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.On superpositions of automata
By P. DoMosI

~ We say that an automaton A realises an automaton B if B can be given as an
A-homomorphic image of an A-subautomaton of A. If there exists a one-to-one
homomorphism having thé above property then it is said that B can be embetted A-
isomorphically into A.

Let A be a finite. automaton and denote by C(A) the class of all finite super-
positions of automata having fewer states than A. For any natural number /, let C,(A)
be the class of all automata from C(A) whose factors have not more states than /.

For any finite automaton A and natural number / one can raise the followmg
questions:

(a) Whether there exists an A, €C,(A) such that A, is 4- 1somorph1c to A.

(b). Whether A can be embetted A- 1somorphxcally into a superposition from
Ci(A).

(c) Whether A can be realized by an automaton in C;(A).

Using results published by M. Yoeli [6], we can solve (a). Moreovér, by specializ-
ing Theorem 4.3.2. stated by F. Gécseg [2], problem (b) can also be solved. In both™ -
cases we can give an effective procedure.

In this paper, using a result mentioned by F. Gecseg and some results achieved
by R. J. Nelson [5] and H. P. Zeiger [8], we present an algorithm to decide for any
automaton A whether it can be realized by an automaton B from C(A). Moreover,
if such B exists then it can be given by a procedure presented in this paper.

Before studying these questions, we introduce some notions and notations.

In the sequel by an automaton we always mean a finite automaton.

Take two automata A;=A,(X;, 44, Y1, 8,,.4) and A,=A,(X,, A5, Y3, 09, Ay)
with Y, S X,. It is said that the automaton A=A(X, 4, Y, d, 1) with X=X;, 4=
=A,X A4, and Y=Y, is the superposztzon of A, by A, (1n notation: A= Al*Az) if
for any x€X and (ay, a))€ 4,

é(_(al, ay), x)=(61(a1> x), 5_2(02, A(ay, x)))

and -
)((ala 02),')() = )'2 (02: )‘1 (al’ X))
~ hold.
The concept of superposmon can be generallzed in a natural way for any ﬁmte
system of automata A;=A;(X;, 4;, ¥;,6;, %) (i=1,2,...,n) with Y;EX;,, (j=

=1,2,...,n—1).

4+
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.- Let k be a natural number and A=A(X, 4, Y, J, ) be an automaton. Then by
A* we mean the automaton B=B(X, B, Y’,d’, /') with

B=AXAX.. XA andY =YX Y¥YX...XY
e ttr—— N, e e’

k-times k—times

such that for any x€X and (a,, dg, ..., @ )€ B, we have
& ((ay, --., ), x) = (8(ay, %), ..., 6(a;, X)) -

).’((al,...., ay), x) = (/(ay, 'x), ceey 2@y 5 X)).

- Let A;=A(X, 4;, Y,8;,2) (i=1,...,n) be a system of automata such that
for any i, j€(l, ...,n), A;NA;=0 if i=j. Then the automaton A=A(X, 4, Y, 95, 2)

& .
is called the direct sum of A;(i=1,...,n) if A=-|J 4; and for any xcX and a<4,
i=1 .

and

o(a, x) = d:(a,x) (ac4y)
and

Ma, x) = 2;(a,x) (acA,)
* hold.

Take an arbitrary automaton A= A(X A, 7,9, /) An x€X is called reset
signal if there exists an a€ 4 such that d(b, x)=a for any b€ 4. We say that this a
belongs to x. An input signal x€ X is said to be permutation signal if .: a~6(a, x) (a€
€ A).is a permutation of 4. Generally, for an automaton A with input set X, Xz
- denotes the set of all reset signals and X is the set of all permutation signals. An auto-
maton A=A(X, 4, Y, 8, 1) is reset, permutation and permutation-reset automaton
if respectively X=Xz, XY=Xp and X=XUX,. :

For any set H let F(H) denote the free semigroup freely generated H. Further-
more, let ap be the last letter in the word &(a, p) (a€ A, p€ F(x)). Let A be an automa-
ton and B a subset of the state set 4 of A. Then for any input word p, we set B? =
={clc=bp|b€ B). Moreover we say that a system I'=(B,, ..., B,) of subsets of 4

is cover of A if U B;=4, B #B; 1mp11es i#j and for any B;erl’ and x€X. there

exists a B er such that Bf S B;. For any B; er take a 1—1 mapping @ of (1,2,..
B) onto B;. We say that a pair (A, Ao) of automata is an SR-system of A be-
longmg to I' if the following conditions are satisfied: _

A = ALY, T, TXX, 81,20, As = As(TXX, {1, ..., I}, Y, 64, 2),
where /=max B;; furthermore, for any x€X, Biel and kE(l D,
" BF € 5,(8,, %),
21(B;, x) = (B;, x),
: 515 o(8(Pp,(k), x)) if k=B,
b2k, (Bi, ) = {a:t;i:r;r))g rfzeﬂ(il( , ;, )), / )-otherwise;

Ja(k [M&s k). x) if k=B,
s (K, (Biy %)) =+ arbitrary y¢ Y-otherwise.



V' On superpositions of automata 337

It has been proved (see [5]) that for any such pair A,, A, the superposition
A, # A, realises A. .

A system (A4, ..., A,) of automata is called an SR-system of A with rank k
if A;%...% A, realizes A at least one A; (1 =i=n) has k states and none of A,,...,A,
has more than k states.

Finally, it is said that A can be mapped MA-homomorphically (M A-isomor-
phically). onto B if the automaton without output belonging to A can be mapped
A-homomorphically (4-isomorphically) onto the automaton w1thout output belong-
ing to B.

Now we are ready to present our algorithm.

Let A=A(X, 4, Y, J, 2) be an arbitrary automaton. We shall 1nvest1gate whetlier
A has an SR-system of rank less than A,

-We distinguish the following cases:
(I) If A=2 then A has no SR-system of rank less than A.
-(IT) Let X=Xz and A>2. Then every system I'®=(B{®, B{®).with B{® UB® =

=A and 1=B®, B{®» <4 is a cover of A. Giving an SR-system (A(z),A‘”) of A

belonging to I', we get the desired construction.

' (ITII) Let X=X,, A>2 and assume that A can be given asa direct sum of two

automata B with state set B=(by, ..., b,) and C with state set C such that B=C.

In this case I'®=(b)), (by), ..., by~ C> is a cover of A..Therefore, since B=C

and A=2 thus every SR-system (A{, A{®) of A belonging to F‘z")‘xs suitable for

our purpose. - C .

, (IV) Assume that X=X, A>2and A cannot be given as a direct sum of any two.
_ automata. Consider all proper subsets C; of A having at least two elements-and for
any C; give a cover I';=(C?|p€ F(X)). For any such I';;let us consider an SR-sys-
tem (B A) of A belongmg to I';. If one of these SR-systems has rank less than A
then-it is a sultable SR-system of A If none of them has rank less than A then take
all pairs (B A)) such that the number of states of B;*A; is less than Al (In this
case this is only a formal requirement since the number of states of any B; % A; is

‘less than A!). For any subset C;; ; of the state set of such B; ‘having at least two ele-
ments, let us construct a cover I';,=(C%|p€ F(X)) of B; and an SR- -system (B;;, A; j)

belonging to this cover. If one,of these triples (B;;, A;;, A;) is of rank less than A
then we get a desired SR-system of A. If there exists no such system let us consider
all systems (By;, A;;, A;) for which the number of states of B;;*A;;xA; is less
than A!. Now repeating the above process, we get the following cases
- (IV. A) We get an SR-system (A{®, ..., A®) of A with rank less than A. :
(IV. B) For all sequences (B, A,, ..., A,), B=4 and the number of states of
BxA;#...%A,is not less than A!. In this case A cannot be realized by a superposition’
of automata havmg fewer states than A.
(V) Assume that X=XgUXp, Xg>0, Xp=0 and A=2. If the X-subautomaton
of A having input set X, can be given as a direct sum then let us apply to this. X-
“subautomaton the procedure presented in (III); in the opposite case let us apply
to it the procedure given in (IV). In case (IV. B) the automaton A cannot be realized.
by a superposition of automata having fewer states than A. If we get (IV. A) then
one can apply (III) or, using (VII), we get a desired SR-system (A{?, ..., A®) of A:
(VD) Let X N (XzUXp) =0, A=2 and consider the construction glven by H. P.
Zeiger in [8]: For-any x€ X\ Xjp, let a(x) denote the state of A such that d(a’, x)=
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. #a(x) where @’€ 4 is arbitrary. Consider the cover F(“’—(B|B AN(a), acA) and
take the automaton A®=A® (X, ®, r®xx,s,,2,) such that for any x€X
and Ber®,

B* if xeX,,

6,(B, x) = { AN{a(x))-otherwise,
and
(B, x) = (B, x).

Now choosing a suitable automaton A{®, we get an SR-system (A{®, A{®) of A
such that the number of states of A{® is less than A, A{® is permutation-reset;
moreover, if Xp>=0 then the X-subautomata of A and A{® having input set X, are
A-isomorphic (see [5]). . .

Thus we get the following subprocedures

(VL A) If A{® is a reset automaton then apply (II) to it. In this case (A{?, A{Y,
A{®) is a required system.

(VL. B) If A{® has a permutation signal then apply (V) to it. If A{® has no
SR-system with rank less than A then neither has A. In the opposite case
AP, AP, ..., AP, AP®) is anl SR-system of A with rank less than A.

(VII) Assume that X\Xr =0, X0 and the superposition A;*xA,*...%xA,
‘of the automata A;,=4;(X,, 4;, Y;,;, %) (A;<A;i=1, ..., n) realises the X-sub-
automaton B with input set X\ X of the automaton A Let Y be an A-homomor-
phism of an A-subautomaton of the superposition A; * A;%... * A, onto B. For any
x€Xp take an element (ay(x), ..., @,(x)) of 4;XA,X...X 4, such that ¥((a;(x), ..

,a,(x)) is an element of 4 belonging to x. Construct the automaton A" =
—A(7)(X A;, Y7, 6!, 2)) (i=1,...,n) with X{=X and ¥, =Y such that for any
j(=2,...,n) and k(:l,...,n—l), X[=A4;XA;X...XA;_yXX and Yy=4,X..

. XA X X; furthermore, for any i(=1, ..., n), x;€ X{ ,and a;€ 4,, _

6 (a;, x;) = ‘
d;(a;, x;) : “if i=1 and x;¢ Xy,
_ Jai(x) : if i=1 and x;€Xz,
6@ Aiea(@nys o Ay, %), L)) I P>, xi=(a1,a, .0, 824, X), X6 Xg,
a;(x) if i=1, x;=(ay,a,,...,a,_,,x), XEXg,
A (a, x) =
(a;, x) if i=1,
(a,as, ..., a;, %) if l<i<nandx;=((y,..,a_,,X),

AW (@, az, .., a,),x) if i=n, x;=(ay, ..., 8,1, %) and l//((a,,az,A sy Ay)) I8
defined, arbltrary y€ Y-otherwise.

" The system (A{”, ..., A{”) given above is an SR-system of A with rank less
than A.
We now show that the process given above is right. Superpositions of automata
~ with one-element state sets have one-element state sets, too. Moreover, the state
set is never void. Therefore (I) is obviously valid.
" It can be seen directly from the definition that (II) and (III) are valid.
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After proving (IV) and (VII), the validity of (V) follows obv1ously, and (VI)
is. valid by the results published in [§].

In order to deal with the construction given in (VII) take the partial mapping
't A X A X ... X 4,~ A given as follows: For any (a,, @, ..., a,)€A; XA, X... X4,

let
¥((ar, ..., a)) if ¥((ay, ..., a,)) is defined,
undefined-otherwise.

lp,((ab nes an)) = {

It can be proved easily that " is an’' A-homomorphism of a suitable A-sub-
automaton of A" x...xA onto A, ie., the superposition A{" *A{" .. xA{.
realizes A. This shows the apphcablhty of (VII)

It remains to show that (IV) is valid. To do this consider the following two
‘results.

Theorem 1. Let A be an automaton w1th n states. Then for any natural number
k, every connected A-subautomaton of the 4-direct power A* of A is MA-isomprphic
to a suitable 4-subautomaton of the A-direct power A",

Theorem 2. (R J. Nelson [5]). Every permutation automaton is strongly con-
nected or can be given as a direct sum of strongly connected permutation automata.

We now prove two lemmas. Applying them, we get Theorem 3 which shows
the validity of (IV).

Lemma 1. Let n and I be arbitrary natural numbers such that 1</<n. Further- .
more, let A be a connected permutation automaton with » states having an SR-
system (A, ..., A,) of rank less than or equal to .

Assume that an SR-system (B, C) of A has the following properties.

- ~(a) B Cisan M4- homomorphlc image of a connected 4-subautomaton of A"

®) (A4, ..., A) (1<i=m) is an SR-system of B.

Then, usmg (IV), one can find an SR-system (B, , C,) of B and a natural number
_ t such that

© BI*CI*C is MA- homomorphxc image of an A-subautomaton of A"*,
(d) A, *-...% A, -, realises By, :

(e) C, has a number of states not exceeding /.

Proof. Using Theorem 2, it can be proved easily that every connected A-subauto-
maton of A" is strongly connected permutation automaton. Theréefore, the same is
true for B*C, too. Thus B (as the first component of B+ C) should be strongly
connected permutation automaton. From this it follows, by an easy computation,
that A;#...%A;_, has a strongly connected A4-subautomaton D such that DxA;
realizes B

Let us denote by F(X) the input semlgroups of A and D. Moreover, let D and
A; be the state sets of D and A;, respectively. Take an A-homomorphism  of a
suitable 4-subautomaton of D+ A; onto B. For any d¢ D, define the set

A(d) = (b((d, a))lae4y). ()

Since B is strongly connected thus I'={(4(d))?’|p€ F(x)) is a cover of B for
any deD.

Accomphshmg a step of (IV), we get an SR-system (Bl, Cl) of B belonging
toI'.
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On the other hand, since the number of states of A; does not exceed / and,

by definition (1), 4(d)=1(d< D) thus C, has not more states than /. Therefore, (e)
is valid.

Define .a partitition 1T on D as follows: dy=d,(/I) if and only if
4(d)=A4(d,)(d,, d,€ D). Then, by (1), II is congruent. Therefore, B, is an MA-

. homomorphic image of D, i.e., (d) is valid.

Now in order to prove our Lemma it is enough to show that, choosing a suitable

natural number ¢, (c) is also true. Since B is a permutation automaton thus (4 (d))p=

= A(d) holds for arbitrary d¢ D and p€ F(X). Therefore, it is easy to prove that for
any deD and pc F(X), .

| (4@ = Adp). )

By this equality (2), we can use the notation 4(d)(d¢ D) for the elements of I'.
For any A(d)€T, let @, be the one-to-one mapping of {1, 2, ..., 4(d)) onto
A{d) determined by C,. Moreover, let i’ be the M A-homomorphism of a suitable
connected A-subautomaton of A" onto B# C. Since this subautomaton is strongly

connected permutation automaton (see Theorem 2) thus the number of elements
of arbitrary class of the partitition induced by y’ is the same natural number t,.

Denote by C the state set of Cand let r=1, - 4(d) - C(d€ D).
For arbitrary state (4(d), ¢y, ¢) of B,*C; % C, let

VQ(A @), ¢c;,¢) = <(a1, a, ... a,..,)l:g: (¢’((ai,",+1, ey A1) )Y =

= ADXC Y (@, - 8)) = (Bye) ). @)
We show that for any pair (4 @), ¢, ¢), (4d’), c5, '), :
(4@), 1, ¢) = (AW, ci, ') = QA @), ¢, )N QAW@), ¢}, ) = 0.~ (d)

Assume that A(d)#A(d’). Then it can also be assumed that there exists a
bcA(d) with b¢ A(d’). Take a state (47, ..., a;) from A" such that y’((a7, ..., a}))€
€(b)XC. Then, by (3), every element (a, ..., a,.) of Q(4(d), ¢;,c) has a part
(@;.p+15 s GGs1y-) (O=i=1—1) which is equal to (a7, ..., @;), and for any element
(@i, ..., a5.) of Q(4(d),c;,c’) we have (@f.,41, ..., @jsny.)#=(a], ..., @) (=
=0,1, ..., t—1). Therefore (4) is true.

Let 4(d)=A4(d’) and assume that (c;, ¢)=(ci, ¢’). Then by (3) for any pair
(a1, Gy, ..., 3, )EQ(A(d), 1, ¢), (a1, a3, ..., a,.)€Q(A(d'), c1,¢’) we have that
(ay, ..., a,)#(a, ..., a;). This completes the proof of (4).

Let us show that for any state (a,, 4,, ..., a,.,) of the A-direct power A™** defined
by (3) and for any input word p€ F(X)

(al’ as, cen an.t)EQ(A (d)a €15 C) = (al’ (AR a,,,,)-pEQ((A (d): C1s C) 'p)' (5)

Since B and B« C are permutation automata thus

. (Y@ p)(eD, pe F(X))((4(@))* = 4(d), (4(d)XC)P = 4(d)XC),
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ie. (4 (d)XC)P = (A (d)PXC. Thus for arbitrary element (ay, as, ..., a,,) of
Q(A d), 1, ¢) we have

U W (@nirs s .0 2) = (B@PXC. S ©
From (a,, ..., a,,,,)'E Q(4(d), &1, ¢) and )
Ip/((al’ az; vees an) 'p) = (¢A ). p(ci) C’) . (7)’

where c and ¢’ are the second and third components of (4(d), ¢;, c) p. Hence
used the definition (3) implies the (6) and (7) the (5) is valid, too.

From (4) and (5) we have that an A-subautomaton of A-direct power A" can
be mapped M A-homomorphically onto B, # C, * C. The classes of this homomorphlsm
are represented by definition (3). This completes the proof of Lemma 1. i

The following holds.

Lemma 2. Let (B, C) be an SR-system of a connected permutation automaton
A and assume that C has fewer states than A. Then it can be found an SR-system '
(B” C’) of A such that

(a) B’ is MA-isomorphic to a strongly connected A- subautomaton of B,

(b) usrng (IV) C’ can be constructed as the second component of an SR-system
of A,

(¢) C has not more states than C, ‘

(d) B’ % C’ is strongly connected,

(¢) BxC reallses B'* C’

Proof Let l,[/ be an A homomorphrsm of an A4- subautomaton M of B C onto
A and take a fixed state (by, c,) of M. Since A is strongly connected thus it can be
assumed that M is also strongly connected. .

Let B=B(X, B, Y, d5, Ap) and take

AB) = Wb IIcEC), and 4B) = (4G  ©

where b=b,p (beB pEF(X) and C is the state set of C).

Since M is strongly connected thus 4 (by) is non-empty. Therefore =
={(4(b))P|pE F(X)) is a cover of A.

Denote by (B,, C’) an SR-system of A belongmg to I. By (8) and the construc-
tion of I, it can be seen that C’ satisfies conditions (b) and (c) of Lemma 2.

Now let us define the automaton B'=B’(X, B’, I' X X, 6y, Ag) in the following

: B'={blb=b,p, p€ F(X)) and for any x¢X and b¢B, 6y (b, xX)=05(b, x) and

lg (b x)=(4(b), x).

By our construction, it is clear that (B’, C’) is an SR-system of A; furthermore
conditions (a) and (d) of Lemma 2 is satisfied.

Again, since A is a permutation automaton thus

: S . (4®))P = A(bp) i )]
“for any b€B’ and peF(X). - : : .

For any (b, k)€ B"X(l,2,. sz))' take :
Qb k) = ((b O)|c€C, ¥ (B, ) = P4 (K)) (10)
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where @, is the one-to-one mapping of (1, 2, ..., 4(b)) onto 4(b) determined by
C’. By (9), the set Q(b, k) given by (10) is defined for any (b, k) from B'X(1, 2, ...,

...,max 4(b)). On the other hand, since the mappings @,4,): <1,2, w A(B))—
bep

€ —
—~A(b) defined by C’ are 1—I thus the sets Q(b, k)(b€B’, ke(l, ..., A(b))) forms
a partition of a given subset of BX C. Taking into consideration that  is a homomor-
phism this partition can be induced by a homomorphism " onto B” % C’ because of
(9). Therefore, B # C realizes B’ # C’ which ends the proof of Lemma 2.

It can be proved that if A is an permutation automaton with n states then none
of the strongly connected A-subautomata of A" has more states than »n! Thus the va-
lidity .of (IV) follows from.

Theorem 3. Let n and / be natural numbers with 1 </<n. Moreover, assume
that the connected permutation automaton A with » states has an SR-system (A,, ...,
..., A,) of rank /. Then, using (IV), we get an SR-system (B,, ..., B,) of A with
rank not exceeding / such that A" has an A-subautomaton which can be mapped
MA-homomorphically onto B, %...xB,,.

Proof. Let B,,,; an automaton with one state having the same input set as A ;-
moreover, under any input signal x, B,,,; produces the same output signal x.

Let B=A, C=B,,,; and i=m. It is clear hat for any (B, C) and natural i, the
conditions of Lemma 1 are satisfied. By Lemma 2, it can be assumed that for the
pair (D, B,,) (D,=B,, B,,=C,) given at the first step of (IV), Dy*B,, is strongly
connected; i.e., A" * has a strongly connected A-subautomaton which can be map-
ped MA- homomorphlcally onto DyxB,, . Smce B=A thus (D, B,) is an SR-system

- of A; i.e., we can disregard B, ;.

Using Theorem 1, there is an A-subautomaton of A” which can be mapped MA4-
homomorphically onto. Dy#B,,. Thus the system B=D,, C=B,,, i=m—1 satisfies
the conditions of Lemma 1. '

By Lemma 2, it can be assumed that for any pair (D,, B,,_;) obtained at the
second step of (IV), D,#B,,_, is strongly connected. Again, using Lemma 2, it
can also be shown that D, #B,_, * B, is strongly connected. This, by Theorem 1,
implies that A" has a strongly connected A-subautomaton which can be mapped
MA-homomorphically onto D, %B,,-,*B,,. Therefore, the system B=D,, C=

=B, -1%B,, i=m— 2 satisfies the conditions of Lemma 2. Repeating this process
we get an SR-system (B,, ..., B,,) of A such that .

(@) A, reallzes B, and the number of states of B; and B; (=2, ..., m) do not
exceed /,

(b) A" has an A-subautomaton which can be mapped MA4-homomorphically
onto B;*%...%B,_,

(c) the system (B,, ..., B,) (except one-state components) can be given by
applications of (IV).

This completes the proof of Theorem 3 and at the same time we proved that
our process is right.

: We now show the validity of.

Theorem 4 (see [2]). There exists an automaton A with four states such that A
can be realized by a superposition of three automata having fewer states than A
but no superposition of two automata having fewer states than A realizes A.
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Proof. Let A= A(X, A4, AXX 3, %) be the automaton with X={x;, x;) given
by the transition table below

9 I?ﬁle

a, |a,|a,

‘s |03 | a3

as 14,410y

T Ay (|4,

The 47 AX X —~AXX output function induces the identical mapping.

It can be proved easily that any cover of A has at least four elements. There- -
fore, using a result by M. Yoeli [7], A cannot be realized as a superposition of two
automata having fewer states than A.

~ Now take an SR-system (B,, A;) belonging to the cover I'y=(a,, a»)*|p€ F(X)) of
A. Furthermore, let (A;, A,) be an SR-system belonging to the cover I'j={({{a,, ap),
{as, a))?|p€ F(X)) of B,. By the constructions of I'y and I'y, it can be proved easily
that A;, A, and A, have fewer states than four. This ends the proof of Theorem 4.
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