]..

then c¢c=¢’ (mod u,(A)). Of course, by this method an unbounded number of uni- -
form elements can be achieved. (If, furthermore, we randomly select some pairs
(x, y) for which xy=c (in A) and change their result into ¢’, then A will remain a
semigroup and ¢’ will play a more active role).

Now if A has right uniform elements, then (3.18) will not hold, because when
forming S(M,) according to (3.8) and (3.7), the right uniform elements of A will
“coincide” in S(M,). This can be expressed in the following

Fact. For any semigroup A, S(M,)=(A/ug(A)), and S(MA)NA 1ff Ais a
monoid (see Def.’s 7 and 8).

‘Proof. Easy from Def.’s 7 and 8.

Now, let us come to the question of the simulation of automata by each other.
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We say that the automaton f can simulate (in short: simulates) automaton f”
(both fand f” correspond to (3.2)), iff there are suitable functions 4 and p, for which

[ = /zofop, ' (3.19)
where (3. 19) we interpret in the sense of (3.4). Here .
f: X*—»Y and f X{-Y.
A glance at (3.1) and (3;2) convinces us that in (3.19)
h:X* ~ Xf

oty and “=” are the usual. symbols for denoting homorphlc and isomorphic
mappings respectlvely)

First we prove that the possibility of simulation depends essentially on the

semigroups of the automata in question, and is independent of the input alphabet

' Theorem 3. Let f:Xf~Y and g:X;j-Y two automata, i:S; %S, and
o key = lokc (3.20)
_Then fand g can simulate each other.* '

Proof. It is enough to prove, that g can simulate f. (In the followmg proof, the
definitions, relations etc. mentioned in footnote 4, will be widely used w1th0ut
further explanation.)

Let _ o ‘

o : hy: X, Xr 3.21)
be such that : ‘
o (VxeX)hx)e o] - (G2Y)

From (3.21). easnly follows, that h, can be uniquely extended into a homomor-
phism .
ChiXf- X[,

for which au'tomatlcally h(A)= A (otherwise the reader is likely to know the verifica- -
tion of the existence and uniqueness of 4, from the theory of free semlgroups)
As as consequence of (3.22), it can’ easﬂy be seen that

(VWEXHMWEC o) W) , (3.23)

(It is usual also to require from #,, that for every x€X,, Ig (i (,\)) is the least
possible, but this is not necessary for our purposes.)

(3.23) eans. that _

. (Y WEXP)[(hoC(w) = (Croi) (W),
T Le. ’

’ hoC, = Cyoli.

% See Def.’s 5, 6, equatien (3.19) dand convention (3.4).
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Multiplying this equation with equation

-kcgolyz kcg,
we get ' .
ho(CgokCg)olY= Cj‘o(iokCg)

and taking into account (3.20)
_ : hogoly = f,
i.e. g can simulate f. '

* COMPUTING CENTER OF THE HUNGARIAN **RESEARCH GROUP ON MATHEMATICAL LOGIC
MINISTRY. OF HEAVY INDUSTRIES, BUDAPEST AND THE THEORY OF AUTOMATA OF THE HUNGARIAN
. ACADEMY OF SCIENCES, SZEGED -

3ameuanna 0 MaKCHMAJIBHBIX KOHTPYeHIHAX,
aBTOMATaX H CMeKHBIX TeMax

CTaTbfl COCTOHT H3 TPEX qacrei.
B 1-0i#f yacTH aBTOPH! 3aHAMAIOTCS CIIeOyIOMAM 0000meHueM: ais DAHHOM CBEPX HEKOTOPOH
NOJyTPYNIEI A SKBHBAJIEATHOCTHOM PENAIMA OTHO3HAYHO CYTIECTBYET YTOUHEHHE O MAKCEMATILHOM
KOHTDYCHIHH, JOKa3aHO, YTO BMECTO SKBHBAJIEHTHOCTH B s 6071¢ee 0606IICHHEX pensumii oaH03-
HAYHO CYIIECTBYIOT MaKCHMAJILHBIC YTOUHEHHs DOJiee 00mIero THNa, YeM KOHT DYEHIASA.

Bo 2-o#f vacTH HOKa3bIBAETCsH, YTO HEKOTOPas BO3MOXHAs HHBEPTHOCTH Pe3yiibTaToB 1-oif
9aCTH B3aHMHOOQHO3IHAYHO COOTBETCTBYET ONPEACIICHHOM CIEUNAaNbHOR ONEPAaUMOHHOM CTPYKTYpe
nONyrpymmst A.

B 3-eii yacTE mcClIenyrOTCS BONPOCHI, CBA3AHHBIC .C MOJIYrPYIIIaMH aBTOMATOB: Mypa U X .
CAMYJIALMEH, HCXOAS B3 KBHBAJICHTHOCTHBIX H KOHI'DYEHTHBIX PEJIAIMIA, BleOJ.ISlIIIPIX H3 Tpancdop-
Maumit aBT oMata Mypa, B HCHONB3ys pe3ymbTaTh! 1-0if yacTH.
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