Endomorphisms of group-type quasi-automata

By I. BABCSÁNYI

In this paper the endomorphisms of group-type quasi-automata are investigated using the concept of the generating system of quasi-automata. For the notions and notations which are not defined here, we refer the reader to [4] or [5].

Let the characteristic semigroup $\overline{F} = F/\varrho_A$ of an arbitrary quasi-automaton $A = (A, F, \delta)$ be a monoid, and let \overline{e} $(e \in F)$ be the identity element of \overline{F} . Take the subset $A' = \langle \delta(a, f) | a \in A; f \in F \rangle$ of A and the A-sub-quasi-automaton $A' = (A', F, \delta')$ of A. It is easy to see that $a \in A'$ if and only if $\delta(a, e) = a$ for an arbitrary state a of A. Furthermore, the characteristic semigroup of A' is equal to that of A. Assume that the set $A \setminus A'$ is non-empty. Let V be an arbitrary (non-empty) subset of $A \setminus A'$, and let π denote a mapping of V into $A \setminus A'$. Moreover, let α' be an endomorphism of A'. The following holds:

Theorem 1. The mapping $\alpha: A \rightarrow A$, defined by

$$\alpha(a) = \begin{cases} \alpha'(a) & \text{if } a \in A', \\ \alpha'(\delta(a, e)) & \text{if } a \in A \setminus A', \end{cases}$$
 (1)

is an endomorphism of A. The mapping $\alpha_n: A \rightarrow A$, for which

$$\alpha_{\pi}(a) = \begin{cases} \alpha'(a) & \text{if} \quad a \in A', \\ \pi(a) & \text{if} \quad a \in V, \\ \alpha'(\delta(a, e)) & \text{if} \quad a \in (A \setminus A') \setminus V \end{cases}$$
 (2)

holds, is an endomorphism of A if and only if

$$\alpha'(\delta(a,e)) = \delta(\pi(a),e) \tag{3}$$

holds for every $a(\in V)$. Furthermore, if β is an endomorphism of A, then β is a mapping of type (1) or (2).

Proof. α and α_n are well-defined. It can immediately be seen that α is an endomorphism of A. Now let $a(\in V)$, $b(\in (A \setminus A') \setminus V)$ and $f(\in F)$ be arbitrary elements. Assume that the condition (3) holds. Then

$$\alpha_{\pi}(\delta(a,f)) = \alpha'(\delta(a,f)) = \alpha'(\delta(a,ef)) = \alpha'(\delta(\delta(a,e),f)) =$$

$$= \delta(\alpha'(\delta(a,e)),f) = \delta(\delta(\pi(a),e),f) = \delta(\pi(a),ef) = \delta(\alpha_{\pi}(a),f),$$

and

$$\alpha_{\pi}(\delta(b,f)) = \alpha'(\delta(b,f)) = \alpha'(\delta(b,ef)) =$$

$$= \alpha'(\delta(\delta(b,e),f)) = \delta(\alpha'(\delta(b,e)),f) = \delta(\alpha_{\pi}(b),f).$$

These mean that α_n is an endomorphism of A. Conversely, if (2) is an endomorphism of A, then for every $a \in V$ we get

$$\alpha'(\delta(a,e)) = \alpha_{\pi}(\delta(a,e)) = \delta(\alpha_{\pi}(a),e) = \delta(\pi(a),e),$$

that is, (3) holds.

Take an arbitrary endomorphism β of A. We prove the following implications:

$$a \in A' \Rightarrow \beta(a) \in A'$$

$$a \in A \setminus A' \Rightarrow \beta(a) \in A \setminus A'$$
 or $\beta(a) = \beta(\delta(a, e))$.

If $a \in A'$, there are $b \in A$ and $f \in F$ such that $\delta(b, f) = a$. Then

$$\beta(a) = \beta(\delta(b,f)) = \delta(\beta(b),f) \in A'.$$

If $a \in A \setminus A'$ and $\beta(a) \in A'$, there are $b(\in A)$ and $f(\in F)$ such that $\beta(a) = \delta(b, f)$. That is,

$$\beta(a) = \delta(b, f) = \delta(b, fe) = \delta(\delta(b, f), e) = \delta(\beta(a), e) = \beta(\delta(a, e)).$$

Let β be an arbitrary endomorphism of A and let β' be an endomorphism of A' for which $\beta'(a) = \beta(a)$ ($a \in A'$). If $V = \langle a | \beta(a) \in A \setminus A' \rangle$ is a non-empty set, then β is a mapping (2). If V is the empty set, then β is a mapping (1).

Consequently, we can give the endomorphisms of A, if we know the endomorphisms of A'. In Theorem 3 we give all of the endomorphisms of A', if A' is a grouptype quasi-automaton.

A non-empty subset B of the state set A of a quasi-automaton $A = (A, F, \delta)$ is called a *generating system* of A if for each state $a \in A$ there exists a state $b \in B$ and a $f \in F$ such that $\delta(b, f) = a$. A generating system B of A is *minimal* if none of the proper subset of B is a generating system of A. A quasi-automaton is said to be (finitely) generated if it has a (finite) generating system. (We note that a quasi-automaton is called *cyclic* if it has an one-element generating system.)

Let the characteristic semigroup \overline{F} of a quasi-automaton $A = (A, F, \delta)$ be again a monoid and let \overline{e} $(e \in F)$ be the identity element of \overline{F} . It can easily be proved that the quasi-automaton A has a generating system if and only if

$$\forall a [\delta(a, e) = a].$$
(4)

In the following lemma the theorem of Yu. I. SORKIN [7] concerning finitely generated automata are generalised on generated quasi-automata.

Lemma 1. If G_1 and G_2 are two minimal generating systems of a generated quasi-automaton $\mathbf{A} = (A, F, \delta)$ then $|G_1| = |G_2|$. ¹

¹ |A| is the cardinal number of the set A.

Proof. Let G_1 and G_2 be two minimal generating systems of A. For every $a_2 \in G_2$, there exist $a_1 \in G_1$ and $f \in F$ such that $\delta(a_1, f) = a_2$ holds. It can easily be seen that the set

$$G_{12} = \langle a | a \in G_1 \text{ and } \exists_{f \in F} f[\delta(a, f) \in G_2] \rangle$$

is also a generating system of A. Since $G_{12} \subseteq G_1$ and G_1 is a minimal generating system of A, thus $G_{12} = G_1$. Assume that $\delta(a_1, f)$, $\delta(a_1, h) \in G_2$ $(a_1 \in G_1; f, h \in F)$. There exists a $k \in F$ such that $\delta(a_1, fk) = \delta(\delta(a_1, f), k) \in G_1$. Since G_1 is a minimal generating system of A, thus $\delta(a_1, fk) = a_1$, that is,

$$\delta(\delta(a_1,f),kh) = \delta(\delta(a_1,fk),h) = \delta(a_1,h) \in G_2.$$

Since G_2 is also a minimal generating system of A, we get that $\delta(a_1, h) = \delta(\delta(a_1, f), kh) = \delta(a_1, f)$. Furthermore, if $\delta(a_1, f) = \delta(a_1', g) \in G_2(a_1' \in G_1, g \in F)$, then $a_1 = \delta(a_1, fk) = \delta(a_1', gk)$, that is, $a_1 = a_1'$. Consequently, the mapping $\varphi: G_1 \to G_2$, for which

$$\varphi(a_1) = a_2 \Leftrightarrow \underset{f \in F}{\exists} f[\delta(a_1, f) = a_2]$$

holds, is an one-to-one mapping of G_1 onto G_2 .

We define the following relation ϱ on A:

$$a\varrho b(a,b\in A) \Leftrightarrow \exists_{c\in A; f,g\in F} (c,f,g) [\delta(c,f)=a, \ \delta(c,g)=b]. \tag{5}$$

If the quasi-automaton $A = (A, F, \delta)$ is generated then ϱ is a reflexive and symmetric relation. If the quasi-automaton A is generated and the characteristic semigroup \overline{F} of A is a group then ϱ is an equivalence relation.

A non-empty subset E of the state set A of a quasi-automaton $A = (A, F, \delta)$ is called a *strongly connected subset* of A, if for every $a, b \in E$ there exists an $f(\in F)$ such that $\delta(a, f) = b$. A partition C of A is called *strongly connected*, if C(a) is a strongly connected subset of A for every $a \in A$ (C(a) denotes the class of C containing the element a).

Lemma 2. If the characteristic semigroup of a generated quasi-automaton $A = (A, F, \delta)$ is a group, then C_{ϱ} is a strongly connected partition of A, where C_{ϱ} is the partition on A induced by ϱ .

Proof. Let $a, b \in C_g(c)$ $(c \in A)$, then there exist $f \in F$ and $g \in F$ such that $\delta(c, f) = a$ and $\delta(c, g) = b$. Since \overline{F} is a group, there exists an $h(\in F)$ such that $\overline{f}h = \overline{g}$, therefore,

$$\delta(a, h) = \delta(\delta(c, f), h) = \delta(c, fh) = \delta(c, g) = b,$$

that is, $C_{\varrho}(c)$ is a strongly connected subset of A.

Assume that the conditions of this Lemma are satisfied. It can easily be seen that $C_{\varrho}(a) = \langle \delta(a,f) | f \in F \rangle$ holds for every $a(\in A)$. Thus $C_{\varrho}(a) = (C_{\varrho}(a), F, \delta_a)$ is a strongly connected sub-quasi-automaton of A for every $a(\in A)$ (cf. CH. A. TRAUTH [6]).

Lemma 3. If the characteristic semigroup of a generated quasi-automaton $A = (A, F, \delta)$ is a group, then A has a minimal generating system.

Proof. By Lemma 2, C_e is a strongly connected partition of A. Let $G(\subseteq A)$ such that $A = \bigcup_{a \in G} C_e(a)$ and if $a \neq b$ $(\in G)$ then $C_e(a) \neq C_e(b)$. We can easily prove that G is a minimal generating system of A.

We note that if G is a minimal generating system of A then $A = \bigcup_{a \in G} C_{\varrho}(a)$ and if $a \neq b \in G$ then $C_{\varrho}(a) \neq C_{\varrho}(b)$.

It is possible that C_o is a strongly connected partition of A if the characteristic semigroup of A is not a group. Take the following example:

 $C_{\varrho}(1) = \langle 1, 2, 3 \rangle$ and $C_{\varrho}(4) = \langle 4, 5 \rangle$ are strongly connected subsets of A, $C_{\varrho}(1) \cup \cup C_{\varrho}(4) = A$ and $C_{\varrho}(1) \cap C_{\varrho}(4) = \emptyset$. But $\overline{F(X)}$ is not a group. (F(X) denotes the free semigroup with out identity element generated by $X = \langle x, y \rangle$.) Note that $G = \langle 1, 4 \rangle$ is a minimal generating system of A.

Theorem 2. If a quasi-automaton $A = (A, F, \delta)$ is finitely generated and C_{ϱ} is a strongly connected partition of A then

$$o(E(A)) \ge \prod_{i=1}^{k} o(E(C_{\varrho}(a_i))), \tag{6}$$

Ç

where $G = \langle a_1, ..., a_k \rangle$ is a minimal generating system of A.

Proof. E(A) and $E(C_{\varrho}(a_i))$ denote the endomorphism semigroups of the quasiautomaton $A = (A, F, \delta)$ and $C_{\varrho}(a_i) = (C_{\varrho}(a_i), F, \delta_{a_i})$ $(a_i \in G)$, respectively. Denote by $\alpha = \bigcup_{a_i \in G} \alpha_{a_i}$ the following mapping of A into itself:

$$\alpha(a) = \alpha_{a_i}(a), \quad \text{if} \quad a \in C_{\varrho}(a_i) \tag{7}$$

where $\alpha_{a_i} \in E(C_{\varrho}(a_i))$. It can easily be proved that $\alpha \in E(A)$. Furthermore, if

$$\alpha = \bigcup_{a_i \in G} \alpha_{a_i} (\alpha_{a_i} \in E(C_{\varrho}(a_i))) \quad \text{and} \quad \beta = \bigcup_{a_i \in G} \beta_{a_i} (\beta_{a_i} \in E(C_{\varrho}(a_i)))$$

such that $\alpha = \beta$, then $\alpha_{a_i} = \beta_{a_i}$ for every $a_i \in G$.

Lemma 4. If a group-type quasi-automaton $A = (A, F, \delta)$ is generated, then the sub-quasi-automaton $C_{\varrho}(a)$ is quasi-perfect and the characteristic group of $C_{\varrho}(a)$ is equal to the characteristic group of $C_{\varrho}(a)$ for every $C_{\varrho}(a) \cong C_{\varrho}(a)$ for every pair $C_{\varrho}(a) \cong C_{\varrho}(a)$

Proof. Let $a \in A$ and $f, g \in F$ such that

$$\forall_{h \in F} h[\delta(a, hf) = \delta(\delta(a, h), f) = \delta(\delta(a, h), g) = \delta(a, hg)].$$

Since A is state-independent, thus $h\bar{f} = h\bar{g}$. Let $h\bar{e} = \bar{e}$, where \bar{e} is the identity element of the characteristic group of A, then $\bar{f} = \bar{g}$. Consequently, the characteristic group of $C_o(a)$ is equal to the characteristic group of A. A sub-quasi-automaton of a state-

independent quasi-automaton is also state-independent, therefore, by Lemma 2, $C_{\varrho}(a)$ is quasi-perfect. Let $a, b \ (\in A)$ be arbitrary states. It is clear that the mapping $\delta(a, f) \rightarrow \delta(b, f) \ (f \in F)$ is an isomorphic mapping of $C_{\varrho}(a)$ onto $C_{\varrho}(b)$.

Corollary 1. If a group-type A-finite quasi-automaton $A = (A, F, \delta)$ is generated, then $O(\overline{F}) | |A|$.²

Proof. From Lemma 4 and Theorem 7 of Ch. A. Trauth [6] we get that $|C_{\varrho}(a)| = O(\overline{F})$ for every $a \in A$. $|C_{\varrho}(a)| = |C_{\varrho}(b)|$ follows also from Lemma 4 for every pair $a, b \in A$. Thus $O(\overline{F}) = |C_{\varrho}(a)| |A|$.

Corollary 2. If an A-finite group-type quasi-automaton $A = (A, F, \delta)$ is generated and |A| is a prime number, then either \overline{F} has only one element or A is quasi-perfect.

Proof. By Corollary 1, if |A| is a prime number, then either $O(\overline{F})=1$ or $|C_{\varrho}(a)|==O(\overline{F})=|A|$ $(a \in A)$. If $|A|=|C_{\varrho}(a)|$ $(a \in A)$, then A is a cyclic quasi-automaton. Cyclic group-type quasi-automaton is quasi-perfect (CH. A. TRAUTH [6]).

Theorem 3. If a group-type quasi-automaton $A = (A, F, \delta)$ is generated, then there exist a subsemigroup T and two subgroups H and P of the endomorphism semigroup E(A) of A such that

$$E(A) = TH$$
, $G(A) = PH = HP$, $T \cap H = \{i\}$, $P \subseteq T$

hold, where ι is the identity element of E(A). ³

Proof. Let the group-type quasi-automaton $A = (A, F, \delta)$ be generated. By Lemma 3, there exists a minimal generating system G of A. Let H denote the set of all endomorphisms (7). By Lemma 4 and Theorem 4 of I. BABCSÁNYI [1], the endomorphisms (7) are automorphisms of \hat{A} . H is a subgroup of the automorphism group. G(A) of A under the usual multiplication of mappings.

Let π be an arbitrary mapping of G into itself. We define the mapping φ_{π} : $A \rightarrow A$ by

$$\varphi_{\pi}(\delta(c,f)) = \delta(\pi(c),f) \quad (c \in G, f \in F). \tag{8}$$

We show that φ_{π} is an endomorphism of A. Let a be an arbitrary state of A and let $c \in G$ and $f, g \in F$ such that $a = \delta(c, f) = \delta(c, g)$. Since A is state-independent, thus $\delta(\pi(c), f) = \delta(\pi(c), g)$, that is, φ_{π} is well-defined. If $a = \delta(c, h)$ $(c \in G, h \in F)$ and $f \in F$ then

$$\varphi_{\pi}(\delta(a,f)) = \varphi_{\pi}(\delta(\delta(c,h),f)) = \varphi_{\pi}(\delta(c,hf)) = \delta(\pi(c),hf) =$$

$$= \delta(\delta(\pi(c),h),f) = \delta(\varphi_{\pi}(\delta(c,h)),f) = \delta(\varphi_{\pi}(a),f),$$

that is, $\varphi_{\pi} \in E(A)$. Let T denote the set of all mappings (8). T is a subsemigroup of E(A). Namely, if φ_{π} , $\varphi_{\pi'} \in T$ and $a = \delta(c, h)$, then

$$\varphi_{\pi}\varphi_{\pi'}(a) = \varphi_{\pi}\varphi_{\pi'}(\delta(c,h)) = \varphi_{\pi}(\delta(\pi'(c),h)) =$$

$$= \delta(\pi\pi'(c),h) = \varphi_{\pi\pi'}(\delta(c,h)) = \varphi_{\pi\pi'}(a)$$

that is, $\varphi_{\pi}\varphi_{\pi'} = \varphi_{\pi\pi'} \in T$.

² If n and k are natural numbers then k|n means that n can be divided by k.

³ $TH = \langle \varphi \alpha | \varphi \in T, \alpha \in H \rangle$.

³ Acta Cybernetica II/4

If π is a permutation of G and $\varphi_{\pi}(a) = \varphi_{\pi}(b)$ $(a, b \in A)$ then there exist $c, d \in G$ and $h, k \in F$ such that $\delta(c, h) = a$ and $\delta(d, k) = b$, therefore

$$\delta(\pi(c),h) = \varphi_{\pi}(\delta(c,h)) = \varphi_{\pi}(a) = \varphi_{\pi}(b) = \varphi_{\pi}(\delta(d,k)) = \delta(\pi(d),k).$$

Let $k' \in \overline{k}^{-1}$, then $\delta(\pi(c), hk') = \delta(\pi(d), kk') = \pi(d)$. Since $\pi(c), \pi(d) \in G$ and G is a minimal generating system of A, thus $\pi(c) = \pi(d)$, that is, c = d and $\overline{h} = \overline{k}$. Therefore a = b, that is, φ_{π} is an one-to-one mapping. Now let a be an arbitrary state of A, then there exist $d \in G$ and $f \in F$ such that $\delta(d, f) = a$. Furthermore, there exists a $c \in G$ such that $\pi(c) = d$, because π is a permutation of G. Thus

$$\varphi_{\pi}(\delta(c,f)) = \delta(\pi(c),f) = \delta(d,f) = a,$$

that is, φ_{π} is onto. Consequently, if π is a permutation of G, then $\varphi_{\pi} \in G(A)$. Denote by P the set of this automorphisms φ_{π} . It is obvious, that P is a subgroup of G(A). It can easily be seen that $T \cap H = \{i\}$, $P \subseteq T$, $TH \subseteq E(A)$ and PH, $HP \subseteq G(A)$ hold.

Now, we prove that $E(A) \subseteq TH$. Let $\beta \in E(A)$ and $a \in A$. There exist states c, $d(\in G)$ such that $a \in C_{\varrho}(c)$ and $\beta(a) \in C_{\varrho}(d)$. Take the mapping π of G into itself such that $\pi(c) = d$. We show that π is well-defined. Let $b \in C_{\varrho}(c)$ and suppose that $\beta(b) \in C_{\varrho}(d')$ $(d' \in G)$. There exist $h, h' \in F$ for which $\delta(c, h) = a$ and $\delta(c, h') = b$ hold. Thus $\beta(a) = \beta(\delta(c, h)) = \delta(\beta(c), h)$ and $\beta(b) = \beta(\delta(c, h')) = \delta(\beta(c), h')$, that is, $C_{\varrho}(d) = C_{\varrho}(d')$, thus d = d'. We define φ_{π} as in (8). If $\beta(a) = \delta(d, k)$ $(k \in F)$, then let α_c be an automorphism of $C_{\varrho}(c)$ such that $\alpha_c(a) = \alpha_c(\delta(c, h)) = \delta(c, k)$. (Since $C_{\varrho}(c)$ is quasi-perfect, therefore the automorphism group of $C_{\varrho}(c)$ is transitive, thus α_c exists (CH. A. Trauth [6]).) We prove that α_c depends only on β . Let $b \in C_{\varrho}(c)$ and $\delta(c, h') = b$ $(h' \in F)$, furthermore h' = hl $(l \in F)$. Then

$$b = \delta(c, h') = \delta(c, hl) = \delta(\delta(c, h), l) = \delta(a, l).$$

Thus, if $\beta(b) = \delta(d, k')$ $(k' \in F)$, then

$$\delta(d, k') = \beta(b) = \beta(\delta(a, l)) = \delta(\beta(a), l) = \delta(\delta(d, k), l) = \delta(d, kl).$$

Since A is state-independent, thus $\bar{k}' = \bar{k}l$, that is,

$$\alpha_c(b) = \alpha_c(\delta(c, h')) = \alpha_c(\delta(c, hl)) = \alpha_c(\delta(\delta(c, h), l)) =$$

$$= \delta(\alpha_c(\delta(c, h)), l) = \delta(\delta(c, k), l) = \delta(c, kl) = \delta(c, k').$$

Thus

$$\varphi_{\pi}\alpha_{c}(a) = \varphi_{\pi}\alpha_{c}(\delta(c,h)) = \varphi_{\pi}(\delta(c,k)) = \delta(d,k) = \beta(a).$$

Take this α_c for every $c \in G$ and let $\alpha = \bigcup_{\substack{c \in G \\ c \in G}} \alpha_c$. It is clear that $\beta = \varphi_{\pi}\alpha$, that is, $\beta \in TH$, since $\varphi_{\pi} \in T$ and $\alpha \in H$. Therefore $E(A) \subseteq TH$, thus E(A) = TH.

Suppose that $\beta = \varphi_{\pi}\alpha \in G(A)$. Since $\alpha \in G(A)$, therefore $\varphi_{\pi} = \beta \alpha^{-1} \in G(A)$. If $\alpha \in G$ then $\varphi_{\pi}(\alpha) = \pi(\alpha)$, that is, π is a permutation of G, thus $\varphi_{\pi} \in P$. We get that G(A) = PH. Finally, we shall show that PH = HP. Let $\varphi_{\pi}(\in P)$ and $\alpha \in H$ be arbitrary endomorphisms. Furthermore, let $\alpha = \delta(c, h)$ ($c \in G, h \in F$) be an arbitrary state of A and let $\alpha(\alpha) = \delta(c, k)$ ($k \in F$). Take the automorphism $\alpha_{\pi(c)}$ of $C_{\varrho}(\pi(c))$ such that

$$\alpha_{\pi(c)}(\delta(\pi(c),h)) = \delta(\pi(c),k).$$

It can easily be seen that $\alpha_{\pi(c)}$ depends only on α . Since π is a permutation of G, therefore the mapping $\alpha_{\pi(c)} \to C_{\varrho}(\pi(c))$ is one-to-one and $\alpha' = \bigcup_{c \in G} \alpha_{\pi(c)} \in H$. Thus

$$\alpha' \varphi_{\pi}(a) = \alpha' \varphi_{\pi}(\delta(c, h)) = \alpha'(\delta(\pi(c), h)) = \delta(\pi(c), k) =$$
$$= \varphi_{\pi}(\delta(c, k)) = \varphi_{\pi}\alpha(\delta(c, h)) = \varphi_{\pi}\alpha(a),$$

that is, $\alpha' \varphi_{\pi} = \varphi_{\pi} \alpha$. Thus $G(A) = PH \subseteq HP$, therefore PH = HP.

Corollary 3. If a group-type quasi-automaton $A=(A, F, \delta)$ is generated, then

$$\varphi \alpha = \psi \beta \Rightarrow \varphi = \psi \quad and \quad \alpha = \beta,$$

where φ , $\psi \in T$ and α , $\beta \in H$.

Proof. Let φ , $\psi \in T$ and α , $\beta \in H$ such that $\varphi \alpha = \psi \beta$, then $\varphi \alpha \beta^{-1} = \psi$. Let G be a minimal generating system of A and $c \in G$, then $\varphi(\alpha \beta^{-1}(c)) = \psi(c)$. Since $\alpha \beta^{-1}(c) \in C_{\varrho}(c)$, there exists $f \in F$ such that $\alpha \beta^{-1}(c) = \delta(c, f)$, that is,

$$\psi(c) = \varphi(\alpha\beta^{-1}(c)) = \varphi(\delta(c,f)) = \delta(\varphi(c),f).$$

Since $\varphi(c)$, $\psi(c) \in G$, thus $\varphi(c) = \psi(c)$ ($c \in G$) and $\bar{f} = \bar{e}$, where \bar{e} is the identity element of \bar{F} . We get that $\varphi = \psi$ and $\alpha \beta^{-1}(c) = \delta(c, f) = \delta(c, e) = c$, that is $\alpha = \beta$.

Corollary 4. Let a group-type quasi-automaton $A=(A, F, \delta)$ be generated. If $O(\overline{F})>1$, then P is isomorphic to a subgroup of the automorphism group of H. If $O(\overline{F})=1$ then $H=\{i\}$.

Proof. Let $\varphi \in P$. We define the following mapping ω_{φ} of H into itself:

$$\omega_{\varphi}(\alpha) = \alpha' \Leftrightarrow \varphi \alpha = \alpha' \varphi. \tag{9}$$

 ω_{φ} is one-to-one and onto. Let $\alpha_1, \alpha_2 \in H$ then

$$(\alpha_1\alpha_2)'\varphi = \varphi(\alpha_1\alpha_2) = (\varphi\alpha_1)\alpha_2 = (\alpha_1'\varphi)\alpha_2 = \alpha_1'(\varphi\alpha_2) = \alpha_1'(\alpha_2'\varphi) = (\alpha_1'\alpha_2')\varphi,$$

that is, $(\alpha_1 \alpha_2)' = \alpha_1' \alpha_2'$, thus ω_{φ} is an automorphism of H. Suppose that $\omega_{\varphi} = \omega_{\psi}$ $(\varphi, \psi \in P)$, that is,

$$\varphi \alpha = \alpha' \varphi \Leftrightarrow \psi \alpha = \alpha' \psi.$$

Let $\varphi \alpha = \alpha' \varphi$ and $\psi \alpha = \alpha' \psi$, then $\alpha' = \psi \alpha \psi^{-1}$ thus $\varphi \alpha = \psi \alpha \psi^{-1} \varphi$, that is $\psi^{-1} \varphi \alpha = \alpha \psi^{-1} \varphi$ ($\alpha \in H$). Let $O(\overline{F}) > 1$. Let $\alpha \in H$ such that $\alpha(a) = \delta(a, f)$ and $\alpha(\psi^{-1} \varphi(a)) = \delta(\psi^{-1} \varphi(a), g)$ ($\alpha \in A$), where $\overline{f} \neq \overline{g}$ ($\in \overline{F}$). α exists if $C_{\varrho}(a) \neq C_{\varrho}(\psi^{-1} \varphi(a))$. Then

$$\delta(\psi^{-1}\varphi(a),f)=\psi^{-1}\varphi\big(\delta(a,f)\big)=\psi^{-1}\varphi\alpha(a)=\alpha\psi^{-1}\varphi(a)=\delta\big(\psi^{-1}\varphi(a),g\big),$$

that is $\bar{f} = \bar{g}$, since A is state-independent. It is a contradiction. Thus $C_{\varrho}(a) = C_{\varrho}(\psi^{-1}\varphi(a))$, that is $\psi^{-1}\varphi = \iota$ and $\varphi = \psi$. Therefore the mapping $\varphi \to \omega_{\varphi}$ is one-to-one. We prove that this mapping is isomorphism. Let $\varphi, \psi \in P$ and $\alpha \in H$ then $\omega_{\varphi}\omega_{\psi}(\alpha) = \omega_{\varphi}(\alpha_{1}) = \alpha_{2}$, where $\psi \alpha = \alpha_{1}\psi$ and $\varphi \alpha_{1} = \alpha_{2}\varphi$. Then

$$(\varphi\psi)\alpha = \varphi(\psi\alpha) = \varphi(\alpha_1\psi) = (\varphi\alpha_1)\psi = (\alpha_2\varphi)\psi = \alpha_2(\varphi\psi),$$

that is $\omega_{\varphi\psi}(\alpha) = \alpha_2$, thus $\omega_{\varphi}\omega_{\psi} = \omega_{\varphi\psi}$.

If $O(\overline{F})=1$, then $|C_{\varrho}(c)|=1$ ($c\in G$), that is $H=\{i\}$. (In this case G=A, E(A)=T and G(A)=P.)

Let G and G' be two minimal generating systems of a group-type generated quasi-automaton $A = (A, F, \delta)$. Let T, P and T', P' be sets which are defined in Theorem 3.

Corollary 5. $T' = \alpha T \alpha^{-1}$, $P' = \alpha P \alpha^{-1}$ where $\alpha \in H$ and $\alpha(G) = G'$. Furthermore $T' \cong T$, $P' \cong P$.

Proof. Let π be a mapping of G into itself and let π' be a mapping of G' into tself such that

$$\alpha(\pi(c)) = \pi'(\alpha(c)) \quad (c \in G)$$
 (10)

holds, where $\alpha \in H$ and $\alpha(G) = G'$. The mapping $\pi \to \pi'$ is one-to-one, thus the mapping $\varkappa \colon \varphi_{\pi} \to \varphi_{\pi'}$ is one-to-one also. Let $a \in A$, then

$$\alpha \varphi_{\pi}(a) = \alpha \varphi_{\pi}(\delta(c, h)) = \alpha(\delta(\pi(c), h)) = \delta(\alpha(\pi(c)), h) =$$

$$= \delta(\pi'(\alpha(c)), h) = \varphi_{\pi'}(\delta(\alpha(c), h)) = \varphi_{\pi'}\alpha(\delta(c, h)) = \varphi_{\pi'}\alpha(a)$$

 $(c \in G, h \in F)$, that is, $\alpha \varphi_{\pi} = \varphi_{\pi'} \alpha$ thus $\varphi_{\pi'} = \alpha \varphi_{\pi} \alpha^{-1}$. It can easily be seen, that the mapping \varkappa is onto, that is $T' = \alpha T \alpha^{-1}$.

$$\varkappa(\varphi_{\pi_1}\varphi_{\pi_2}) = \varkappa(\varphi_{\pi_1\pi_2}) = \alpha\varphi_{\pi_1}\varphi_{\pi_2}\alpha^{-1} = \alpha\varphi_{\pi_1}\alpha^{-1}\alpha\varphi_{\pi_2}\alpha^{-1} = \varkappa(\varphi_{\pi_1}) \cdot \varkappa(\varphi_{\pi_2})$$

$$(\varphi_{\pi_1}, \varphi_{\pi_2} \in T) \text{ therefore } T \cong T'. \text{ It is evident that } P' = \alpha P \alpha^{-1} \text{ and } P \cong P'.$$

We note, if G is a minimal generating system of a group-type generated quasiautomaton A and $\alpha \in H$, then $\alpha(G)$ is also a minimal generating system of A. If $\alpha \neq \beta \in H$ then $\alpha(G) \neq \beta(G)$. Furthermore, if G and G' are two minimal generating systems of A, then there exists $\alpha \in H$ such that $\alpha(G) = G'$ holds. Therefore, the cardinality of the set of all minimal generating systems of A is equal to O(H).

Theorem 4. If an A-finite group-type quasi-automaton $A = (A, F, \delta)$ is generated, |A| = n and |G| = k then

$$O(G(A)) = k! \cdot \left(\frac{n}{k}\right)^k$$
 and $O(E(A)) = n^k$,

where G is a minimal generating system of A.

Proof. If |A|=n and |G|=k, where G is a minimal generating system of A, then $O(\overline{F})=\frac{n}{k}$. By Lemmas 2 and 4, $|C_{\varrho}(c)|=\frac{n}{k}$ $(c\in G)$. Since $C_{\varrho}(c)$ is quasi-perfect, therefore $O\big(E(C_{\varrho}(c))\big)=|C_{\varrho}(c)|=\frac{n}{k}$. The number of sets $C_{\varrho}(c)$ $(c\in G)$ is equal to k, thus $O(H)=\left(\frac{n}{k}\right)^k$. By Theorem 3, O(P) is equal to the number of the permutations of G, that is O(P)=k!. By Theorem 3 and Corollary 3, $O\big(G(A)\big)=O(P)\cdot O(H)=k!\cdot \left(\frac{n}{k}\right)^k$ and $O\big(E(A)\big)=O(T)\cdot O(H)=k^k\cdot \left(\frac{n}{k}\right)^k=n^k$.

⁴ $\alpha(G) = \langle \alpha(c) | c \in G \rangle$.

Example:

 $(F = \{e, f\})$ is the Abelian group of degree two, where e is the identity element of F.) Let abcd (a, b, c, d = 1, 2, 3, 4) denote the mapping $\varphi: A \to A$ such that $\varphi(1) = a$, $\varphi(2) = b$, $\varphi(3) = c$ and $\varphi(4) = d$. It is clear that

 $H = \{1234; 1243; 2134; 2143\}$

 $T = \{1234; 3412; 1212; 3434\}$

 $P = \{1234; 3412\}$

In this example n=4 and k=2, that is $O(G(A))=2! \cdot 2^2=8$ and $O(E(A))=4^2=16$. But $HT \neq TH = E(A)$, since |HT|=12.

We can more easily determine the endomorphisms of a group-type quasiautomaton $A = (A, F, \delta)$ by means of the following:

Let G be a minimal generating system of A' (see page 1). Let

$$B_c = \langle b | b \in A \text{ and } \underset{f \in F}{\exists} f[\delta(b, f) = c] \rangle$$

where $c \in G$. It is evident that this is a partition of A. Furthermore, $C_{\varrho}(c) \subseteq B_c$ $(c \in G)$. **Lemma 5.** If α is an arbitrary endomorphism of the group-type quasi-automaton $A = (A, F, \delta)$, then for every $c \in G$, there exists a $d \in G$ such that $\alpha(B_c) \subseteq B_d$.

Proof. Let $\alpha \in E(A)$ and $a \in B_c$ $(c \in G)$, then there exists an $f(\in F)$ such that $\delta(a, f) = c$, thus $\delta(\alpha(a), f) = \alpha(c)$. It is obvious, that there exists a $d(\in G)$ such that $\alpha(c) \in B_d$. If $h \in F$ such that $\delta(\alpha(c), h) = d$, then $\delta(\alpha(a), fh) = \delta(\alpha(c), h) = d$, that is, $\alpha(a) \in B_d$.

Эндоморфизмы группа — типных квази-автоматов

В этой работе рассматриваем эндоморфизмы группа-типных квази-автоматов (см. Сн. А. Ткаuth [6]) при помощи системы образующих квази-автоматов.

Пусть $A = (A, F, \delta)$ произвольный квази-автомат и $A' = \langle \delta(a,f) | a \in A, f \in F \rangle$. В теореме 1 получаем эндоморфизмы квази-автомата A, если знаем эндоморфизмы A-подквази-автомата A' квази-автомата A. (A' можно называться sdpom квази-автомата A.) Если характеристическая полугруппа $F = F/\delta_A$ обладает единицей, тогда A' является порожденным. Теорема 3 доставляем главный результат этой работы, где даваем эндоморфизмы (автоморфизмы порожденных группа-типных квази-автоматов и структуру полугруппы эндоморфизмов (группы автоморфизмы): Обозначаем множество отображений (7). Н и множество отображений (8) T. Н является подгруппой группы автоморфизмов G(A). G(A) = G(A) полугруппы эндоморфизмов G(A) = G(A) полугруппы эндоморфизмов G(A) = G(A) = G(A) полугруппы G(A) = G(A) = G(A) показаем, что если G(A) = G(A) = G(A) = G(A) показаем, что если G(A) = G(A) = G(A) = G(A) в тогда G(A) = G(A) = G(A) = G(A) = G(A) показаем, что если G(A) = G(A) = G(A) в тогда G(A) = G(A) = G(A) в если G(A) = G(A) показаем и порожденных группа-типных квази-автоматов: G(G(A)) = G(A) = G(A)

 $= k! \cdot \left(\frac{n}{k}\right)^k$, где |A| = n и |G| = k (G неприводимая система образующих в квази-автомате A).

В следствии 1 показываем, что $O(\bar{F})||A|$. Лемма 1 является обобшением теоремы Ю. И. Соркина [7]: Все неприводимые системы образующих квази-автомата являются равномошными. Доказаем, что всякий порожденный группа — типный квази-автомат есть прямая сумма изоморфных полусовершенных квази-автоматов (лемма 4).

ENTZBRUDER VOCATIONAL SECONDARY SCHOOL H-9700 SZOMBATHELY, HUNGARY

References

[1] BABCSÁNYI, I., A félperfekt kváziautomatákról (On quasi-perfect quasi-automata), Mat. Lapok, v. 21, 1970, pp. 95—102.

[2] BABCSÁNYI, İ., Ciklikus állapot-független kváziautomaták (Cyclic state-independent quasiautomata), Mat. Lapok, v. 22, 1971, pp. 289-301.

- [3] FLECK, A. C., Preservation of structure by certain classes of functions on automata and related group theoretic properties, Computer Laboratory, Michigan State University, 1961, (preprint).
- [4] GÉCSEG, F. & I. PEÁK, Az automaták algebrai elmélete (Algebraic theory of automata), Mat. Lapok, v. 17, 1966, pp. 77—134.

- [5] GÉCSEG, F. & I. PEÁK, Algebraic theory of automata, Budapest, 1972.
 [6] TRAUTH, CH. A., Group-type automata, J. Assoc. Comput. Mach., v. 13, 1966, pp. 170—175.
- [7] Sorkin, I. Yu. (Ю. U. Соркин), Теория определяющих соотношений для автоматов, Problemy Kibernet., v. 9, 1963, pp. 45-69.

(Received June 15, 1974)