| Algorithm for constructing of university
timetables and criterion of consistency of requirements -

by A. KRECZMAR

1. Introductlon

The construction of timetable by means of a computer is the subject of numerous
publications. In all these papets two similar problems are 1nvestrgated

(1) constructing a school trmetable ‘

(2) constructing a timetable for university department
In the first case there are given three sets: a set of classes, a set of teachers and
a set of time periods. One lesson can be interpreted as.a meeting of a teacher and

. a class for one period. The problem is to schedule all’lessons so that no teacher

and no class has two or more different lessons at the same hour. Moreover, we
must also take into consideration the problem of the so-called preass1gnments :
it means that lessons are not available at every penod of time.

The second case is more complicated. We shall indicate below three requrrements
which will be the subject of further investigations. -

(a) University department consists of-'years, sections groups etc. which can
have certain common jobs.

(b) One lecture can last more than one time period. :

(c) Every lecture must take place in a given room; therefore apart from sets

. just defined there is given a fourth set, a set of rooms. :

In the present paper we shall ‘give a condition necessary and sufficient for
existence of university timetable and an -algorithm of constructing of it. We shall
use some basic notions of the theory of graphs such as; an independent set, a chro- .
matic number or a colouring of a graph whose definitions the reader can find in [1].

2. Two deﬁmtlons of tlmetable

- For the ﬁrst time the timetable problem was defined by Gotlieb. [2] as follows.

Let T={t;} (i=n) be the set of teachers, C={c;} (j=n) the set of classes and
H={h} (k=p) the set of time periods. -

Let us consider two matrices: 4={q; ,} (i=m, j=n) where a;; is an 1nteger point-
ing out how many times a teacher f; must meet with a class ¢; and B={b;;} (i=m,
Jj=n, k=p) where element b; j is 1 if teacher ¢ can meet class ¢; at hour A, and 0
in the opposite case. A pair (A B> defines the set of -all requrrements
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Definition 1. The matrix S={s;;} (i=m, j=n, k=p) fulfilling the conditions:

Z; Sip=1 ) Z Sijk = @)
P .
kg; sijk = a,~_,~ (3) If sijk =] then bl'jk= l (4)

for arbitrary i=m, j=n, k=p is called a timetable for the requirements {4, B).

Gotlieb describes in his paper an algorithm of constructing the timetable
S for given requirements (4, B). The method used by him is based on theorem
.of P. Hall [3] on distinct representatives of subsets. Unfortunatly this algorithm
-does not answer the questions whether timetable exists and whether solutions
-attained are all which satisfy conditions (1)—(4).

In order to introduce our method of reducing the timetable problem to the
-colouring of graph we must change a litile the definition of timetable. In 2. 1 we
shall show that this new definition is an extension of the first one. '

Now, let L={l;} (i=q) be the set of all lessons. With every ; (i=q) we
-associate the set g;C H, of time penods at which lesson /; is admissible. The inter-
ference condition between lessons is described by the relatlon oC LX L fulfilled
4if the lessons can not be scheduled at the same our.

Definition 2. A sequence x=(h, ..., h%) of elements of H .will be called a time-
table for the family G={g;} (i=¢g) and the relation g iff

h'Eg,- i=1,..,q : ®)
if Lol; then K=K i, j=q. 6)

In fact, these conditions say that if lesson /; is scheduled at hour /' then from
«5) I; is admissible at 4' and from (6) lessons never interfere.

Now we shall show that definition 1 can be replaced by the other.

2. 1. For arbitrary requirements {4, B) there exist set L, family G and relation
.0 so that there is a one-to-one correspondence between timetables S and x.

Proof. For the given matrix A we can easily define L as a set of corresponding
‘pairs (t;, ¢;). The relation g is given by the following equivalence:

(ti, ;30 cw>_=_(i=u)/\(j—_—— w).
gijz{hk: bijk=1}

is a set of time periods admissible for (#;, c;). By a direct verification we see that
-equivalence '

Next

spp=l=hegy;

.determines demanded correspondence

Let us observe that definition 2 is an essential extension of the first one. In this
-definition we can take into account the condition of type (a) and many others not
_mentioned here, by appropriate determination of g. So, if two lessons [, /; for
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some reason or other cannot be scheduled at the same hour we put /;0/;, and —1 J;0/;
if this is not the case.
- To compare requirements (4, B) to these described by G and ¢ we shall
- consider an example due to Cisma and Gotlieb [4].

In their example n=m=p=3, A={a;} (i=3, j=3) where au—l and the
matrix B is following: .

110 101 011
by =011 by=111 byp=110
101 110 110

_ For these requirements Hall’s conditions are fulfilled but a timetable S does
not exist.

In the new definition the set L contains all pairs - (t,, c;y i=3 ]<3 Subsets
g;; are following:

gn= {hl, hz} glz—{h2, hs} g13—{h1a ha}
g21={h1, hs} gzzz{hn hy,s h3} g23={h1, ’13}
8= {hs, ha} g32={h19 ho} gss={M, ho, s}
then G= {gu: 812> £13> g21, 822> 823> 831> 8325 Sa).. The relatlon ¢ can be displayed
asa matmx .
A L lylslg I Ig g

5, 011100100

b 101010010
I3 110001001
L, 100011100
o=l 010101010
5001110001
I, 100100011
5L 010010101
L, 001001110
where ¢;;=1=10l; (see also figures 1 and 2).

3. Graphof a timetéble

We denote by F the set {/, ...,/ hy, ..., h,} and by nC FXF the binary
relation defined as follows: :

Inhi=h,6g,  hl=lzh; - ®)
. hymhi=iFj o | ' ®

4 Acta-Cybérnetica
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The graph E =(F, n) where F is a set of vertices and = a set of edges will be
called the graph of a timetable. Since a relation = is symmetric and antlreﬂe}uve
then there exists the unique chromatic number of graph E.

Now we can establish the main result of the present paragraph.

3.1. A timetable x=(A!, ..., k%) exists iff a chromatic number of graph E (Fmy
is equal to the number of e]ements of H(E is p-chromatic).

v Proof. Let x=(h',...,h%) be a timetable fulfilling (5) and (6).and let D,=
={h}U{l: h=H} (k=1,...,p). We shall show that the sets D,,...,D, form
a family of independent sets which covers the graph E.

. Really, if'l;, [;€ D, then h‘—h’—hk and from (6) 1(Je/;). Next if /;€ D, then
hy=H and from (5) A, € g;. By (7). 1(4inl;) and by (8) 1 (/; nhk) so D, are independent.

‘Since for every J; exists D, such that ;¢ Dk, sets Dy,..., D, cover the graph E, it means -
E is at least p-chromatic. On the other hand the chromatic number of E cannot
be less than p, because there is a complete subgraph of the order p contammg all
vertices ki, (k=1, . o P

" Thus necess1ty is proved. . } ' .
Now, let the family D, ..., D, denote a covering of graph E. AsallD, (k=1;...,p)
are independent and every hk must belong to some D, we can associate w1th every
D, one element #4;.
. - Now for every ; (i=1,...,q) we choose an arbltrary hy such that l,€D,.
If A stands for this A, then a sequence x=(/', ..., h%)-is a timetable.
: In fact, I, A€ D' so —1(K'nl) and by (8) h‘e gl If for some l,,l @i=)) i=H
.then /;, /; belong to the same Dy, it means (I n ) and by (7) —1(el).
It ends the proof of sufficiency. - '
Immediatly from 3. 1. we have :
3. 2. There is an effective procedure of constructing for arbitrary p-colouring
. of graph E a timetable x if it exists. '
The constructing procedure was given in the proof of sufficiency in 3. 1. :
So far as can be seen 3.1 establishes the condition necessary and sufficient
for the existence of timetable. In 4. it will be shown how to obtain all p-colourings of
graph E and due to 3. 2 we shall be able to obtain all sequences satisfying (5) and (6).

4, Algonthm 1

Efficient methods for graph colouring were 1nvest1gated by many authors
([5], [6)) and any of them may be used here.
In this paragraph we shall present a simple idea of J. Wlessman [6] who
applied boolean transformations to this problem.
Let us consider a graph E=(F, n) for requirements given in 2. (see figure 1).
We treat an ordered set of all -vertices as a -set of boo]ean variables.- A boolean
olynomJal .

fo = b+l (b+hl) (1) (15+1214)
+ U+ blals) (la+-hiy) (s+bish) (a+Dlshls)
(i + L) (ho+llhy) (hy+hlglshihy)
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where every disjunction contains a negation of successive vertex and conjunction
of negations of all precedent coincident vertices with this one, is transformed into

the disjunctive-conjunctive normal form DC(f).
Complements of the set of vertices which occur in successive conjunctlons of

DC(f,) are maximal independent sets ([6]). Thus
Di={ly, Iy, h} Dy={ls, Iy, I, Iy} Dy={l, 1, ls, i}
Dy={ly, Iy} Dy={l, ks, los by} De={ls, I, iz}
Dy ={ly, Iy, by hs}  Dy={ls, by, hs} Do={l1, ls, ls, by}
Duo={hs by oy b} Du={ls, ls, by s} Dre={ls, lss lo, hs}
D ={l, 1, 113}». D@= {lo, Iy hs}  Dys={ls, Iy, hs}.’
In order to obtain all p-colourings of E lgt us observe that,
' LeD; or 71ED5 or LE€D, or L€D,,
l2 €D, or LeDy or LED, or LEDy etc.
Then a boolean polynomla.l -
fo = (D3+Ds+Dg+ Dyg) (D7+Dg+Dyp+Dyy) (Dy+Dy+Dyy+Dy3)
(Dy+Dy+Dyy+Dyg) (Dy+ D5+ De+Dyg+ Dyy + Dys) ‘
(D3+D;+Dg) (Dg+Dy+Dyj+Dyy) (Dy+ Dy+Dy)
(Dy+Dy+ Do+ Dyy+ Dyg+Dyg) (Dy+ Dyt Dyt Dy+ D)
A (Dg + Dy+Dg+Dy+ D) (Dyy+ Dyp+Dyg+Dyy+Dyy) .

transformed into the disjunctive-conjunctive normal: form DC(f,) determines all
coverings of graph E. In fact, if a conjunctive Dy, ..., D; occurs in DC(f;) then
every vertex must belong to a certain D;; (j=k). Since we search only p-colourings
in every step of transformation those conjunctions which have more than p elements
must be removed. In our example there is no conjunction in DC(f3) which has
3 elements then in virtue of 3. 1 a timetable x for these requirements does not exist.

But if the number of the edges of Eis reduced by deleting an edge between /5
and %, in the polynomial f; we obtain hy+//hh, instead of hy+11lhh,, then
Dyy= {12, Is, I;, hs} and next in f, there is (D3 + Dq+ Dy+ Dy,) instead of (Ds+Dy+ Dy).
Thus in DC(f;) occurs the conjunction Dy, Dy Dy, Wthh gives a unique timetable
X= <h2sh35h13h13h2’h35h3’ hl’ h2>

An interesting problem arises in the case of inconsistency of requirements:
What is a minimal number of edges whose removmg decreases a chromatic number
" of graph E?

This problem is strictly connected with the notion of the critical graph which
was investigated by G. A. Dirac ([7], [8]).

4‘
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5. Multiperiod jobs

In the case of condition (b) apart from sets L, H, G and relation g there is given
a function n: L — N (set of integers) the value of which n(/;))=n; defines how many
consecutive time periods /; must last. So, n;=1 defines a single period, n;=2 a double
period etc.

We denote by (A, n) a time interval beginning at /i, and lasting n time periods.

It means that
<h, n>= {hk’ hk+1’ cary hk+n—1}

provided that hk,h,;+l k=1, ...,p—1 are consecutive periods.
Now, for requirements with function » we must introduce a new definition
of timetable. '

Definition 3. A sequence x=(h!, ..., h% will be called a timetable for require-
ments with function n iff _ :
<h‘, n,->Cgi i: 1, caey q (10)

If Lol; then (K, n)N(H, njy=@ (empty set). - (1

These two condition correspond with (5) and (6) where one time period /; is .
changed by a whole interval (i, n;).

5. 1. A timetable x=(h', ..., h%) exists iff there is a covering D={D,, ..., D,}
of graph E=(F, n) such that D,, k=1, ..., p are independent sets and

hkeDk k=1, ...,p . (12)
for every i=1, ..., q exists k;=p—n;+1 such that (13)

ki+n—1 ] ) )
le D;(J; belongs to the successive #; independent sets)
=k .

J=K;

Proof. Let x=(h', ..., ") be a timetable and let D ={h}U {/;:h, €{, n)}.
The proof. of independence of D, is analogous as in 3. 1. The condition (12) is
immediate. Let k; stand for an index of A’ in the set H. Thus L€D, N D, ., ...
«.e N Dy, 4.~y which proves the condition (13). . ' :

Let us assume that independent sets D,, ..., D, satisfy (12) and (13). We can
"define a timetable x as a sequence (fi, iy, ..., Iy ). For h €{hy, n;y by (12) I € D,
and by (13) /;€ D, which is equivalent —i(/#n/}). From (8) —i(h.nl) iff h €g; thus
{hx;mycg;. In order to prove (11) let us assume that (hy, myN\ (i, np)=@.
It means that for A, €(hy, n;yN\ (i, n;) in virtue of (9) and (13) L€ Dy, I;€ D,.

Thus [, /; belong to the same D, which implies —1(/;0/)).

6. Algorithm.Z

The theorem 5.1 establishes the condition necessary and sufficient for the
- existence of a timetable with multiperiod jobs. First, so as in algorithm 1 all maximal
independent sets D={D,} of graph E must be achieved.

The second part of procedure we exemplify by colouring the graph from figure 2.
This graph we obtain from the graph displayed on figure 1 by adding one vertex A,,
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five edges hy iy, hyhs, hy s, hyly -and removing one edge hyl;. The function
n is determined in this example as follows: ny=ng=n;,=2, ny=ny=n,=n;=ng=ny=1.
The family of maximal independent sets for this graph is increased by five sets

{[u 55 /74} Dl'7= {[1, ls, I, /74} D= {123 ls, Iy /74}
D19: {[3, I, L, ’74} Dyy= {133 Iy, 114}'-

Since n,=1 the vertex /; satisfies condition /,€ D;U D, DyU D, U DyoU Dy,
Next, for the vertex I, n=2, so

L, € (D7 N Dy3) U (D7 N Dyg) U (DN Dyg) U (Ds N Dyy) U (D1 N D1g) U (Dyy ) Dyg)
" Similarly for /; and 7,. In the analogous way as in algorithm 1 we ver1fy that
a boolean polynomial:
Js = (Dt Dyt Dyt D1t D1t D) (D7D12+ DDy +DgD1o+ DgDyy+ DyoDigt D1y Dig)
(D1+Dy+ Dy +Dig+ Dig+ Dyy) (Dp+Dy+Dig+Dyg) (Dy+Ds+Dg+ _
+Dyo+ Diy+Dys+Dig+ Dig) (D3Dr+D3Dy+DyDig+ DoDig+ D1y Dig + D1aDi)
(DgDy1+DgDry+ DDy + Dy Dy + D1y Dig+ Dyy Dyg+ DyyDig+ Dy Dyg) (Do + Dy +
+D9+D17+D20) (D4+D5+D8+D10+D12+D15) (D1+D2+D3+D4+D5)
(D6.+.D7 +D8 +D9 +D10) (D11+ D12+ D13+ D14+ D15) (DIG +D17 +-D18+D19+ D20)
transformed into the disjunctive-conjunctive normal form gives all - coverings
which satisfy (12), (13). In this case we obtain only one covering containing 4 elements:
DyDy,DyDyg and x= <h2s ha, hyy By, hoy g, hy, By, hz>

If for some [, m;=2 .a correspondent boolean expression con51sts of all
conjunctions which have n elements Dy, Dy,, ..., D, such that J; belongs to every
D, and Ay, Iy, ..., hy,-are consecutive time perlods

Obviously, .in this expression conjunctions in which tlme periods belong to
two different days or contain a lunch break must be omited.

7. Room problem

In the extension of timetable problem taking into account the condition (c)
there is given a set R= {r,}j<s of rooms. As in the case of lectures with every r;
we associate a set f;C H, time periods at which room r; is available. Moreover, there
are rooms not fitting to every lecture. This condmon is described by a relation
oC LX R fulfilled if lecture /; can take place in room r;

Definition 4. A pair {x, y) where x is a timetable for the set L and y is a se-
quence {r1, r% ..., r%) rooms will be called a timetable for sets L and R iff

Iar i=1,..,q - 1)
. <h' nyCfi i=1, : ' 3
if r'=r-’ then <hl’ ni>n<hj’ j>= Q. . . (16)
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The condition (14) says that a lectire /; can take place in a room ri, (15) that
this room is available at hours (K, n;) and finally (16) assures that no. room is
used simulteneously for two lectures.

Now, if there is given a timetable x= (h1 .., %) we can define a new graph
E=(]I, 7r,‘> where a set of vertices I= {11, cous gy 11, ..., v} and the relation w, is
following:

I =i ' ' a7
lmer;= "1 (hor)) v (KK, nySf) (18)

IinxliE <hi’ ni> N <hj’ n.i> 3. . (19)

Of course, rjml;=In,r;.
7.1. If x is a timetable for L then a timetable (x, y) exists iff graph E, is
s-chromatic. .

Proof. If y=(r!,...,r% fulfills (14)—(16) then sets D,={rJU{l;: ri=r;}
are independent. In fact for l;eD; from (14) lior; and from (15) i, nycCf; thus
by (18) —1/m,r;. On the other hand if [, LeD; then ri=rk=r; and by (16)
ARG nk) @ which gives in virtue of (19) that —1J; 7 .

. Since sets D; j=1, ..., s are lnaependent and cover the graph Ex, its chromatic
number is equal s.

Now, let a family D,, ..., D, denotes a covering of E. By (17) we can assume
that r;€D; j=1, ..., 5. Let us deﬁne y= (r1 ., % where r’ is an arbitrary room
belongmg fo the same set D; as I;. So, 1w glves by (18) that L,or and {/, nycfi.
If (hiny (R, n ,)# @ then by (19) l nxl and};, I; cannot belong to the same D,.
This proves that ristri. -

8. Algorithm 3

The algorlthm consists of two phases. First, all timetables x by the help of
algorithm 2 are generated. The second’ phase is concerned with assignment of
rooms. In the analogous way as in 4. the problem is reduced to the colouring of the
graph. Since two timetables (x, y) and (x, z) where y>z may be treated as equi-
valent we break the realization of Wiessman’s method after an achievement of first
colouring. If a graph E is not s-chromatic a timetable (x, y) for the given sequence
x does not exist (theorem 7. 1). : _

‘We must investigate the next sequence x. A choice of this sequence can depend
on desirable features of timetable such as the distribution of lectures over the days
and the week, the maximal possibility of choice in the case of facultative jobs etc.

Let us end the presentation of methods hitherto described by an example
considered in 6 with following room requirements: '

R={r,,r2,r3,r4}
={hy, 113, hyYy fa={hy, hs, hs, By}
{hl: h"} Ja={hy, hy, hy, Iy}
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Ll 14 I Ig I I 1y
n 000011011

011100001
T 111101100
re 110111010

For the sequence x=(h,, hg, hy, hy, ho, b3, B3, hy; hy) the graph Ex=<I, ey -
(see figure 3) has eleven maximal independent sets:

Dy={ls, Iy, i} Dy={ls, b, i} Dy={b, ls, 11} Dy={ls, b, 72}

Dy={l;, Iy Ig, 13} Do={ls, Ig sy ra} Do={h, by, Is, ra}

Dy={ls, b I 12} Do={h I, 75} Dao={h, b, r2} |
CDy={l, by Iy rs). ’ | -

Two 4-colourings are determined by the conjunction - DyD;DyDy;, thus there
are two equivalent timetables - : . :

<x,<”25>"1:"4a"1a"3-”2,”4,."2,"4» and (ﬁ(”zﬂ’p"4a"1,"3a’;2,r4,"'3sr4>>-
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hb Bl gl lgly hyhohyh,

A 0010
I 1000
I 0100
I, 0100
I 0 0000
I : 0000
n=1 - 1000
S 0010
I, 0001
B, 010000100 0111
B, 001100000 1011
B, 100000010 1101
B, 000000001 1110

F= {117 129 13, 149 15, 163 l7> 18, lD; hla hz, h3, hé}

Figure 2

Wbl Ll rirsrsr,

5L 000010001 21011
L 000001100 0111
5L 000100010 0110
5, 001000010 0111
5100000001 1001
g 010000100 1011
n,=1, 010001000 0010
lg 001100000 1001
b 100010000 1100
rn 100011011 0111
r, 011100001 1011
r3 111101100 1101
ry, 110111010 1110

I= {11, by Iy, Iy, Is, g, Iy, Ig, Iy, 1y, 1, 1, "4}

Figure 3
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AJropuT™ AJsl NOJIyH9€HHs PaclHCAHIs YHHBEPCHTETa
H KPHTepHii CorjiacoBauns ¢ TpefoBaHHAMH

B nepeoit YacTu npuBOANM (OPMAJIbHOE ONpeAcSICHHE PACTUCAHUS YYEOHBIX 3aHATHH, B KO-
TOPOM MOABIIETCA TOJBLKO OYEHBL NPOCTAas MOZAENL [2]. DKBHBANEHTHOE OHpEAEICHHE B TEPMHHAX
packpacku rpador no3sossier chopMyIHpPOBaTh HEOOXOMMMEBIE H HOCTATOYHBIE YCIOBHS CYIIECT- |
BOBaHHMs pacHMcakvsa 3aHsTui. IIpensaraercs aiaropuT™M HOCTPOSHHA PACIMCAHHA M npnnop,mcu
HpHMED, KOTOPELHA Hepa3pelmnM KoMOHHATOPHBIME MeToiaMu (B3aT 13 [4]).

Hanee npuBoastcs Gomnee CIOKHbIE MOJETH C YIETOM HEPABHONIHTEbHBIX 3aHATHH H Npob~
JleMoii 34708, Bce ony 3amicaHsl TepMMHaMH npobieMsl packpacku rpados. I[Ipusonstcs cooT-
BETCTBYIOLIAE KPUTEPHH CYILIECTBOBAHNSA ¥ aJITOPHTMBI IOCTPOCHHS PACTTHCAHHS Y4€OHBIX 3aHATHH.

- INSTITUTE OF COMPUTER SCIENCE
WARSAW UNIVERSITY
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