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Endomorphisms of group-type quasi-automata

By I. BABCSANYI

In this paper the endomorphisms of group-type quasi-automata are investigated
‘using - the concept of the generating system of quasi-automata. For the notions
:and notations which are not defined here, we refer the reader to [4] or [5].

Let the characteristic semigroup F=F/g, of an arbitrary quasi-automaton
A= (4, F, 5) be a monoid, and let & (e€ F) be the identity element of F. Take the
subset A" =(8(a,f)| a€A; fEF) of A and the A-sub-quasi-automaton A’=(4’, F, 6")
of A. It is easy to see that ac A" if and only if § (a, ¢)=a for an arbitrary state a of A.
Furthermore, the characteristic semigroup of A’ is equal to that of A. Assume that
‘the set A\ A’ is non-empty. Let ¥ be an arbitrary (non-empty) subset of A\4’,
and let = denote a mapping of ¥ into A\ A". Moreover, let «" be an endomorphism
-of A’. The following holds: ’

Theorem 1. The mapping o: A—~ A, defined by

{ o (@) if acd’, |
(@) = a’(&(a, e) if acA\A, (1
is an endomorphism of A. The mapping «,: A-A, for which
o’ (a) if acAd’,
o (@) =4 n(a) if a€V, )

o« (6(a, &) if aE(A\A’_)\IA/‘
holds, is an endomorphism of A if and only if
o« (5(a, e)) = 8(n(a), ) 3)

holds for every a(€ V). Furthermore, if B isan endomorph}sm of A, then B is a mapping
of type (1) or (2).°

Proof. o and «, are well-defined. It can immediately be seen that « is an endomor-
phism of A. Now let a(€V), b(€(A\A")\V) and f(€F) be arbitrary elements.
Assume that the condition (3) holds. Then

a,(6(a, ) = &' (6(a,f)) = a’'(0(a, ef)) = «’(8(5(a, e), 1)) =
= 6(o'(0(a, €)),f) = 6(8(n(a), &), f) = 6(n(a), ef) = 3(ax(a),f),
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and

4 (8B, f)) = & (6(b. 1)) = ' (5(b, ) =
= a,(é(é(b’ e):ﬁ) = 5(a,(6(b’ e))af) = 5(an(b)’f)

These mean that «, is an endomorphism of A. Conversely, if (2) is an endomorphism
of A, then for every a(€ V) we get

@’ (6(a, e)) = a,(5(a, €)) = 6(x,(a), ) = 6(n(a), e),

that is, (3) holds.
Take an arbitrary endomorphism B of A. We prove the following implications:

acA’ = f(a)€Ad’,
acANA’ = B(@ecANA" or B(a) = B(5(a ¢)).
If a€ A’, there are b(€ 4) and f(€ F) such that 6(b, f)=a. Then

B(a) = B(5(b,.1)) = 6(B(b),f)eA".

If acAN\A" and B(a)€A’, there are b(€A) and f(€F) such that B(a)=6(b,f)-
That is,

B(a) = d(b,f) = d(b,fe) = 6(8(b,f), e) = 6(B(a),e) = B(S(a, €)).

Let # be an arbitrary endomorphism of A and let f” be an endomorphism of A’
for which f’(a)=8(a) (acA’). If V={(a|B(a)c A\A’) is a non-empty set, then f is
a mapping (2). If ¥ is the empty set, then f is a mapping (1).

Consequently, we can give the endomorphisms of A, if we know the endomor-
phisms of A’. In Theorem 3 we give all of the endomorphisms of A’,if A" is a group-
type quasi-automaton. '

A non-empty subset B of the state set 4 of a quasi-automaton A=(4, F, d)
is called a generating system of A if for each state a(€ A) there exists a state (¢ B)
and a f(€ F) such that 6(b,f)=a. A generating system B of A is minimal if none
of the proper subset of B is a generating system of A. A quasi-automaton is said
to be ( finitely) generated if it has a (finite) generating system. (We note that a quasi-
automaton is called cyclic if it has an one-element generating system.)

Let the characteristic semigroup F of a quasi-automaton A=(4, F, §) be again
a monoid and let & (e€ F) be the identity element of F. It can easily be proved that
the quasi-automaton A has a generating system if and only if

Y alé(a, e) = a). (4)
acAd

In the following lemma the theorem of Yu. I. SORKIN [7] concerning finitely
generated automata are generalised on generated quasi-automata.

Lemma 1. If G, and G, are two minimal generating systems of a generated quasi-
automaton A=(A, F, d) then |G,|=]G,|. ?

1 4] is the cardinal number of the set A.
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Proof. Let G, and G, be two minimal generating systems of A. For every a,(€G,),
there exist a,(€ G,) and f(€ F) such that §(a,,/)=a, holds It can easily be seen that
the set

Gy, = (ala€G, and El f[5(a,f)€Gz]>

is also a generating system of A. Since G, < Gl and G, is a minimal generating system
of A, thus G,,=G,. Assume that é(a,,f), d(ay, HE€G, (a,€Gy; f, h€ F). There exists
a k(€ F) such that é(a,,fk)=0(8(a,,f), k)€G,. Since G, is'a minimal generating
system of A, thus é(a,, fk)=a,, that s,

8(8(ay, 1), kh) = 5((ay, fk), h) = 8(ay, h)€G,.

Since G, is also a minimal generating system of A, we get that 8(aqy, h)=
=6(8(ay, ), kh)y=b(ay, f). Furthermore if 6(ay,f)=0d(a;, 2)€G,(ai€G,, gc F), then
a,=0(ay, fk)=0(ai, gk), that is, a,=a;. Consequently, the mapping ¢: G,—~G,,

for which
o(a) = ay c’f?Ff[‘s (al:f) = a,]

holds, is an one-to-one mapping of G, onto G,.

We define the following relation g on A4:

agh(a,bed) < 3 F(C,f, &)[o(c.f) = a, é(c, g) = b]. S

c€A;fig€

If the quasi-automaton A=(4, F, §) is generated then g is a reflexive and symmetric
relation. If the quasi-automaton A is generated and the characteristic semigroup
F of A is a group then g is an equivalence relation.

A non-empty subset E of the state set 4 of a quasi-automaton A=(4, F, d) is
called a strongly connected subset of A, if for every a, b (€E) there exists an f(€ F)
suchthat é(a, ) =b. A partition C of A4 is called strongly connected, if C(a)is a strongly
connected subset of 4 for every a(€ A) (C(a) denotes the ‘class of C containing the
element a).

Lemma 2. If the characteristic semigroup of a generated quasi-automaton
A=(4, F, ) is a group, then C, is a strongly connected partition of A, where C, is
the partition on A induced by .

Proof. Let a, beC, (c) (c€ A), then there exist f€ F and g€ F such that § (¢, f)=a
and 8(c, g)= b Since F is a group, there exists an 4 (€ F) such that fh=g, therefore,

5(a, h) = 6(3(c.f), h) = 8(c. fh) = d(c, g) = b,
that is, C,(c) is a strongly connected subset of 4.

Assume that the conditions of this Lemma are satisfied. It can easily be
seen that C,(a)=(d(a,f)| f€ F) holds for every a(€A4). Thus C,(a)=(C,(a), F, 5)
is a strongly connected sub-quasi-automaton of A for every a(c4) (cf. CH
TRAUTH [6]).

Lemma 3. If the characteristic sengroup of a generated quasi-automaton A=
=(A, F, 8) is a group, then A has a minimal generating system.
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Proof. By Lemma 2, C, is a strongly.connected partition of 4. Let G(S A4)

-such that A= |J C,(a) and if ab (€G) then C,(a)#=C,(b). We can easily prove
acG

that G is a minimal generating system of A.
We note that if G is a minimal generating system of A then A= (J C,(a) and if
. a€G

a#b(€G) then C,(a)=C,(b).
It is possible that C, is a strongly connected partition of A if the characteristic
semigroup of A is not a group. Take the following example:

A|12345

x[21154
yl32245

C,(1)=(1,2,3) and C,{4)=(4,5) are strongly connected subsets of A, C,()U
UC,(4)=4 and C,(1)NC,(4)=0. But F(X) is not a group. (F(X) denotes the free
semigroup with out identity element generated by X =(x, y).) Note that G=(1,4) is a
minimal generating system of A.

Theorem 2. If a quasi-automaton A=(A, F, d) is finitely generated and C, is
a strongly connected partition of A then

k

o(E(A) = IT o(E(Co(@)). 6)

where G={(a,, ..., a;) is a minimal generating system of A.

Proof. E(A) and E(C,(a;)) denote the endomorphism semigroups of the quasi-
automaton A=(4, F,6) and C,(a;)=(C,(a), F, é,) (a;,€G), respectively. Denote
by a= |J a, the following mapping of A4 into itself:

a€G
~afa) = o,(a), if acC,(a) o )
where a,, € E(C,(a;)). It can easily be proved that a€ E(A4). Furthermore, if
a= U o (@cEC @) and f= U Ba(Ba € E(C,(a))

- such that =g, then a, =g, for every q; (€G).

Lemma 4. If a group-type quasi-automaton A=(A, F, ) is generated, then the
sub-quasi-automaton C,(a) is quasi-perfect and the characteristic group of C,(a)
is equal to the characteristic group of A for every a(€A). Moreover C,(a)=C,(b)
Sfor every pair a, b (€ A).

Proof. Let a(€A) and f, g (€ F) such that
hgrh[é(a, ) = 5(5(0, h),f) = 5(6 (a, h), g) = 8(a, hg)].
Since A is state-independent, thus hf=hg. Let h=¢, where ¢ is the identity element

of the characteristic group of A, then f=g. Consequently, the characteristic group
of C,(a) is equal to the characteristic group of A. A sub-quasi-automaton of a state-



Endomorphisms-of group-type quasi-automata 317

independent quasi-automaton is also state-independent, therefore, by Lemma 2,
C,(a) is quasi-perfect. Let a, b (€ 4) be arbitrary states. It is clear that the mapping
o(a,N)—~6(b.1) ( fe F) is an isomorphic mapping of C,(a) onto C,(d).

Corollary 1. If a group-type A-finite quasi- automaton A (A, F, d) is generated,
then O(F)|[A]. ?

Proof. From Lemma 4 and Theorem 7 of CH. A. TRAUTH [6] we get that
|C,(a)|=O(F) for every d (€ A). |C,(a)| = |C (b)| follows also from Lemma 4 for every
pair a, b (€ 4). Thus O(F)=|C, (a)|||

Corollary 2. If an A ﬁmte group-type quasi-automaton A= (A F, 8) is generated
and |A| is a prime number, then either F has only one element or A is quasi-perfect.

Proof. By Corollary 1, 1f |A| is a prime number, ‘then either O(F)-—l or [C,(a)|=
=0(F)=|4| (acA). If |Al—|C (a)| (a€ 4), then A is a cyclic quasi-automaton. Cyclic
group-type quasi-automaton is quasi-perfect (CH. A. TRAUTH [6]). .

Theorem 3. If a group-type quasi-automaton A=(A, F, ) is génerated then
there exist a subsemigroup T and two subgroups H and P of the endomorphism semi-
group E(A) of A such that

E(d)=TH, G(A)=PH=HP, TNH={1}, PCT
hold, where 1 is the identity element of E (A) 3

Proof. Let the group-type quasi-automaton A = (4, F, 5) be generated. By Lemma
. 3, there exists a minimal generating system G of A. Let H denote the set of all endo-
morphisms (7). By Lemma 4 and Theorem 4 of I. BaBCsANYI [1], the endomor-
phisms (7) are automorphisms of A.-H is a subgroup of the automorphism group.
. G(A4) of A under the usual multiplication of mappings.

Let = be an arbitrary mapping of G into itself. We deﬁne the mappmg qo,,

—»A by _
?x(3(c:f)) = (r(c).f) (c€G, fEF). o ®)

We show that ¢, is an endomorphism of A. Let a be an arbitrary state of A and let
c€G and f, g€ F such that a= 5(c f)=6(c, g). Since A is state-independent, thus
3(n(c),f)=6(n(c), g), that is, ¢, is well defined. If a=6(c, h) (c€G, h€F) and fEF

then
0x(6(a.1)) = 0x(8(3(c: ). 1)) = 0x(S(c, b)) = 8(n(c), f) =

= 6(8((0), h),f) = 8(@x(5(c, M), f) = (0. [),

that is, @€ E(4). Let T denote the set of all mappings (8). T is a subsemigroup of
E(A). Namely, if ¢,, ¢ €T and a=4(c, h), then

P Pr (a) = (pn(pn'(é (C, h)) = (pn(5 (77:,((,'), h)) =

= 8(nn’(c), h) = @ (6(c, H)) = @rr (@)
that is, PP =@ €T.

® If n and k are natural numbers then k|n means that # can be divided by 4.
. 3 TH={palp €T, x < H).

3 Acta Cybernetica II/4
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If = is a permutation of G and ¢_(a)=¢,(b) (a, b€ A) then there exist ¢, d€G
and h, k€ F such that é(c, h)=a and d(d, k)=b, therefore

6(n(e), h) = 9.(3(c, b)) = 9:(@) = 9(b) = ¢:(8(d; k)) = 6(n(d), k).

Let k’€k-2, then &6(n(c), hk’}=06(n(d), kk'Y=n(d). Since n(c), n(d)€G and G is a
minimal generatmg system of A, thus n(c)=n(d), that is, c=d and h=k. Therefore
a=b», that is, ¢, is an one-to-one mapping. Now let a be an arbitrary state of A,
then there exist d€G and f¢ F such that 6(d, f)=a. Furthermore, there exists a c€G
such that n(c)=d, because = is a permutation of G. Thus

@x(6(c.1)) = 6(n(c).f) = 8(d.f) = a,

that is, @, is onto. Consequently, if = is a permutation of G, then ¢,€G(A4). Denote
by P the set of this automorphisms (px It is obvious, that P is a subgroup of G(4).
Ii can easily be seen that TNH={1}, PST, THS E(4) and PH, HPS G(4) hold.

Now, we prove that E(4) S TH. Let ¢ E(4) and aEA There exist states ¢, d(€G)
such that a€C,(c) and f(a)€C,(d). Take the mapping 7 of G into itself such that
n(c)=d. We show that 7 is well-deﬁned. Let b€ C,(c) and suppose that B(b)€C,(d")
(d’€G). There exist h, k' ¢ F for which 6(c, H)=a and 6(c, #’)=>b hold. Thus f{a)=
=B(6(c, ))=56(B(c), h) and B(B)=PB(8(c, W'))=6(B(c), i), that is, C,(d)=C,(d"),
thus d=d’. We define ¢, as in (8). If f{a)=0(d, k) (k€ F), then let &, be an automor-
phism of C,(c) such that a.(a)=a.(5(c, h))= d(c, k). (Since C,(¢) is quasi-perfect,
therefore the automorphism group of C,(c) is transitive, thus «, exists (CH. A.
TRAUTH [6]).) We prove that «, depends only on f. Let b€C,(c) and d6(c, /')=b
(K € F), furthermore h’=hl (I¢ F). Then

b= 8(c, ) = d(c, hI) = 8(5(c, h),T) = 8(a, I).
Thus, if f(b)=5(d, k') (K'CF), then
5(d k) = B(b) = B(8(a, D) = 5(B(a), 1) = 5(5(d, k), I) = 6(d, kl).
Since A is state-independent, thus k’=kl, that is, '
2.(8) = e (8(c, 1)) = a(5(c, h)) = o, (5(3(c, 1), ) =
= 8(ae(3(c, W), 1) = 8(8(c, k), 1) = 8(c, kI) = 8(c, K').

Pr%e(d) = @r0te(8(c, ) = ¢.(3(c, k) = 6d, k) = p(a).
Take this «, for every ¢ (¢ G) and let a= U a.. Itis clear that f= (p,,oc thatis, f€ TH,

since ¢.€ T and a€ H. Therefore E (A)C TH thus E(4)=TH.

Suppose that f=¢,x€G(A4). Since a€ G(A4), therefore ¢, =Pa~2¢G(A4). If acG
then ¢, (a)=n(a), that is, x is a permutation of G, thus ¢,€P. We get that G(4)=
=PH. Finally, we shall show that PH=HP. Let ¢,(¢P) and a(¢ H) be arbitrary
endomorphisms. Furthermore, let a=6d(c, ) (c€G, h€ F) be an arbitrary state of
A and let x(a)=6(c, k) (k€ F). Take the automorphism o, of C,(n(c)) such that

ey (8(n(c), B)) = 8(n(c), k).

Thus



. Endomorphiéms of group-type quasi-automata 319

It can easily be seen that Oy o) depends only on a. Smce m is a permutation of G,
therefore the mapping o, ¢, ~C, (n(c)) is one-to-one and o’ = U Un(cy€ H. Thus

o @ (a) = o 9 (6(c, ) = o’ (6(n(c), b)) = 5(7r(c), k)=
= 9:(6(c, k) = 9.2(8(c, ) = ¢.2(a),
" that is, «’@, =@« Thus G(4)=PHC HP, therefore PH=HP.
Corollary 3 If a group-type quasi-automaton A=(A, F, 0) is generated then
<Pd—¢ﬂ=>¢—lﬁ and o =f,
where q),lﬁETanda BeH. ~

Proof. Let ¢, €T and o, BEH such that o=y B, then paf~1=y. Let G be -
a minimal generating system of A and c€G, then ¢ (ap~(c))=V (c). Since «f~(c)€
€C,(c), there exists f€ F such that af~*(c)=06(c, f), that is,

V() = p(aB 1) = ¢(5(c. 1)) = 8(9(0). f)-

Since ¢.(¢), ¥ (c)€G, thus p(c)=y (c) (c€G) and f=e, where ¢ is the ldentlty element
of F. We get that ¢ =1y and offi~ He)=0d(c, f)= 8(c, e)=c, that is a=p.

Corollary 4. Let a group-type quasi-automaton A=(4, F, 5) be generated I
O(F )>1, then P is isomorphic to a subgroup of the automorphism group of H. If
O(F) =1 then H={1}.

Proof Let ¢ € P. We define the followmg mapping w,, of H into 1tse]f )
W, (0) = o’ & gu = o' ¢. B 9)
o, is one-to-one and onto. Let a,, ay,€ H then v .
| (o) @ = . 4’(“1‘“2) = (o) oy = (G P) oz = “1(‘%’0‘2) = uj(020) = (d1a2)¢’

that is, (oy0) —alaz, thus @, is an automorphlsm of H. Suppose that wq,—co,,,
(o, ¢€P) that is, .

pu=d'gepu=0. |
Let (poz «¢ and Yo=uo W, ‘then o' =yay~! thus ga=yoy~le, that is Y lpa=
=ay ~1p (x€H). Let O(F)=>1. Let a€ H such that «a(a)=4d(a, f) and a(t,b‘lgo(a))—
-=6(y ¢ (a), g) (acA), where f;ég (€F). a exists if C, @=C, (Y@ (a)). Then

S p(@).f) = ¥1e(8(a. ) = ¥loa(@) = a1p(@) = 5(Y 10 (@), g),

- that is f=g, since A is state-independent. It is a contradiction. Thus C (a)—
=C,(Y ¢ (a)), that is Yy '¢=1 and Q= . Therefore the mapping.p —w,, is one-
to-one. We prove that this mapping is isomorphism. Let ¢, y€P and a€ H then
W,y () =0, () =y, where Ya=a, and o, =ayp. Then

(PP = eEo) = o(uy) = (‘P“l)‘p = (@)Y = w (oY),

that is ww(a)~oz2, thus w,wy=w,y
If O(F) 1, then |C, (c)]—l (cEG), that is H= {i}. (In this case G= A E(4)=T
and G(4)=P.)

3*
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Let G and G’ be two minimal generating systems of a group-type generated
quasi-automaton A=(4, F, §). Let T, P and T”, P’ be sets which are defined in Theo-
rem 3.

Corollary 5. T"=aTa"!, P'=aPx~' where ac H and a(G)=G".* Furthermore
T'=T, PP’~P. . :

Proof. Let © be a‘mapping of G into itszIf and let ” bz a mlpping of G’ into
tself such that
: a(n(c)) = 7' (a(c)) (c€G) . (10)

holds, where a€ H and «(G)=G’. The mapping = —n" is one-to-one, thus the mapping
. @, —~@, is one-to-one also. Let a€ 4, then

49, (@) = a9, (3(c, b)) = a(d(n(c), h) = o(a(m(c)), h) = -
= 5(7 @) h) = P (3(a() 1) = Pra(5(c, B) = Pra(@

{c€a, hEF), that is, a@p, =@, o thus ¢, =ap,a~!. It can easily be seen, that the
mapping x is onto, that is 77 =aTx"1.

x(¢ﬂ1¢1‘lg) = %((pnurg) = aq)nl(pﬂ:ga_l = ago_nloc_‘l a(Pn:za-l = %((pﬂx) N %((pﬂg.)
(Pny> Pr, € T) therefore T=T". It is evident that P’=aPa~! and Px=pP’.

- We note, if G is a minimal generating system of a group-type generated quasi-
automaton A and a€ H, then a(G) is also a minimal generating system of A. If a5 -
#B€ H then a(G)#p(G). Furthermore, if G and G’ are two minimal generating
systems of A, then there exists o€ H such that a(G)=G" holds. Therefore, the cardi-
nality of the set of all minimal generating systems of A is equal to O (H).

Theorem 4. If an A-finite group-type quasi-automaton A=(A, F, d) is generated, -
|Al=n and |G|=k then

0(G(4)) =k!.[£]' and O(E(4)) = n*,

where G is a minimal generating system of A.

Proof. If |A|=n and |G|=k, where G is a minimal generating system of A, then
.O(F)—— By Lemmas 2 and 4 [Colo)| = (cEG) Since C,(c) is qua51 perfect,
therefore O(E(C (c))) |C, (c)|— The number of sets C,(c) (c€G) is equal to
k,thus O(H)= (— . By Theorem 3, O(P) is equal to the number of the permutations |
ofG that is O(P)=k!. By Theorem 3 and Corollary 3, O(G(4))=0(P)-O(H)=k!-
[%] and O(E(A4))=O0(T)-O(H)=k*- [k]k—nk.

4 a(G)={(a(c)ceG).
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Example:
A| 234

1234
fl2143 ‘ :

(F={e, f} is the. Abelian group of degree two, where e is the identity element of F.}
Let abed (a, b, c,d=1,2,3,4) denote the mapping ¢: A—~A such that (p(l) a,
0 (2)=b, p(3)=c and (p(4) d. 1t is clear that

H=1{1234; 1243, 2134; 2143)

‘T={1234; 3412, 1212; 3434}

P={1234,; 3412} -
In this example n=4 and k=2, that is O(G(4))=2!-2*=8 and O(E(4))=42=16.
But HT > TH=FE(A), since |HT|—12

We can more easily determine the endomorphisms of a group-type quasi-
automaton A=(4, F, §) by means of the following:

Let G be a minimal generating system of A’ (see page 1). Let

B.=(b|bc4 and 3 f[6(b,f) = c])
fEF

" where ¢c€G. It is evident that this is a bartition of A. Furthermore, C,(c)E B, (c€ G).
Lemma 5. If o is an arbitrary endomorphism of the group-type quasi-automaton
A=(A4, F, d), then for every c(€G), there exists a d(€G) such that a(B,) < B;.

~ "Proof. Let a€ E(A) and a€ B, (c€ G), then there exists anf(e F) such that & (a,f)=
=c, thus («(a), f)=a(c). It is obvious, that there exists a d(¢€ G) such that a(c)€B,.
If h€F such that § (a(c), h)=d, then 8(a(a), fl)=05(a(c), h)=d, that is, a(a)€B;.

JuaoMopdH3MBI rpymia — THIHLIX KBa3H-aBTOMAaToOB

B arto#i paGoTe paccMaTpuBaeM SHOOMOPGU3MEBI I'DYNNA-THIHBIX KBa3H-aBTOMATOB (CM.
CH. A. TRAUTH [6]) Ipy TIOMOIIE CHCTEMBI 00pa3yloIMX KBa3U-aBTOMATOB.

Ilycre A=(A, F, 5) npon3BoNbHbIA KBa3H-aBTOMAT M A'={(d(a,f)lacA, f¢F). B-Teopeme 1
HOJIy4aeM dHAOMOPGHU3MEI KBa3H-aBTOMATa A, €CIIM 3HaeM SHIOMOPGH3MBI A-NOJKBa3H-aBTOMAaTa
A’ kBa3u-apToMata A. (A’ MOXXHO Ha3BIBATLCH AJpom KBasm-aBTomara A.) Ecmu xapakrepucrayec-
Kas nomyrpymma F=F/§, obnamaer emuuuuei, Toraa A’ sBisercs NOpoxiaeHHbM. Teopema 3
IOCTAaBIsAEM IJIABHBIA De3yJbTaT 3TOH paboTeI, rAe JaBaeM 3HAOMOPGH3MEL (aBTOMODPGU3MBI)
MOPOXIEHHBIX [PYINAa-THITHBIX KBa3H-aBTOMATOB M CTPYKTYPY IIOJyIPymmbl 3HAOMOP(HH3MOB
(rpymmst aBToMopdu3iMer): O603HauaeM MHOXKECTBO 0TOOpaxkemuit (7). H m MHOXeCTBO OTOOpakeHHit

-(8) T. H siBsieTcs MOATPYNIIoii rpyrmsi aBToMOphu3MoB G (A4). T sBiseTcs MOANOXyrpymroi nomyr-
pymnbl 3nnoMopdusMoB E(A), E(A)=TH n TNH={1}, rue 1 ectb epunHuua noxyrpymst E(A).
MoxHO HalTH TaKyio noarpymiy P nomyrpymet T, uto PH=HP=G(A4) (PNH={1}). B cnenct-
BHHM 4 moxaszaeM, uTo ecim O(F)=1, Torna P u3oMop(dHO BKJIAALIBAETCS B TPYHIY aBTOMOP(HU3IMOB
rpynnsl H, u eciu O (F)=1, Torna H={1}. B TeopeMe 4 naBaeM 4YHCIIO 3HAOMOPGH3MOB ¥ aBTOMOD-
$HU3MOB A-KOHEUHBIX MOPOXACHHBIX TPYIIA-TUIHLIX KBasH-aBToMaToB: O(E(A))=r* 1 O(G(A))=

k
=k!. (—] , Toe |A|=nn |G]—k (G nenpuBOAMMas cHCTeMa OOpa3ylOIMX B KBa3u-aBTOMare A).

B cnencteuu 1 l'IOKaBLl'BaCM, Y10 O(F)HAI Jlemma 1 sBasiercs o6ob6menunem Teopemsl FO. M.
Copxkuna [7]: Bce HempmBomiMble cucTeMbl 00pa3ylollMX KBa3H-aBTOMATa SABJIAIOTCA PABHO-
MoIHbIMHU. [loKa3aeM, YTO BCAKUH NOPOXICHHBLA IPyNNa — THIHBIA KBa3H-aBTOMAT €CTh NpAMas
CyMMa H30MOPGHBIX TOJIYCOBEPIIEHHBIX KBAa3W-aBTOMATOB (Jiemma 4).
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