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On two problems of A. Salomaa
By Z. Esx

In this paper we solve two problems raised by A. Salomaa in his book {I].
Namely, we show that all right derivatives of a stochastic language are stochastic.
Conversely, if there exists an integer k such that all right derivatives of a language:
L with respect to all words of length k are stochastic languages then L is stochastic
language, too. Furthermore, it is proved that the family of stochastic languages.
remains unaltered if the components of the output vectors and the cut points are
allowed to be arbitrary real numbers. Proving these statements, we give affirmative
answers to Problems 3.1 and 5.1 of A. Salomaa. _

Before studying these problems we recall some definitions from [I].

By an alphabet I we mean a finite non-empty set. The elements of I are called
letters, sometimes input signs. A word over I is a finite string consisting of zero-
or more letters. ‘The empty word A is a string consisting of zero letters. If a word P
consists of k(= 0) letters then the length of this word is lg (P)=k. The. set of all
words over I is denoted by W(I). If P, Q€ W(I) then PQ denotes their catenation.

A language L is a subset of W (I). The void language is the language consisting;
of no words. The union (or sum) of two languages L, and L, is denoted by L,V L,.
and’ their catenation is defined by Lle—{P[P PPy, P €Ly, PyeL,}). If L, con-
sists of one word Q only then L,L, is denoted by L, Q.

If given a-word P over I and a language L S W (I) then the right (left) dCI‘IVathC
of L with respect to the word P is defined by L//P={Q|QP¢cL} (L\P={Q|PQ€L)).

A vector is called stochastic if its each component is nonnegative real number
and the sum of its components equals to 1. Moreover, a stochastic matrix is a square '
matrix whose each row is a stochastic vector.

By a finite probabilistic automaton — or, shortly, probabilistic automaton
—.over an alphabet I we mean an ordered triple PA=(S,s,, M), where
S={s1, 8, ..., 5,} is a finite non-empty set, the set of all internal states of P4, s,.
is an n-dimensional stochastic row vector, the initial distribution, whose ith compo-
nent equals-to the probability of PA to be in the state s; at the beginning of its work--
ing; finally, M is a mapping of I into the set of all stochastic matrices of type nXn.
For every x¢/, p;, ;(x) denotes the (i, /)th entry of the matrix M(x). This is the:
transition probablhty of PA to go from the state s; into the state s; under the input:
sign X.

We may extend the domain of the function M from I to W(I) by defining:
MA)=E,, M(Px)=M(P)M(x) for every Pxc W(I). (Here E, is the n-dimensional.
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‘identity matrix.) The stochastic row vector s;M(P) is called the distribution of
-states caused by the word P. Further on this row vector is often denoted by PA (P).

If V; is the n-dimensional coordinate column vector whose ith component
-equals to 1 then for every word PeW(I), p;(P)=PA(P)V; is the probability of
- PA to go into the state s; under the word P.

Let PA be the probabilistic automaton defined above and S1 an n-dimensional
-column vector whose each component is either 0 or 1; §, is called output vector. To
-each such vector S, there corresponds a subset S; of S and conversely, where S; is
given by: 5;€ S, if and only if the i th component-of §, equals to 1. Moreover, let
n be a real number such that 0=n<1. The language represented in P4 by S; and
‘the cut point 5 is defined by L(PA, S,, n)={P|PA(P)S,>n)}). A language L is -
stochastic if and only if for some P4 and S,, L=L(PA, S,, n). Furthermore, a
language L is stochastic if and only if for some n(0=pn<1), L is n-stochastic. Now
"we are ready to state

Theorem 1. All right derivatives of a stochastic language with respect io any
‘word are stochastic languages. Conversely, if there is an integer k such that all
Tight derivatives of a language L with respect to all words of length k are stochastic
‘then L is a stochastic language.

Proof. In order to prove the first part of the theorem take an arbitrary stochastic
‘language L=L(PA, S,, ) represented in the probabilistic automaton PA= (S(—-
={51, Sa, ---s S4})s So» M) Over the alphabet I={x,, x,, ..., x,}. For any i=1, 2, .

.and x¢l let q:(x)=VFM(x)S,, where ¥V} is the transpose of the vector V. Thus
.q;(x) is the probablllty of PA to go from the state s; into one of the states of S,
under the input sign x.

Since our statement is obviously valid for the empty word thus, in the sequel,
‘'we may confine ourself to derivatives with respect to words of length exceeding 0.
By Lf/(x;x;)=(LjIxp/lx; (x;, x;€I), it is enough to prove the first statement of Theo-
-tem 1 for letters. To make our discussions simplier, further on we shall deal with
Lj/x, only. Thus g;(x;) will simply be denoted by g¢;.

If for every i=1,2, ...,n, ;=0 then LS W({I){x,, X3, ..., x,}, therefore, Lj/x,
is the void language, which is clearly a stochastic one. Hence we may assume that
‘there is at least one index / with ¢;=0. Let i;, i, ..., i; be all different indices such
‘that the product gq;,¢;,...q;, 0 and let g=g, +4g;,+ .. -l—q,

We may assume that n<g. Indeed, by a theorem of R. Bukharev and P. Turakai-
nen in [1], every stochastic language is n’-stochastic for any n” with 0<gp'<1.
Furthermore, it can easily be seen that if given a finite probabilistic automaton
PA’=(S’, s5, M’) then for any language L'=L(PA’, §;,n") and n’ with O<n’<n”
-one can construct a probabilistic automaton PA” by adding a new state s to the set
-of the internal states of PA” such that there is no transition from s to S” and from

.any state of S’ to s, moreover, L’ can be represented in PA” with the cut point "
and the same set S;.

Now let S*={sy, 83, ..., s,,,}' and

PA [‘SUk q (quso, qlgso: AR ] qi,so): M*] ’
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where
M(x) 0 |
M*(X) — M(X)
0 "M(x)
for any x¢l. Define .
Vi
Gk V; * * QX
St =|.%|, L*= L(PA*, 5%, n/q).

v,
. Ll

Obviously PA* is a probabilistic automaton and L* is a stochastic language.
We clame that L//x, = L*. To prove this statement it is enough to verify that for every
word P, : i

g PA*(P)ST = PA(Pxy)S,.
Indeed, if P€ W(I) is an arbitrary word then

. A M(P) 0 Va
= ’ M(P Al
qPA*(P)ST= (¢Ii150= qigso’ cery qi,s()) . ( )' . :% =
0 M@y,

] . n n _
= Z; quSOM(P)I/ij = .Z;%SOM(P)V:' = _Z;Pi(P)qu' = PA(PxpS,.
= i= i= .

The second part of the theorem is also trivial in the case k=0. Thus let k=1.
First we prove that if L is a stochastic language then for every letter x the catenation
Lx is stochastic too. ’ )

Let again L=L(PA,S;,n) be a stochastic language, where PA =(S(=
={51, 52, ..., Su})> S, M) is a finite probabilistic automaton over the alphabet I=
={x;, X, ..., X,}. Without loss of generality we may assume that S;={sy, 55, ..., 5}
for a certain integer /=n. For arbitrary letter x¢7 let M;(x) denote the i th row of
the matrix M (x). For every i€{l, 2, ..., I} there exists a j(i)€{l, 2, ..., n} such that
i, j (X0 =0. To every such pair (i, j(7)) let us correspond the following probabilistic

automaton: . ) o o )
PA" = (S'(={si, 5, s Shy Sha))s (S0, 0)s M),
where : ' 4
M, (xy) i ‘ 0
: Mi—l(xl) ’ 0
i Pi (1) ... p; j(i)—l(xl) 0 Pi j(i)+1(x1) e Din(X) Py i(i)(xl)
M! x —_ » 0 » » B
(o) = Mir (x0) 0
M) 0
. ) M (x) . 0
if ij(),

2 Acta Cybernetica II/4
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Mi(x) =
M, (x,) 0
M;_1(x) 0
- Pii(x1) ... pi.j(l)-l(xl) 0 pi,j(i)+1(xl) pl‘,n(xl) Pi, iy (X1)
Miy1(xy) 0
M, (x)) 0
Piwa(x) - Piw,iw-160 0 Piy jwm+1(X1) - Piay,a(X1) Piw. (X1

if i=j(i). Moreover, in both cases
IM £3) 0

.
| M (x) O

if x=x,.

It is clear that L(PA}, V1, 0SS W(I)x,, where V,,, is the n+1-dimensional
column vector whose n+1th component is 1 and all others are zero. We shall now
prove that for every word P,

soM(P)V: = 0) M (Px)V, 1.

So>

YT

Further on we often use the followmg notation. If given an arbitrary finite
probabilistic automaton PA’=(S", s, M") over the alphabet I” and s;,s,...5/,, ,, €
€ W(S’) then

p(si, iy ... s,MP)IP)

denotes the transition probabxhty of PA’ to go from the state s;, into s/, & through
the states s, ..., 5{;; p, ., Under the input word P.

Let now PE W be an arbitrary word. For every i=1, 2, ..., / define

A; = {0s;]1QeW(S), p(Qs:| P) = 0},
B, = {Qisfu.leQiGW(Si), P(Qisfwllle) > 0}.
We say that a Q¢ 4; (i=1,2,...,/) has the property ®: for some z€{0, 1,
., 1g (P)—1} —innotation Q€ &; — if Q=s;;5;,...5;,, ., SUchthat =i, I,+1—_](l),

P= P’x,P”,1g (P’)=t. (The fact that Q does not have the property &; will be
denoted by Q4 di)

Let (p,-:A,-—»B,- (i=1, 2, ..., 1) be a mapping given by
Oi(Sig Siy o Sirg ) = oS5y oo Sy oy Shr 15

where jo=i, and if s5;,s; <--Si gy € P} fOT certain 1e{0,1, ..., Ig (P)—1} then j 4 =
=n+1 otherwise j,+1—lt+1 We shall now prove some propertxes of the mappmgs
i (i=1,2, ..., 1),

Assume that Q=5 Si-Si 1 (p) EAis Q’—s Sige EA and Q=0Q’. Then
there exists an integer f, —1<t<lg (P)—l such that 1,+1¢z,+1 Let ¢;(Q)= s,o e

i
smm siy, and <p,(Q) Sj1 Sjs .s,“;(p)s,,+1 Now we distinguish three cases.
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1. t=—1. Then jo=iy#i;=j;. Thus ¢;(Q)=;(Q").
2. 1=0,04¢9;, Q¢ ;. Then jipy =i 17i;+1=J: +1 and again ¢;(0)=¢;(0").
3. 1=0,0¢9;, Q¢ P;. Now jiyy=n+1,ji1#n+1. Thus ¢,(Q)#¢:(Q).
Since these are all possible cases, we get that ¢; is a one to one mapping for every
i=1,2,..,1 :

Let s5,55,...87,; »ySa+2€ B; be an arbitrary word. Since this is clearly the image
of the word s,-os,-l...simp?EAi, where i,=j, and for every 7¢{0,1,...,1g (P)—1}
if j,y;=n+1 then i,H:f(i) otherwise #,,,=j,4; thus we have that ¢; is one to
one mapping of 4; onto B; for every i=1,2, ..., 1.

Finally, since ¢; is a one to one mapping of 4; onto B; and

1
p(@Q|P) = p(9:(Q)| Pxy)

. ] B Pi, i (*1)
for any i€{l, 2, ..., I} and Q€ 4, thus we get:

SoM(P)Vi = ng P(Q|P) = ¢.(<%;a.p(¢i(Q)IPx1) = (So; O)M"(le)V,H,l.

1
DPi, i) (x)

Define ’
! 1
S* = {51, 83, .-.5 S(n R = —_—,
f51, 52 ¢ +1)l} p ig;pi,j(i)(xl)
1 1 1 1
s*=—[———‘~ Sy, 0), ————(54,0), ..., ———— s,O]
° P\ Py iay(x) (50, 0) D2, j(2)(x1) (50, 0) pl,j(l)(xl)( 0 0)
and for every xcI take
Mi(x) - 0 Ves1
M*(x) ' v
M*(x) = . s Sy =Y.
0 M (x) Va1

Moreover, consider the stochastic language L*=L(PA*, S{,n/p), where PA*=
=(S*, sy, M¥) is obviously a probabilistic automaton over the alphabet . In order
to prove that L*=Lx, it is enough to show, by L*C W(I)x,, that Px,€Lx, if and
only if Px,€L* for arbitrary P€ W(I). But this can be seen immediately because

pPA*(Px)) 8] =
: M*'(Pxy) '2 0 1
_ [ 600 _Gn0 (500 M (Fx) Vorr||_
P i) Pe ey (xD) T by () :

0 M (Px) || || Vasr

(5o, 0) ; ! l -

= 2 ———= M (Px)V,,1 = 2 seM(P)V; = PA(P)S,.

=10, 5 (X1) i=1

Since x, is an arbitrary letter thus the language Lx is stochastic for any x¢1.

2%
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Now let L be a language over 7 such that all the languages Lj/x,, L//x,, ...
., Lf|x, are stochastic. Thus the languages (L//x,)x,, (L{[x3)xs, ..., (Lf/x,)x, are
also stochastic. They can be represented, respectively, in the probabilistic automata
PAxlz(Sxp (So)xp ) PAxg_(nga (So)xga Xz) st PAxrz(Sx,J (So)x,7 Mx,.) by the
sets S,,1 S,,2 y s S,"l and the cut points n,,n,, ..., y,, where every automaton
PA,, is constructed in a way analogous to the construction of PA*. It follows
from our discussions above that L(PA,,, S, ,0)C W(x; for every i=1,2,.
First we deal with the case n,7,.. n,#O Then, as it was noted in the proof
of the first part of Theorem 1, we may assume that n,=n,=...=n,=#. Define

n= 2" card(S,), PA = (S(={s1, 2, -..» Sa})s Sos M),
i=1

where )
| M, (x) 0
1 ng (x)
So = T ((so)x1 » (jo)xz 3 tres (SO)x,)’ M(x) = .

0 - M, (%)
for arbitrary x€l. Let

-

L W
KA

5, =17, L*=L4,S5,,n/r).

ZE

X'.l

It follows immediately that L* =V (L//x;)x; because for every word P€W(I) and
xiejy .

rPA(Px)S, = 2 PAx;(Px;) S‘,jl = PA, (Px) le,l.
ji=1

If there is at least one index / such that ;=0 we may assume, without loss
of generality, that n,=n,=...=n;=0 but the product #;,,7;,,...n,50 for an integer
j<r Since by a theorem in [1] every O-stochastic language is regular, the language

V (Lj/x;))x; is regular. Moreover, in the same way as it was done in the previous

i=1 r

case, it can be proved that the language \/ (Lf/x;))x; is stochastic. Thus, using a
j+1

theorem of P. Turakainen (see [1]) by Wthh the sum of a stochastic and a regular

language is stochastic, we get that L*= V (L//x;)x; is a stochastic language.

Finally, since L=L* or L=L*Y/ {A} we have that L is stochastic.

We continue our proof by induction. Assume that the second part of the theorem
holds true for a certain integer k=1, and assume that for every word xP of length
k+1 the language L//xP is stochastic. Since L{/xP=(L//P)//x thus by our result
for the case k=1 and the inductive hypothesis we get that L is stochastic.

We now prove
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Theorem 2. The family of stochastic languages remains unaltered if the com-
ponents of S, as well as n are allowed to be arbitrary real numbers.

Proof. We distinguish two cases.

1. The components of S, are arbitrary nonnegative reals.

_Assume that PA=(S(={sy, S, ..., S,}); So» M) is a probabilistic automaton
over the alphabet /={x,, x, ..., x,} and consider the language L=L(PA, S, n)=
={PeW()|PA (P)Sl>r;} where the components of S, are arbitrary nonnegative
numbers and 7 is an arbitrary real number. Let

2}
gl = 0‘2
a
and v=max {v, U, ..., b,}. Since Theorem 2 is trivial if v=0, therefore, we shall
deal with the case v>0 only. Moreover, we may assume that 0=5<v because if
n=v then L is void and if n<0 then clearly L=L(PA, §{, 0), where a companent of
S: equals toOorl dependmg on whether the same component of 5, is 0 or posmve
Thus in both cases L is stochastic.
Define S*={s1, S5, -.s Susa)> 5o =(59,0,0) and let PA*=(S*,s¥, M*) be

a probabilistic automaton over the alphabet I*={xy, X, ..., X, 1.}, Where
00|

00

' M)

* —

M@= -
00..001
00..001

for every x¢I and

vfo 1—=vv

Uofv 1 —0,fv
M= 0 G

" v,fv 1 —u,fv
00..0 0 1
00..0 0 1

Let ST denote the n+ 2-dimensional column vector whose (74 1)th component
is 1 and the others are zero. Define L*=L(PA*, S, n/v). L* is stochastic because
0=pn/v<1. Our purpose is to show that L*=Lx,,,. Thus, by Theorem 1, it follows
that L=(Lx,4,)//x,+, is a stochastic language. Since L*& W(I)x,,,, therefore
in order to prove this equation it is enough to verify that for every word P W(I),

v PA*(Px,,,)Sf = PA(P)S,.
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Indeed,
vfv 1—vfu|l[O
vofv 1 —vyfuf[}| O
_ 0 : : :
* * __ * : : A~
vPA*(Px,,) ST = v(s, 0,0 M*(P) oo 1—vfo|||l0
00..0 0 1 1
00..0 0 1 0
0 0|l flv, ¥
0 Off{|v.
M(P A = -
=(S0,0,0) ( ) O 6 v =SOM(P)SI=PA(P)S1.
00..00 10
00..00 140

-2. There exists at least one negative number among the components of S,.
This case is traceable to the previous one by adding to » and to each component
of S, a number which is not smaller than the absolut value of the minimum of the
components of §;.

After having written the article the author obtained knowledge of the fact, that
among others the same problems had been solved in a different way by P. Turakainen
in [2].

O nByx npoGiaemax A. Cajnomaa

B 3T0it cTaThR MbI pelmin aBe npobieMsl, moctaBneHuble A. Canomaa B {1]. IMeHHO moka-
JKeM, YTO TIPaBOCTOPOHHBIE YACTHBIE CTOXACTUMECKHE A3bIKM, 0Dpa3oBaHHbIe € JHOGBIMH LENOY-
KaMH, ABJISAKOTCA CTOXA CTHYECKAMH, HA0DOPOT, eCllH MMEETCS TAKOM LIEI0e YHCIIO K, YTO y OJHOIO
SI3BIKA BCE NPABOCTOPOHHBIE YaCTHbIE, 06pa30BaHHbIC BCEMH LIETIOYKAMH ATMHOMK k, CTOXaCTHYECKHE,
TOrJa OH CaM SBSNETCH CTOXaCTHYECKHM. Jlanee moKaxeM, "TO CeMEHCTBO CTOXaCTHYECKHX
SA3BIKOB HE pacCIIUpAETCA, CCIN KOMHOHCHT!;I BBIXO1h(:f O B2KTODA nobnie SHCTBHTEIBbHBIE qycna,
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