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An appllcatlon of truth functions in formalized
diagnostics*

By A. Apim

To Professor Pal Erdés on his sixtieth birthday
§ 1L

In what follows, we shall prove some results concerning truth functions (in
§§ 2—4) and apply them to the following problem (in § 5—6). There is a set S
of objects and there are n+1 subsets Z, X7, X,, ..., X, of S. Let an object s(€S)
be chosen arbitrarily. We are not able to decide immediately whether or not s be-
longs to Z; we may observe, however, the validity of any of the n relations scX;
and we can infer to the truth of s€Z if all the relations s€X;, 5€X;, ..., S€X, are
checked. We are interested in deciding, whether s€Z holds or not, in such a manner
that a possibly small number of the relations s€ X; should be examined (successively,
in a straightforward ordering): '

. 52
Let f(x;, Xs, - ,x) be an n-ary truth function. The rank @(f) is the number

of places where f takes the value t (true); of course, f takes the 'value | (false) at
2"—@( /) places. The entropy n(f) is defined by

n(f) = mm(g(f), 2~ o(f)).

We have 7( f V2=n(f)=2""1; furthermore, ( f)=0 exactly if £ is constant.

Let U be an elementary conjunction over the set {x,, X,, ..., x,}. The number
of variables occuring in  is called the length | (QI) of . 4

Suppose that 2 contains (precisely) the variables x;,, x,,, ..., X;, (I=1(W)(=1)).
We denote by x;,, x,,, ..., x; _, the elements of the set

'{xly Xoy oees xp_;} —{xila xl'g) cevy xi,}‘
* The considerations of this paper. have been contained in the lecture “On some combi-

natorial questions” presented on the colloquium “Infinite and finite sets” held at Keszthely,
June 1973. | ’ :
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Let fa(xj,, Xj,, -..» X;,_,) be defined as the function resulting from f if constants
are substituted for each of Xiyy Xigy ooor Xig such that A takes the value t with the
substitutions prescribed. It is obvious that g( fe)+e(fz)=e(f). If A and B
are elementary conjunctions (over {x,, x,, ..., x,,}) without any variable in common,

then clearly fyse=(/u)s-
For a truth function fand a variable x; of it, let the number A( £, x;) and u(f, x))

be defined b
¢ celined by A(f, x) = min (n(f,), n(f2)),

o p(fs x) = max (n(£), n(fe))-
It is evident that .

AL x)+u(f, x) = n(f)+n(fe)
and that A(f, x;) is the smallest of the four ranks v

e(fz), o(fu) Q(fx.) o(fz)- *
Proposition 1. We have

i, x .)<"(f)-

Proof.
Case 1: n(f)= Q(f) Then

e(fx)+e(fz) = o(f) =201,

hence
min (o(f,), 0(f3) = -9% s

This implies the conclusion evidently. ,
Case 2: n(f)=2"—o(f)(=0(f)). The inference is analogous to Case 1 (with

f instead of f).
We say that x; is a varlable of type a (or, for the sake of brevity, an «-variable)

of the function f if
A x) = n(f)—2""2 o

A, x) = n(f)—2"7%,

we > call X; a variable of type B (or a f-variable). If n(f)=2"-2, then each vanable
is of type o2

In case

1 Tt seems to be advantageous to consider the numbers A(f, x;) as basic quantities in the sub-
sequent treatment (because the A’s can perhaps be produced in a more natural manner, than the
entropies). Another possibility for treating the topics is if one omits the 1’s and defines at once the
critical variables by their property to be. stated in the second sentence of Proposition §.

2 It is trivial from this remark that there exist functions all the variables of which are of type

o. In case of n=4 and f=x;x,XsV X1x,V XaX; V X5X4, We have n(f) =8, A(f; x) =A(f, x5)=A(f, x3)=3
aud A(f, x;)=1, hence every variable of f is of type . In case of #=3 and f=x,V %.%;, we have
(nf)=3, A(f, x)=0 and "A(f, xp)=A(f, x3)=1, thus x, is a B-variable and x,, x; are a-variables.
We have seen that the three situations, being logically possible, may really occur.
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Proposition 2. If x; is an o-variable of f, then

n(fe)+1(fz) = n(f).
Proof.

Case 1: n(f)=0(f) and Q(fxi =0(fs)- Then
20(f) = e(fi)+e(fs) = e(f) = n(f) = 2,

22 = o(fy) = n(fs)
o(fx) = o(f)—o(f) = n(f) = A(f; x) = 272,

hence n( fz,)=0(fs,)- By summarizing our consideratiens, we have
n(fe) +n(fz) = e(f)+e(fz) = e(f) = n(f).

- We shall now mention the conditions of the remaining three cases; m any of
them, the statement can be verified by an analogous inference.

Case 2: n(f)=e(/f) and o(fe)=e(fs)-
Case 3: n(f)=0(f) and o(f:)=0(fs)-
Case4: n(N=e(f) and o(fr)=0(fs)-
Proposition 3. If x; is a B-variable of f, then
u(fs x)=A(f, %) = 2"t —n(f).

Proof. Similarly to the preceding proof, we can distinguish four cases; it sufﬁces
by the analogy that we carry out the proof only when n(H=e(f) and Q( )=
=0(f%,). The formula

2= -2 = Q(fx) = n(fx)

is valid as in the former proof.
Our next aim is to verify indirectly that

o) = o(fe) < o(fe).
Suppose the contrary, i.e. y(f3)=0(f%,). Since x; is of type f, we have

272 < o(f)~A(f, %) = e(f)—min ((f), e(f+)) = e(f)—e(fx),

e(f) = 22 +elfs) = 22 = n(f),

this contradicts the supposition #( f Y=0(f).
The proof (of the case treated in details) is completed by the deduction

u(fs X)) = Cf) =)l = le(fe) —e(Fo)l =
= le(f) +efe)—(e(f)+e(F)) =

= (N-2"Y = (N =27 = 227 =4 (f).
Proposition 4. We have '

' consequently,

Thus

hence

A(fe)+n(fz) = n(f)
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where equality or strict inequality holds according as x; is an a-variable or a B-variable,
respectively.

Proof. The statement was asserted in Proposition 2 for a-variables. If x; is a
f-variable, then

H(fs x) = 22— () + A(f, x) < n(N) = A(f, x)
by Proposition 3 and the definition of B-variables. .
The next assertion is an obvious consequence of Proposition 2:
Proposition 5. If both x; and x; are a-variables of f, then
) n(f)+n(fz) = 'i(fx,)Jf"lUfj .
Proposition 6. Let x;, x; be two B-variables of f. If

II/\

16 +) ’
(MAWERSTY) ( )

u(f, x) = u(f, x;)
n(fx) +n(fz) = n(fe) +n(fz).

Furthermore, the strict inequality in the hypothesis implies strict mequalmes in the
conclusion.
Proof. By Proposition 3, we have

u(fs %) = 27 = n(N)+ A %) = 227 = (N A x) = u(f: x),
1hus also
M) +1(fe) = A ) +1(fs %) = A0S x) + (S, x) = n(fi) +1(Jz)-

It is clear that all of these deductions remain valid with < (instead of =) if 1(f; x;) <
"= A(f, x;) is supposed.

then

and

Proposition 7. Let x; be an a-variable and x; be a B-variable of f. Then

A(f, x) = A(S, x;)
n(fe) +n1(fz) = n(fs) +n(fz)-

Proof. The first inequality follows at once by comparing the definition of «-va-
riables to that of B-variables; the second one is implied by Proposition 4.

and

§3.

We define the critical variables of a truth function f by the subsequent .two

tules (I), (II):
v (D If every variable of fis of type a, then all the varlables are crmcal ,
(I) Suppose that f has at least one f-variable. We call a variable .x; critical

exactly when
A(f, x) = A(f, x;)
for. each variable x; of f.
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Proposition 8. Any n-ary function (n=1) has at least one critical variable. Let
x; be a critical variable, we have

1(fe) +n(fz) = n(fe) +n(fs)

Jor an arbitrary variable x; of f. furthermore, equality holds in this formula precisely
if x; is also critical. If f Izas at least one f3- varzable then all the critical variables are

of type B.

Proof. If f has a-variables only, then our statements are valid by Proposition 5.

Assume that there exists a f-variable of f. Let x; be a critical variable. Proposition
7 implies that x; is of type f. ‘

Consider an arbitrary other variable x;. If 2(f, x;)=A(/f, x;), then x; is critical,
it is of type f and Proposition 6 guarantees

n(fe) +n(fe) = n(f) +n(fz).
If A(f, x)<A(f, x;), then C

n(fx)+alfz) < n(fe)+n(f)

follows from Proposition 7 or Proposmon 6 (according as x; is an a-variable or a
B- varlable)

§ 4.

In this section, we shall give a method for determining the rank of a truth func-
tion f supposing that f is given in some disjunctive normal form. It is required
that the reader is familiar with the “principle of inclusion and exclusion™. 3

If A is an elementary: conjunction over the set {x;, x,, ..., x,} (considered as
an n-ary function), then obviously g(W)=2"-KW, ’

Let U, A, ..., U; be elementary conjunctions (j >1) Suppose that there
exists no variable x; such that x; occurs in non—negatcd form in some A, and negated
in an A, (where IShSJ and 1 W =j).* Let (W, & Wy & ... & A,) be defined as the
number of distinct variables occurring in ;& W, & ... &A; (i.e. as (W) where
B is the elementary conjunction resulted by the reduction of 2, & W, &... & Ap.
Since U, & W, & ... & U; is t exactly when each of ,, ,,..., A; is 4, we have

0 (U &AWy & ... &) = 277 MidUde )
whenever’l(ml&mz&...&m ) is defined. 5

‘ Proposition 9. [f WA, VAV...VU, is a dISJunctwe normal form representing the
- Junction f(xy, X3, ..., X,), then we have

o(f) = 52" ) o=l @8y | 5on—l @ 5%,8 %)

S 1)}'-1Zzn-—l(ﬁlil&ﬁliz&...&‘llij)_*_
() 50~ 88 526

¢ See [3] (p. 282) or [4] (Chapter 3) or [2] (§ 22).

4 If this supposition is not fulfilled, then we not define A%, 3Ws... &‘ZIJ)
5 If it is undefined; then o(¥; & W &... & W) =0.
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where the j th summation is extended to all such J-tuples (iy, iy, ..., i;) for which 1 =i, <
<ly<..<ij=k and I(W; & U;, & ... & W, ) is defined.

Proof. Let the principle of inclusion and exclusion be applied under such cir-
cumstantes that the basic set H is the definition domain of f and, for each i(1=i=k),
H; is the set of places at.which AU, takes the value 1.

§5.

Now we return to our original problem (exposed in §1). We introduce some
notations. For any i, let X7 be the difference set S—X; (1=i=n). Any set

Y=YNYLN..NY,

is called an afom, where Y, is either X; or X7. There exist 2" atoms (some of them
may be empty), any object s{€ §) belongs to exactly one atom.

Postulate. If Y is an arbitrary atom, then either ¥ S Zor YNZ=0.

Next we define the characteristic (truth) fuhction of the system {Z, X, X,, ..-
.» X,}. Let a full elementary conjunction U over {x,, X,, ..., X,} be given. We assign
to A the atom o (A) determined in such a way that Y;=X; or Y;=X} according -as
x; occurs in A without or with negation (1 =i= n). The function value is defined by
what follows: .
t if c(WEZ
SO = {J if e(NZ=20.
(When () is void, then f(2A) is defined arbitrarily. The postulate guarantees that
S(A) is defined at each place U.) ,

Algorithm. Step 1. (a) We consider the characteristic function f of the
set system {Z, Xy, X,, ..., X,}, we form #(f) and the minimum of the n values
4(f, %) (by comparing the 4n numbers o(fy), o(fx), o(fx), e(f5), by using
Proposition 9).

(b) If this minimum reaches n(f)—2""2%, then we choose an arbitrary varlable
x; of . If the minimum is smaller than 5 (f)—2"~2, then we choose such a variable
x; which yields the minimal value of A(f, x;).

(c) We check whether or not s is contained in X;. If s€X;, then we shall performy
Step 2 with f, . If s¢ X;, then Step 2 will be executed with f3,.

Step m(=2). (a) We have produced an (n—m+ 1)-ary function fy in Step m—1.
If fy is constantly 1, then s€Z and the algorithm is finished. If fy is constantly },
then s¢ Z and the algorithm is also finished. If f is non-constant, then we consider
7(fu) and the minimum of the n—m+1 values A(f, x;) (analogously to the part
(a) of Step 1).

(b) If this minimum reaches n (‘lI) 2»-m-1_then we choose an arbitrary variable
x;, of fy. If the minimum is smaller than #( fm) 2"=m-1_then we choose such a
variable x; which yields the minimal value of 4( Jas X5,).

(©) We check whether or not s is contained in X;,. If seX;,, then Step m+1
will be performed with fys.x 5 If s¢ X;,, then we shall execute Step m+1 with fgzs 5
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§ 6.

This section is devoted to justifying the algorithm. We shall deal with our
basic problem (see § 1 and § 5) under such circumstances that the postulate (in § 5)
- is valid and we know the characteristic function f(x,, X, ..., x,) but we have no

further information (e.g. it is unknown how the elements of S are distributed into
the atoms) at beginning the procedure. :

It is evident that the algorithm-is completed after at most n steps.

The entropy n(f) can ‘be viewed as a measure of the uncertainty whether f
takes one or other truth value at a randomly chosen place of its domain. Hence
we consider n(f) as the measure of uncertainty of whether s€Z or s¢ Z is fulfilled.

We try to proceed towards smaller entropies, as far as possible, by checking
the validity of appropriate relations s€ X; successively. In order to do this, it seems
{(by Propositions 4, 8) the best strategy to obtain the minimal #(fys:)+n(fuesz)
in each step, i.e. to continue the process with a critical variable of the function
Jfu (where 2 characterizes the informations being at our disposal after the earlier .
steps), with respect to that the formulae s€ X; and s¢ X; are assumed equiprobable.

§7.

The investigations described in the previous parts of the paper seem to admit
_some generalizations. In this final section, I mention four possibilities of generalizing
them (which can be combined with each other). The subsequent list was complled
together with Dr. Gy. Pollak. .
" (1) More than one membership  relations sEZl, s€Z2, . sEZ should be
determined’ smultaneously (1e by the same sequence of observatlons of whether

or not s€X;).

(2) For any atom Y, we know only the probability P(sEZ) of that s(¢Y)
belongs to Z (possibly lying between 0 and 1), consequently, f is a stochastic truth
function (in sense of [1]). We try to achieve that

RP(scZ)—1]

should be significant (i.e. larger than a given number 1 —¢).

(3) For any atom Y, we know the probability of the event that s(E §) is con-
tained in Y (this probability may differ-from 1/2"). (The precise goal is also to be
determined.)

(4) There is assigned a number (called weight) to each X; (interpreted as the
difficulty of checking of whether or not s€X;), our aim is to minimize the sum of
weights of the observations performed (instead of rmnlmlzmg the number of obser-
vations). '

Onno npumenenne GyHKumii anreOpsl JOrHKH
B (opMaIm3oBaHHOH MATHOCTHKE

Ilycts manet mogMHOXecTBa Z, X, X,, ..., X,, HEKOTOPOTO MHOXECTBA S OOBEKTOB TaK, UTO
KaXOpIA aTOM
Y=Y,nY:n..nY,.
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(roe Y, obo3nayaer mbo X; maGo S~ X,) yoosnerBopseTr omuy w3 dopmyt YEZ v YNZ=0..
TIpemonosxmm, YTO A NPOR3BOJIGHOTO 3/ieMeHTa s{€.S) Mbl MOXeM HaOMIOAATh CHPABEIIABOCTD
OTHOLICHWI NPHHAMJIEKHOCTH

SEXy, S€Xp..,5€X,
B 3aBHCMMOM OT HAC HOpSAKE. )

MBI HHTEpecyeMcCs, YTO NPHHALIeXXHOCTD §€ Z HMeeT JIH MeCTO (Tie § — NPOU3BONLHO HHKCHPO-
BaHHbBIIA 31EMEHT MHOXeCTBa S). B ciry4ae, korna u3BecTHO, KaKHe aTOMBI ABJISIOTCS OOAMHOKECT-
BaM¥M MHOXKECTBA Z WM KaKWe aTOMBbI He nepecexaroT Z (HO Mbl HEe HMEEM HMKaKylo MH(OPMALMIO
OTHOCHTENbHO 37IeMeHTa s creuMpruecky), AaéTca CTpaTerHs A LETecoo0pa3’HOro HOpsjaKa
MCHOHEHHA HabmoaeHnit s € X, ¢ LIEBIO NPOBEPKH WITH ONPOBEPXEHNS IIPHHANTIEXXHOCTH §€ Z 1ocie
(1o BO3MOXHOCTH) MEHbIIIE YeM n HabGmoaeHHH Trma s€ X, :
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