‘On the computation of union-extensions
- of finite semigroups

By R. Brock and H. JURGENSEN

In his dissertation of 1968 [3] Verbeek proposed a generalization of the theory
of semigroup extensions, which until that date consisted of the two nearly dlS_]Olnt :
parts of Schreier- and ideal-extensions. According to Verbeek we define a semigroup
extensxon as follows: ~ :

Deﬁmtlon 1. Let 4, S, E be semigroups and da congruence on E. The pair
(E, d) is a semigroup extension of 4 by S, iff E/6=S and there is a subsemigroup
A’ of E, isomorphic to 4, which is a é-class.

In the rest of this paper we shall often say that some semlgroup E is an extension
of 4 by S in the sense that there is a congruence é, such that (E, 6) is a semigroup
extension of 4 by S. :

Schireier- and ideal-extensions are .semigroup extensions accordmg to this
definition. Verbeek proved that there is an extension.of 4 by S, iff .S contains an
idempotent element. Thus for finite 'S there is a]ways an extension of arbitrary °
A by S. The idempotent concerned is the image of A’in S and is called the extension
idempotent.

For 1deal-exten51ons the homomorphism 5nat induced. by 4 is a- Very special -
one: it is a bijection of ENA". Generahzatlon of this idea led Verbeek to the concept
of union-extensions:

Definition2. Let 4 and S be semigroups,.(E, §) a semigroup extension of
A by S. (E, d) is a union-extension of A by S, iff the restriction of ¢ to E\A’ is
the identity relation, where 4’ is as in definition 1. ~

As for ideal-extensions for finite 4 and S the set of all unlon-extenswns (up to
- isomorphism) may be obtained in a rather simple way.

Theorem 1. (Verbeek). Let A, S be disjoint semigroups, i€ .S an. idempotent
element. For E=A4U S, where S™=S\{i}, define an associative multiplication
% such that the following conditions hold for all @, b€ A4, 5, t€ S~

axb=ab, M

,{=z’s if iss=i, C
TN e if is=i, “ @



110 R. Brick and H. Jiirgensen

=si if sizi,
SEAN ¢ if si=i, S
=st if st=i, 4
S*¥N e 4 if st=i. *

Then ((E, #), 6) is a union-extension of 4 by S for
d=AXAU {(x, x)|xe S~}

Moreover, any union-extension (E’, 8’) of A by S is isomorphic to one constructed
in this way, where i is the extension idempotent.

Theorem 1 indicates a combinatorial method of computing the set of all union-
extensions of 4 by S (disjoint) with extension idempotent-i as follows. For 4 and
S both finite, given by their Cayley-tables T4 and T%, consider column ¢; and
row r; of i in S; the entry ¢ belonging to ii will be replaced by 4; the rest of ¢;
and r; will be copied | 4] times tc obtain a full table again; then, wherever it appears,
i will be replaced by a cross indicating that the corresponding position is unknown;
- call the resulting partial table 74-5. .

Example. »

TA|a b TS|s ¢t i u v TAS|s t a b u v

ala b st i s s s s t + 5 5§ 5§

b|b b t it ottt to{+ 0ttt

ils t i i i a st a b + +

uls t i u i b s t b b + +

vi|s t i i v u s t + + u +

v s t + 4+ + v

One obtains all union-extensions of 4 by S with extension idempotent i by
replacing the crosses in 745 by elements of A in all possible ways, such that the
resulting table will be associative. Of course, this purely combinatorial method
would soon lead to enormous computing time.

A solution to this problem is indicated by Verbeek’s discussion of the compo-
sition of S with respect to i‘and by his theorems on the existence of union-extensions
of A by S, when S has some special composition. The set of all possible compositions
of semigroups has been described in parts by Verbeek [3, 4] and fully by van Leeuwen;
unfortunately, he published his results in an abstract [2] only up to now.

We took a quite different and a rather naive way for computing the set of
all union-extensions of A by S with extension idempotent i; all the same the computing
time needed is very well below the time for the purely combinatorial method, at
least when the number of extensions is small compared to the number of tables
to be checked. - _

For x, y€ AU S~ let x % y be undefined in 745, This entry of T4:5 is considered
as an unknown u, , over A. Then by associativity one has a set G of equations
over AU S~ with unknowns u, ; over 4 such that exactly the solutions of G are
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the allowable ways of replécing the crosses in T4S. We classify the equations
according to their forms as follows:

G, ={x*u, , = ux’y*z} - x,z€A, Gg= {Ux.,u,,, = "ux,,,z}r .
G, = {x*u, , = u,,,?} xXCA, Gr = {uy,uy,, = Uxy, o}

Gs = {uy . = ux’;*z} | Z€A, Gs = (e y: = ty, .2}

G, = {x*uy,z =Au“x,y,2} X€A, . Gy = {ux,yz = u.xy,z}'

Gs = {uy,,, , = Us %2}  ZEA, : :

It is the aim of the following method for solving G to successively narrow
the domains of the unknowns and thus to avoid unnecessary trials.

We denote the domain of the unknown u by. D(1). In the computer programme
the set of the D(u) is realized by an nx]Al-mteger-array DOM, where n 1s the
number of unknowns, such that

DOM,, ) :.{ 0 if a¢ D),

if ae€D(u).
To enable an easy test, whether G has been solved, we put [D(u)!— 2 DOM,, .

in another array, which of course will be changed whenever DOM 1s changed
. In the beginning all the D(u) are 4, i.. DOM, ,=1 for all u and all a€ 4.

Step 1 consists of evaluatlng each of the equations in K;=G;UG,U Gj.
equation X% u, ,——u, y*z in Gy leads to xD(u,, 2 =D(uy )z, which, however
will not be valid in most cases. Clearly there is a solutron u, ,—-WIED(uy s Uy y=
=w, € D(u, ). to.the equation only, if ‘ o

xwy € D=D(u, )z xD(u, ,) > wyz.

Hence we can cancel all-those wy € D(u, .) (ws€ D(u, ,)) in DOM, for which
xwy§ D (wyz¢ D) and thus narrow the domains D(u, ,) and D(u, ). Furthermore,
all equations from Gy in which u, , (u, ;) appears lead to restrictions; let u, ,=u
be such an equation; then D(u) will be narrowed to D(u,,). For the equations in

- Gy or G, one proceeds analogously. Some special cases arise when x and (or) z
are (one-sided) identity- or zero-elements of A; they may result in transferring the
corresponding equation to another type G (e. g to G, if x=z is the 1dent1ty-element
of A).

" Since a change of D(u) for an unknown u mlght lead to consequences from
equations which have already been evaluated, step 1 is repeated until there is no
D(u) that can be narrowed any more.

Performing step 1 might result in one of the following three situations; other-

wise we continue with step 2.

(1) For each u, |D(u)|=1. Then DOM represents the only solution of G.

(2) ‘For some u, |D(u)|=0. Then G has no solution. '

(3) For some u, [D(u)]=1. Wherever u appears in equation e¢K,=G,UG;U
UG,UG,UG; as a.subscript of an unknown, it is replaced by its unique value.
As a consequence in most cases e must be transferred to another class G;. If by
this procedure K; or Gy is extended, e is evaluated and if this results in a restriction
of some D(u) execution of step 1 is resumed; otherwise step 2 is started.
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In step 2 combinatorics comes in. G, DOM and all other information relevant
to the situation are saved. Then for one unknown u we assume u=a for arbitrary
a¢ D(u), i.e. restrict D(u) to be {a} in DOM, and try to solve G applying step 1
again With G, DOM etc. restored this is repeated until D(u) is exhausted. Evidently
in this way we compute exactly the set of solutions of G.

Some care has to be taken with the choice of u in step 2. It is chosen in such
a way that changing D(u) is likely to induce changes of the domains of as many
other unknowns as possible; hence, with priority as stated, the following criteria
are applied:

(1) The number of unknowns u is equal to by equations in G, (using transitivity,
too) is maximal.

(2) The number of equations in K;, in which u appears as a subscrlpt is maximal.
(3) |D(u)| is maximal.

The algorithm has been realized as an ALGOL 60 programme [1] and is run on
" an ELECTROLOGICA X8 computer (cycle time 2.5 usec).

Whereas it is evident that for the combinatorial method the time is = O(nl4l),
where » is the number of unknowns, it seems to be impossible to give a rather
correct estimate for our method; it is bad, of course, when the number of union
extensions is approximately n!4}; but in this case any method should be bad. The

Table 1

Example No. 1 2 3 4 5 .6 7 8
1A} 3 3 4 4 5 5 6 6
IS| 2 5 o2 5 2 5 2 5
with ideal-extensions yes no yes no yes no yes no

~ unknowns 6 16 8 20 10 24 12 28

. combinations 729  =4.107 65536 =102 =9.10®% >5.10% =2.10° >6.102
union-extensions 26 163 4 15 8 3 16 0
our time 20s 55m 11s 80s 25s 17s 67s Ils
time for combinatorial 14s =~140h =10m =870 =30h =5-107 =300 =3.1012"
method years years days years

followmg table 1 allows a comparison of actual computmg times; of course the-
figures in the last line can be considered just as hints to the approximate size, since
they were calculated from the state of the pogramme after a short run only. The
corresponding semigroups are listed in table 2.

Tablp 2
Example No. 1 2 3 4 5 6 7 8
‘Semigroups A1 +87 Ay +Ss A+Sy  As+S;  As+S)  Ag+S,  A+S,  A+Ss
Multiplication | S, ab 'S, abcde A, xyz A wxyz Ay vwxyz | Ay uvwxyz
tables — :
alaa a|abcaa x| xxx w | wwww v | vovve u | uuwwyz
ab b | bcabb y | xxx x| wxww w | vooww v | uuwwyz
¢ | cabee Z | xxx y | wwyz X | xxxxx w | wwuuzy
d | abeda z | wwzy ¥y | vovyy x | wwuuzy
e | abcae z | voxyz y | yyzzwa
z | zzyyuw

The element a is the extension idempotent.
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O noiayvenns ¢ HOMOIBLI0 BHIMHCIRTEIbHONH MANIHHBI 00beIHAEHHOTO
pacuiMpenus KOHEYHBIX NOJYTpynmn

) B 1968. rony Verbeek man ompeneneHue [l HOHATHS OOBCAMHEHHOTO PACHIMPCHUA IOy~
Tpynn —, Kak o00o0meHue 3TOr0 NOHATHA OJS MACAbHBIX PacIIHpPCHUMN.

Kak u 1719 HAeanbHOTO PACIIMPEHHs, Mbl HMEEM OPOCTOH AJITOPHTM II7S HOJyUYeHHS Ha Bbl-
YHCIHTELHON MalMHe ceMefcTBa OObEAMHEHHOTO PaCIIMPEHMil NBYX KOHEYHBIX HONYTDYMI, HO
3TOT anropuT™M TpebyeT GONBINOro KOJIMYECTBA MALIMHHOTO BPEMEHH. DTa CTAThf ONKCHIBAET
OAMH TAKOH aJrOPHTM, KOTOPHII B O6IIEM TpeGyeT 3HAUMTENBHO MEHBLLIIETO BPEMEHH, OH pea~
JM30BaH Kak mporpamMa Ha s3sike ALGOL—60.
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