Tessellation transformations

By L. SzaBG

I. Introduction. Notations

In this paper we present some results on mappings induced by cellular automata.
These mappings will be called here tessellation transformations. The notions and
notations may be found partly in [2] and [7], but for the sake of the convenience
of the reader, all necessary definitions will be given in this introductory part and at
the beginning of the third section.

In the second section we deal with semigroups consisting of all tessellation
transformations in a given tessellation array, under a fixed number of internal
states. They will be characterized up to isomorphism by two parameters. Some
inclusion theorems for these semigroups are also proved. The third section of our
paper concerns cellular automata with a quiescent state. The investigations are
related to and may be considered as a continuation of Moore’s and Myhill’s results
in this area. Among others, it will be shown that the density of the tessellation
transformations which are one-to-one on the finite configurations is equal to zero
in the set of all such transformations. This solves a problem raised by Moore in [3].

Now we shall list the basic concepts.

A d-dimensional cellular automaton (shortly: CA)is a quadruple A =(4, E%, X, f),
where

1. A is a finite set called the state alphabet. Its cardinality is supposed to be
at least two.

2. EY called the d-dimensional tessellation array, is the set of all d-tuples
of integers called cells. E¢ is an Abelian group with respect to the componentwise
sum of the d-tuples. E¢ can be visualized as a Euclidean d-space subdivided into
cells which are d-cubes of unit dimensions and whose centers have integer coordinates.

3. X, called the neighbourhood template, is an n-tuple of distinct elements
of E¢ (n is a positive integer), i.e.,

X:(éla"w én)s éiéEd, i = ],...,n.

For any a€ £, N(X, ®)=(x+¢&,, ..., a+¢&,) is said to be the neighbourhood of the
cell a. '
4, fis an arbitrary function from 4" into A4 called the local transition function.

We shall refer to a mapping c: E?—~A4 as configuration (more precisely: d-dimen-
sional configuration over the alphabet A). The set of all configurations is denoted
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by C, 4. The image c(x) of x€ E will be called the contents of the cell « under the
configuration ¢. The restriction of ¢ to N(X, «) is denoted by c(N X, a)), ie.,

c(N(X, a)) = (c@+&), ..., c(a+Ey)).
The global transition function @y: C, 4—~C, 4 of the CA is defined by

(cPx)(@) = f(c(N(X, a))) forall a€E”

II. Full semigroups of tessellation transformations

Let A be a finite nonempty set (|4|=2) and let d be a positive integer. A mapping
&:Cy 4—~Cy 4 1s said to be a tessellation transformation if there exists a C4 A
such that its global transition function @y is equal to @. The set of all such mappings
will be denoted by M, ,.

Theorem 1. If ®, Y€M, 4, then ®¥EM, ,, i.e. M, 4 is a semigroup.

Proof. According to the assumption of the theorem there are two CA AL =
(4, B, XO, fO) (XO=(ED, . ED)) and AO=(4, E¢, XO, f@) (XD =
(&P, ..., EP)) such that dgmy=¢ and Pyo=WY. Let us consider a CA A=
(4, E%, X, f), where

1. The set of the components of X is (M +¢P|l=i=n, 1 =j=m).

2. We obtain f in the following way: Consider the function f’=f®(f®(x,,
e X1y ooy SO Ky v s X). Identify x;; with x; 0 if €0 +EP =¢W +ED, 1=,
i"=n, 1=j,j"=m. Then we obtain from the function f” a new function f”. Finally,
writing the variables of f” in the order which corresponds to X we get f. It is easy
to see that ®y=PYV. :

We call M, , the full semigroup of tessellation transformations.

The transformations 8; (6€ E%) defined by (cO,)(@)=c(a—0) for all a€E¢ are
called translations. They are obviously tessellation transformations. A ¢’€C, 4
is said to be a copy of c€C, 4 if there is a translation 6, such that ¢’=c0;. Clearly,
if c=c0; for all 5¢€ F¢, then there exists an a€ A such that c(0)=a for all x€E,. It
is evident that 6; 0;,=6;,.;, for any 6,, ,€E“, and if T, denotes the set of all
translations we get T,z E‘

The transformations Q, (a€ A) defined by (cQ,)(«)=a for all «€ E¢ are called
constant transformations (briefly: constants). They are tessellation transformations.
It is trivial that the number of all constants is |A4].

o

Lemma 1. A tessellation transformation & is a central element of M, , if
and only if @ is a transiation.

Proof. Let Z(M, ,) denote the center of M, ,. The set of all translations
Ty Z(M,,4) is trivial. Now suppose that @€ Z(M, ;) and suppose A =(4, E?, X, f)
(X=(&, ..., &) is a CA such that Py =. Consider a CA B=(4, E*, Y, g) (Y=(m,
) eies 11,,,)) such that every element of the set (&;+n;|l =i=n, 1 =j=m) has a unique
representation as a sum of components of X and Y. (For any X there exists such a
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Y with an arbitrary number of componens.) Under such choice of Y, @y Py = Py Py
implies

FlgGeags s Xam)s oo 8Xnts ooy Xum)) = 8(F K11y o5 Xar)s oo s TXims vv's X))

for all xyq, ..., X,;,€A (see 2. in the proof of Theorem 1). Accordingly we obtain
that f commutes with all functions defined on 4. Hence it follows that fis a projection
([3] pp. 128, Prop. 3.2.), consequently @4, =¢ is a translation.

Lemma 2. A tessellation transformation @ is a right zero if and only if @ is
a constant.

Proof. The sufficiency is trivial. Assume that @ is a right zero and let
A=(4, E4, X, f) (with n-ary f) be a CA such that @y=P. Let c€C,, be a con-
figuration for which

A" = {c(N(X, ®))|a€ E?) (%)

holds. Since @ is a right zero, we obtain (c®)0;=c(P0;)=c(0;P)=c® for all trans-
lations 85, whence there exists an a€ 4 such that (c®)(a)=a for all x€ E%. According
to () it follows that f(xq, ..., x,)=a for any xi, ..., x,€A4 showing that & is a
constant. :

Theorem 2. M, 4, == M, 4, if and only if [4,|=|A4,| and d,=d,.

Proof. The sufficiency is trivial. M, 4,2 M, ,, implies that the numbers of the
right zeros of M,, 4, and M,, ,, are equal, i.e., in view of Lemma 2 we have
|4;] =|A,|. Furthermore Z(M, 4,)=Z(M,, 4,), whence by Lemma 1 we get T, =~ T ,
which implies E% 2= F%. Hence d,=d,.

According to Theorem 2 a full semigroup of tessellation transformations is
determined up to isomorphism by two positive integers /(=|4|) and 4. Therefore
we shall denote this semigroup also by M, 4.

Theorem 3. For any positive integer 11, I, (=2) and d,, d, such that d,=d,,
the semigroup M, , is the homomorphic image of a subsemlgroup of My ..

Proof. The reader can easily verify that, if d,=d, then M, ;,, may be embedded
in M, 4, for any I Therefore it is sufficient to prove the statement for d,=d,=d.
Let A4, and A, be two sets with cardinality /; and /,. We have to prove that M, ,
is the homomorphic image of a subsemigroup of M, 4

1. First suppose that |4,]=|4,]. We may assume without loss of generality
that 4, A4,. Thus we get C,, ;©Cy, 4. Let us consider the subsemigroup M of
M,, 4 defined by

={PIPeEM,, , and cPcC, , forall ccC, ),
and let ¢ be‘a congruence on M defined by
®,0P, ifand onlyif c@, =c®, forany cecC, 4

It is easy to see that
M/Q = MAl,d'
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2. Now assume that |4,]=>|4,|. For the sake of easier perspicuity we prove
only in the case d=2. The proof for an arbitrary d is similar. On the base of the
first part of the proof we may assume that |4,|]=2, and we may also assume that
A,=(0, 1). Let n be a positive integer such that 2"=9*=/, . Let us subdivide the
tessellation array E? into square blocks of size nXn. Every block is designated
by an element of E?, as shown in Fig. 1. For any «€ E%, B, denotes the block designated
by a. The subdivided tessellation array will be referred
to as block structure of £2 denoted by EZ. It may be
\ a considered a tessellation array whose cells are blocks.
Dioa) | Guae Let S,_4 be a square block of size (n—4)X (n—4)
and let A4; be the set of all mappings from S,_, into
d d o A,. (E.g., Fig. 2 shows an element of Aj). Since
-10)] 1P(040) | B¢40) |d3j == 2"=%*=>1]  there is a one-to-one mapping
7:4;~ A;. Now we define a one-to-one mapping 9:
C4y,2—>Cy,,2. For any ceC,, ,, c3€C,, ,is a con-

Fig. 1 figuration whose restriction to an arbitrary block
B,(€E}), denoted by c3/B,, is defined by the follow-
ing way:

1. The restriction of ¢¥ to the inner array of size (n—4)X(n—4) of the block
B, equals (c(a))r.

2. Each cell belonging to the outside layer of size 1 of the block B, contains
state 1.

LI

q
pi-id)

n—4
e e,
11111 ...1 1
1 0 I 1f0[0 ...0J]0(1
10 0]1
0 0 1 n—4 (e | ¢ n

110 0|1
i 0 0 1{0({0 ...0]0|1
1111 1

Fig. 2 Fig. 3

3. Each cell belonging to the layer of size 1 around the inner array of size
(n—4)X (n—4) of the block B, contains state 0 (see Fig. 3).
Let C be the subset of Cy, , defined by

C={cle=1¢"9, ¢ €Cy, o).

(It may be seen from the definition of the elements of C that the block structure
of ¢ can be uniquely recognized for all c€ C.) Now we associate a mapping ¥: C—~C
with every @€M,, , defined by c¢¥=((c3")®P)9 for all c€C. Let M be denote
the set of such mappings, i.e.,

M=(P|¥ =909, dcM, .,
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It is obvious from the definitions that M =M 4;,2- Thus it is enough to prove that
M is a homomorphic image of a subsemigroup of M,, ,. For this it is sufficient
to show that for any ¥Y€M there is a ¥ €M, , such that the restriction of ¥’
to C is equal to Y. ’

Let ¥ =9"1@3c M(PEM,, o) and let A =(4, E% X, f)(X=(&, ..., &) bea
CA such that ¢y = @. We associate with X a neighbourhood template X, in £3 de-
fined by Xz=(By,, ..., B;). The sequence (B,,¢,, ..., B,y¢,) (@€ E?) is denoted by
N(XB9 Ba)'

N(Xg Buc)

p

N(Y, B)

X

Fig. 4

Now we define a CA B=(A4,, E?, Y, g) such that the restriction of &5 to C is
equal to V.

1. Y is a neighbaurhood template for which N(Y, ) contains all blocks which
belong to N(Xg, B,) (B,€E}) for all ¢ B, (see Fig. 4).

2. Let ¢ be an arbitrary element of C. We now show how we may determine
g(c(N(Y, B))) for any BEE® Let B€B,(€E}). Since N(Y, B) contains all blocks
belonging to N(Xg, B,) and the block structure of ¢ can be uniquely recognized
we know c|B,.¢,, ..., ¢|B,1s, and so we also know c3~Ya+¢&y), ..., cd " Ha+E,),
ie, ¢9"YN(X, a)). From this we can determine f(c3 1(N(X, 0)))=((c$~"HP)(x)
and ((c3~Y)®)3|B,=c¥|B, as well. But we can uniquely determine the position of
B in the block B,, thus we can also determine g(c(N(Y, B)))=(c¥)(B) as the state
contained in the cell § under c¥|B,.

Theorem 4. If d,=d,, then M; 4, X M,, 4, can be embedded in M, ,, 4.

Proof. In wiew of the remark at the beginning of the preceding proof we prove
the statement for d,=d,=d only. Let 4, and A4, be two sets with cardinalities /;
and l,. We have to show that M, ,X M,, ; can be embedded in M, « ., 4. Let
€€C 4, % 45,4- Since c(a)=(c;(2), co()) (€ EY) we may write (c;, ¢) instead of c.
Let 3: My, o X My, a—~ My« 4,,4 @ mapping defined by

c (DY) = (c1, ¢2) (PY) = (¢19y, ¢, Py) (C = (15 €3) € Cyyxa, d)

for all ¢=(P,, P,)eM,, 4XM,, 4. One can easy verify that ¢3 is a tessellation
transformation and 3 is an isomorphism.

Remark. M), 4, X M, 4, is not isomorphic to M, ;, 4, because Z(M,,,, 4,)= E®,
Z(M, 4 X M), 4)=2E4*% and E%2 E4td:,
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For a CA U=(A, E, X, f) we shall say that the global transition function @
has speed p, if the maximum of the absolute values of the coordinates of the compo-
nents belonging to X is p, ie.,

p = max |ij]
1=isn
1=j=d

where X=(&,, ..., ¢,) and &=(, ..., iy, i=1,..., n

Lemma 3. Let C=(c,, ..., c;) be a finite set of distinct configurations for
which R;;=(a|x€E? and ¢;(a)c;(®)), 1=i, j=k, is a finite set and no element
of C is a copy of another element of C. For any transformation &: C—C there
exists a tessellation transformation ¥ such that ¢;®=c; ¥, i=1, ..., k.

k
Proof. By the assumption R= |J Ry; is a finite set. Therefore there is a positive
ij=1
integer p such that R can be included in a d-cube of size p Xp.

Let @ be a transformation of C and let W=(4, E%, X, f) be a CA, where the
set of all components of X is equal to the square of size (2p+1)X{(2p-+1) with
center (0, ..., 0)€ E%. Since N(X, «) contains R for all € R, one can easily define
the local transition function f'such that the restriction of @, to C equals &.

Theorem 5. Every finite semigroup is a homomorphic image of a subsemi-
group of M, ,.

Proof. 1t is enough to prove the statement for the full transformation semi-
group on a finite set with arbitrary cardinality. This is trivial from Lemma 3.

Corollary. Any M, , generates the variety of all semigroups.

Proof. Indeed, from Theorem 5 it follows that non-trivial identities do not
hold on M, ; (for this Corollary consult [3]). .

II1. Tessellation transformations with a distinquished state

A CA(A, E% X, f) is said to be an initial cellular automaton (shortly: ICA),
if there is a state a,€ 4 called the quiescent state, such that f(ay, ..., @) =a,. In this
case we shall use the notation (4, a,, E4, X, f).

For a set A(]4|=2) and a,€ 4, the symbol M , ,, denotes the set of all tessel-
lation transformations in M, ; induced by ICA with quiescent state a,. It is evident
that M, ;4 ,, is a subsemigroup of M, ,.

A ceC, 4 is said to be a finite configuration if

sup (¢) = (aja€ E? and c(&) # dyy

is a finite set. Cr denotes the set of such configurations. In the sequel, if estimates
are given for the number of configurations with some properties we shall not distin-
quish between two configurations if one is a copy of the other. Clearly, 'if ®€M, 4 ,,
and c€Cy than cP€Cy.

A c€Cy is said to be an n-configuration if sup (¢) may be included in a d-cube
of size nXn, ie., there is an a=(iy,...,i))€E? such that c(B)=aq, for all
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B=Up> ---» JO) € E* with j,<i, or j,>i,+n for at least one k, 1=k=d. Every c€C¢
is an n-configuration for some n, and if ¢ is an n-configuration then ¢ is also an
m-configuration for all m=n.

For any set RCE? and c€C, 4, c|R denotes the restriction of ¢ to R. A ¢'€Cp
is said to be a subconfiguration of c€Cy, if

clsup (¢") = ¢’|sup (¢").

Fora #€M, 4 .,,, @ c€Cp will be referred to as image configuration if ¢ may
be written in the form ¢’ ®(¢’€ Cy) and ¢ will be called a Garden-of-Eden configura-
tion if no image configuration containing ¢ as a subconfiguration.

3 3
, W L /
A V. )
GiirdTn-(if-EIderIl ;/»Z // //‘g%
n ﬁ n-configuration r n+q 1> // X /é z
o e 7”-'// L7777 <
4 4
\ ) 4 !
Fig. 5 Fig. 6

A compact formulation of Moore’s and Myhill’s results proved in [5] and [6]
(which may be found in [4]) is the following:

Theorem 6. The restriction of a PEM, 4, to Cp is one-to-one if and only
if there exists no Garden-of-Eden configuration.

Let G, denote the number of Garden-of-Eden n-configurations and let H,
denote the number of all n-configurations

Theorem 7. For any ®€M, 4., lim G,/H,=0 or 1 according to whether the

restriction of @ to C is one-to-one or not.

Proof. If @ is one-to-one the assertion is trivial by Theorem 6. Suppose that
& is not pne-to-one on Cp. Let d=2, in the case d>#2 we may proceed similarly.
Take |4|{=/; then H,=I". First we show that G,/H, is a monotonous increasing
sequence. If e.g. the left lower part of an (n+ 1)-configuration is a Garden-of-Eden
n-configuration (as shown Fig. 5), then it is a Garden-of-Eden (n+ 1)-configuration.
Using this fact we get G,,,=G,/**1. Thus

Gn+1 = Gn'12"+1 - Gn Gn
H,,, _ [0FD? =m

hence G,/H, is a monotonous increasing sequence. Thus it is sufficient to prove
the statement for a subsequence of G,/H,. Let G,= H,—G,. Since @ is not one-to-one
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on Cp there is a Garden-of-Eden m-configuration for some m. Therefore G, =(™ —1)
and for any positive integer k, we have G,,=(/"*—1)**. So we obtain that

= G _ (™= 1) .
0= Hkm = 1k2m2 = 1—1? 0 if k .
Finally we get
. ‘ka 1 Gk"" —
i -t -5 -

Let us recall some definitions from [2]. Let RC E? be a nonempty finite set.
Identifying the positive y axis with the direction north we call the set of cells in
R with maximum abscissas the eastern perimeter of R. The northern western and
southern perimeters of R are similarly defined. The following cells are called extremal
cells of R:

1. The northernmost and southernmosi cells in the eastern perimeier of R
(cell 1 in Fig. 6).

2. The northernmost and southernmost cells in the western perimeter of R
(cells 2, 2%).

3. The westernmost and easternmost cells in the nothern perimeter of R
(cells 3, 3%).

4. The westernmost and easternmost cells in the southern perimeter of R
(cells 4, 4").

A function f: 4"~ A4 is said to be cancellative with respect to its i-th variable,
if flay, .., @;_1, a5, Gay,s .- a)=flay, ..., a;_1, b, a; 41, ..., a,) implies a;=b for
all ay, ..., a,, beA.

Theorem 8. 1If for any ICA U=(4, a,, E2, X, /)(X=(&,, ..., £,)), the local
transition function f'is cancellative with respect to its i-th variable and &; is an extremal
cell of X, then the restriction of @ to Cp is one-to-one.

Proof. We may assume without loss of generality that the extremal cell mentioned
in the theorem is the northernmost cell in the western perimeter of X. Suppose that
¢, and ¢, are distinct finite configurations. Then

R =(dla€E? and c;(a) # cy(a))

is a nonempty finite set. Let f€E? be a cell such that the northernmost cell in the
western perimeter of N(X, ) and the southernmost ceil in the eastern perimeter of
R are equal to each other. Using the cancellativity of f we get

fa(NX, B)) # fle(N (X, B)), e, c1Pu = ¢y .

The converse of Theorem 8 fails trivially. It may be expected, however, that
- if we restrict ourselves to considering local transition functions depending essentially
on all variables associated with extremal cells of X, then the assumption is also
necessary. The next counter-example shows that this is not true.

Let us consider two ICA: AM =({0,1},0, E*, (—1,0,1), f M) and A® =({0,1),
0, EY (—1,0,1), 1 ‘2)), where /) and f® are defined by Table 2. The restrictions of
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Table 1.
Xy Xo X3 Xg X5 f(x1, X2y X3, Xy, Xs5) X1 Xy X3 Xg X5 |f(X1, X, X3, X4, X5)
000O0O 0 1 0000 0
00001 0 1 0001 0
00010 1 1 0010 1
00011 0 1001 1, 0
00100 0 10100 1
00101 0 1 0101 1
00110 0 1 01160 0
00111 1 1 0111 1
01000 0 11000 1
01001 0 11001 1
01010 1 11010 0
01011 0 11011 1
01100 1 111060 1
01101 1 11101 1
01110 1 11110 0
01111 0 1 111 17 1

Py and Py to Cp are one-to-one, because f@ (resp. f®) is cancellative with -
respect to its first (resp. third) variable. Then A =((0,1), 0, E*, (=2, —1,0, 1, 2), f)s
where f is defined by Table 1 is the ICA4 whose global transition function @y is
equals to Py Py .

It can be seen that f depends on its first and fifth variables, but f is not can-
cellative with respect to any of them. Thus the restriction of &y to Cy is one-to-one,
but A does not fulfil the assumptions of Theorem 8.

Lemma 4. If for an ICA N=(A, ay, E*, X, f) (with n-ary f) the restriction of
@, to Cp is one-to-one, then all the classes

of the partition 4"/fof -1 (partition on A" — W
induced b have the same cardinality. .
y /) . y Alml el e
Proof. Again we shall prove the state- ie

ment for d=2 only. Take |4|=1. Suppose that L

@, has speed p. Then X can be included in [ (&l & k(2pet)r2p
a square of size (2p+ 1) X(2p+1) with center
(0, )€ E%.. We may assume without loss of H & B &

generality that this square equals to X. In
this case n=(2p+ 1) If there are classes of I
A%fof 1 with different cardinalities, then
there is an a€A such that |of 1| =/""*+1. Fig.7

Let k£ be an arbitrary positive integer and let

D, denote the number of all (k(2p+1)+2p)-conﬁguration which have a€ 4 in the
cells shown in Fig. 7. We have D,=I[%*@r+D+29)2-k* PBecause P, has speed p,
¢ Py is an (m+2p)-configuration for any m-configuration c. Since Py is one-to-one
with respect to Cr and |af Y =/""'+1(n=(2p+ 1)?) we obtain that D, is at least

6 Acta Cybernetica IIf3
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(1@?+D*-14 1) Thus we get
" (1(2p+1)'-‘—1+ l)k'-' = 1(k(2p+1)+2p)2—k2,
whence

4pp+1)  4p°
1 J & T2

1+

which is not true for all k.

JEpFDT = 5

Remark. The converse of Lemma 4 is not true. One can easily verify that the
next ICA is a counter-example: A=({0,1), 0, E*, (—1,0,1), /@), where f@ is
defined by Table 2.

For a fixed neighbourhood template X and a state alphabet A (|4|=n) with
a quiescent state a,€ A, the symbol K, denotes the number of all tessellation trans-
formations induced by ICA (4, a,, E%, X, f) whose restrictions to Cy are one-to-one.
S, will denote the number of all tessellation transformations induced by ICA
(A: Qo> Ed’ X’f)

Theorem 9. "Iim K,/S,=0.

Proof. If X has k(=2) components, then S,=»"*-1 and using the result of
Lemma 4 we get

(7 —1)!

K, = ey k=2
Thus
Kn - (nk—"])' ne!
S, = n(’l"—l)(nk—l [)n—l(nk—l_ n! = n""(n"-ll)n k= 2).

n o,
Using Stirling’s formula [n! = (%) V2nn-etn, 0<0O,< 1] we get

™ il
1 - V2nn* . et2r*
lim ———=— = lim =
N oo n""(nk—l!)" N—>oo k-1 nk-1 Ok -1y
nn* ( ] Vznnk—l . e12n"‘1]
e

6,k O k-1

1 L it ‘
= llmV (Zn)"’ln"("‘l)"‘ . lim el2r* 1272 _ 0.] — 0 (k = 2)

n—oo n—oco

If k=1 then S,=n""! and K,=(n—1)!. Thus
K, _ (n=1)!

S = n"_l - 0, lf N — oo,
n

In the course of a conversation B. Csadkdny conjectured that for fixed A4, d
and a,, the set S of all bijetive transformations of C, induced by ICA form a group.
We shall prove that this conjecture is false by giving an example which shows that
S is not closed under the formation of inverses.
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Let A=({0,1), 0, E%, (—1,0, 1), f®) be an ICA, where fO® is defined by
Table 2. The restriction of @y to Cy is surjective (shown by Amoroso and Cooper
in [3] pp. 163) and thus it is also bijective. Suppose that there is a Y €My 1310
such that (¢®q)¥ =c for all c€Cy, and let B=(0, 1), 0, E%, X, f) be an ICA such
that dz=". Assume that Py has speed p. In this case (cPg)(x)(x€ E?) is uniquely
determined by c(a—p), ..., c(®), ..., c(x+p) for any configuration ¢. Let us con-

Table 2.

X1 Xy Xg [ f DXy, Xg, X3) | [P (X1, Xp, X5) f(a)(xla Xay X3)

—— e — OO OO
i bt (DO = OO
—_— O~ O~ O~O
b—t D btk O = OO
—_O— OO ==
—_ == O = OO O

sider the following two configurations and their image configurations under @
(see. Fig. 8).

() Cz(a)

}
e ..0[0J1 01..1 010 0. c: 0 OD 1..1 1 100..
¢;®y: ...00|1 1 1.1 1110.. c;®Py: 0 O[O]1 1...1 1 11 0...

Fig. 8

It can be seen that (c;Pa) (B)=(c, <1591) (B), a~p=P=o+p, but ((c,Pu)Pg) ()=
= ¢, (&) # ¢4 () = ((c, Por) Pg) (@), Which is a contradiction.

Mo3sanynbie npeodpa3zoBaHns

Hccnenyercs 3aBUCMMOCTBh CTPOEHHMS IOJIYTPYIII MO3aMvHBIX Hpeobpa3oBaHHil OT pasmMep-
HOCTH TIPOCTPAHCTBA-HOCUTEIISA, a TaKXkKe OT MUCia cocTosHmit. [anee, paccMarpusaloTcs npeolpa-
30BaHUA KOHOUIypaiwil, MHAYLIHUPOBAHHBIE MO3aHYHBIMH aBTOMAaTaMM C COCTOSIHHEM TIIOKOA.
OTBevyas Ha BONPOC, NOCTaBieHHbI O. @, MypoM Hoka3pBaeTCA, YTO TIOYTH BCE MO3aWYHBIE
aBTOMAaThI 00NaNAIOT B3aUMHO CTHPAEMBIMH KOHGHUTYPaLIHSIMMU,

“*
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